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Abstract

Given a group G, the intersection power graph of G, denoted by GI(G), is the graph with vertex
set G and two distinct vertices x and y are adjacent in GI(G) if there exists a non-identity element
z ∈ G such that xm = z = yn, for some m,n ∈ N, i.e. x ∼ y in GI(G) if 〈x〉 ∩ 〈y〉 6= {e} and e is
adjacent to all other vertices, where e is the identity element of the groupG. Here we show that the
graph GI(G) is complete if and only if either G is cyclic p-group or G is a generalized quaternion
group. Furthermore, GI(G) is Eulerian if and only if |G| is odd. We characterize all abelian groups
and also all non-abelian p-groups G, for which GI(G) is dominatable. Beside, we determine the
automorphism group of the graph GI(Zn), when n 6= pm.
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1. Introduction

Given an algebraic structure S, we can associate S to a directed or undirected graph in differ-
ent ways. To study different algebraic structures using graph theory, different graphs have been
formulated namely, commuting graph associate to a group [8], [20], power graph of a semigroup
[11], strong power graph of a group [6], [18], normal subgroup based power graphs of a group
[7], zero divisor graph of a rings [3] etc. Kelarev and Quinn introduced the directed power graph
of a group [17]. Then Chakraborty et.al [11] introduced the undirected power graph G(G) of a
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semigroup G, where the vertex set of the graph is G and two distinct vertices x, y are adjacent if
either x = ym or y = xn for some m,n ∈ N. Again the commuting graph C(G) of a group G
is the graph whose vertex set is G and two distinct vertices x, y are adjacent if xy = yx. Clearly
for every group G, the power graph G(G) is a subgraph of the commuting graph C(G). In [1],
Aalipour et.al characterized the finite groups G for which the power graph G(G) is same as the
commuting graph. But when they are not equal, they measured how close the power graph is to the
commuting graph by introducing a new graph, called enhanced power graph. The enhanced power
graph Ge(G) of a group G is the graph whose vertex set is the group G and two distinct vertices
x, y are adjacent if there exists z ∈ G such that x = zm and y = zn for some m,n ∈ N.

Here we define a graph of a finite groupG namely intersection power graph, denoted by GI(G).
The vertex set of the graph is G and two distinct vertices x, y are adjacent in GI(G) if 〈x〉 ∩ 〈y〉 6=
{e} and e is adjacent to all other vertices in GI(G). Clearly the graph GI(G) is connected.

Before proceeding further, let us talk about the motivation for defining this new graph. Let us
closely examine the definitions of power graph, enhanced power graph and the intersection power
graph. Frankly speaking all these three graphs are a bit misnomer, as we see that the term“power”
in their names as nothing special to do with. In all these cases, we are considering the poset of
cyclic subgroups of the finite group G. For example, in power graph x, y are adjacent if and only if
either 〈x〉 ⊂ 〈y〉 or 〈y〉 ⊂ 〈x〉, i.e. the cyclic subgroups generated by x and y are comparable in the
poset of cyclic subgroups of G. Now take the enhanced power graph of G, in this case two vertices
x and y are adjacent if and only if there exists z ∈ G such that 〈x〉, 〈y〉 ∈ 〈z〉, i.e. the cyclic
subgroups generated by x and y have a upper bound in the poset of cyclic subgroups of G. So the
next natural task is to define a new graph Γ onG, where two vertices x and y are adjacent if and only
if the cyclic subgroups generated by x and y have a lower bound in the poset of cyclic subgroups
of G. Note that our definition of the intersection power graph is a slight modification of Γ. This
observation also suggests that one can defined new graphs on algebraic structures by studying the
poset of some suitable substructures and their Hasse diagram to visualize their algebraic properties
through graphs.

In this article, some basic structures of intersection power graph have been studied. Throughout
this article G stand for a finite group. We denote o(x) to be the order of an element x in G. |S| is
the number of elements present in the set S. πe(G) = {o(x) : x ∈ G}, π(G) = {p ∈ N : p divides
|G| and p is a prime}, For a ∈ G, π(a) = {p ∈ N : p|o(a) and p is a prime} . For any vertex v,
deg(v) is the number of vertices adjacent to v. For a graph Γ, E(Γ) is the set of all edges in the
graph Γ and V (Γ) is the set of all vertices of the graph Γ and e1 = |E(Γ)|. For a positive integer
r, [r] = {1, 2, · · · , r}. For a prime p, a group G is called a p-group if every element of G is of
order pm for some m ∈ {0}

⋃
N. It follows from the Cauchy’s Theorem that a finite group G is a

p-group if and only if |G| = pt for some non negative integer t. We refer to [15], [19] for graph
theory and to [14], [16] for group theoretic background.

2. Definitions and some properties

Given a groupG, the intersection power graph ofG, denoted by GI(G), is the graph with vertex
set G and two distinct vertices x and y are adjacent in GI(G) if there exists non-identity element
z ∈ G such that xm = z = yn, for some m,n ∈ N. i.e. x ∼ y in GI(G) if 〈x〉 ∩ 〈y〉 6= {e},
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the identity element e of the group G is adjacent to all other vertices. From the definition the
intersection power graph GI(G) is connected. Let a ∈ G. We denote Ga to be the set of all
generators of the cyclic subgroup 〈a〉 of G. Then G = ∪a∈GGa. Clearly Ge = {e} and Ge is a
clique in GI(G). Now we show some basic properties of the intersection power graph GI(G).

Proposition 2.1. Let G be a group. Then for each non-identity element a ∈ G,Ga forms a clique
in GI(G).

Proof. Let x, y be any two vertices of GI(G) in Ga. Since 〈x〉 = 〈y〉 = 〈a〉 we have e 6= a ∈
〈x〉 ∩ 〈y〉 and hence x ∼ y. Hence for each a ∈ G,Ga is a clique in GI(G).

Corollary 2.1. Let G be a group and m ∈ N for which there is an element a ∈ G such that
o(a) = m. Then GI(G) has a complete subgraph isomorphic to Kφ(m)+1.

Proposition 2.2. Let G be a group and Ga 6= Gb for two distinct elements a, b ∈ G. If an element
of Ga is adjacent to an element of Gb, then each element of Ga is adjacent to every elements of Gb.

Proof. Suppose that Ga 6= Gb. Let x ∈ Ga, y ∈ Gb with x ∼ y. Then there exists z(6= e) ∈ G
such that z ∈ 〈x〉∩〈y〉. Now for any x1 ∈ Ga and any y1 ∈ Gb we have 〈x〉 = 〈x1〉 and 〈y〉 = 〈y1〉.
So 〈x〉 ∩ 〈y〉 6= {e} implies that 〈x1〉 ∩ 〈y1〉 6= {e}. Hence all the vertices in Ga are adjacent to all
the vertices in Gb.

Corollary 2.2. Let G be a cyclic group. Suppose that m1,m2 are two positive integers for which
m1,m2 divide |G| and gcd(m1,m2) 6= 1. Then GI(G) has a complete subgraph isomorphic to
Kφ(m1)+φ(m2)+1.

Theorem 2.1. LetG be a group. Then the intersection power graph GI(G) of the groupG contains
a cycle if and only if o(a) ≥ 3, for some a ∈ G.

Proof. First suppose that πe(G) ⊂ {1, 2}. Then for every a ∈ G \ {e}, Ga contains exactly one
element. Therefore, a, b ∈ G \ {e}, Ga ∩ Gb = {e} implying a is not adjacent to b. Hence the
intersection graph GI(G) has no cycle.

Conversely, suppose that a ∈ G such that o(a) ≥ 3. Then |Ga| ≥ 2. So the vertices in Ga with
the identity form a cycle. Hence the result holds.

IfG is a finite group such that o(a) = 2 for every non-identity element a ofG, thenG is abelian
and G ∼= Z2 × Z2 × · · · × Z2. Also a connected graph Γ is tree if and only if it has no cycle. Now
we have the following corollary.

Corollary 2.3. Let G be a group. Then the following conditions are equivalent.

1. GI(G) is bipartite;
2. GI(G) is tree;
3. G ∼= Z2 × Z2 × · · · × Z2;
4. GI(G) is a star graph.
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3. Complete intersection power graph

In this section we characterize all groups G for which the intersection power graph GI(G) is
complete or Cayley graph of some group. A graph Γ is complete if any two vertices of the graph Γ
are adjacent.

Theorem 3.1. Let G be a group. Then the intersection power graph GI(G) of the group G is
complete if and only if either G is a cyclic p-group or G is a generalized quaternion group.

Proof. First suppose that G is a cyclic p-group. Then a, b ∈ G \ {e}, o(a) = pk1 and o(b) =
pk2 , k1, k2 ∈ N. If k1 ≥ k2 then 〈b〉 ⊂ 〈a〉 implies that 〈b〉∩〈a〉 6= {e}. So a ∼ b in the intersection
graph GI(G). Now suppose that G is a generalized quaternion group. Then G is a 2-group with
unique nontrivial minimal subgroupH say and |H| = 2. Now a, b ∈ G\{e}, 〈a〉 and 〈b〉 are cyclic
2-groups implies that H ⊂ 〈a〉 ∩ 〈b〉. Hence a ∼ b in GI(G).

Conversely, suppose that the graph ΓI(G) is complete. First we show thatGmust be a p-group.
If not, |G| has at least two distinct prime factors, say p1, p2. Now there exists x, y ∈ G such that
o(x) = p1 and o(y) = p2 and 〈x〉 ∩ 〈y〉 = {e}. This implies that x is not adjacent to y in GI(G)
a contradiction, so G must be a p-group. Now we show that G has a unique nontrivial minimal
subgroup. If not, let K1 = 〈a1〉 and K2 = 〈a2〉 be two distinct nontrivial minimal subgroups of G.
Since G is a p-group and |K1| = |K2| = p we have K1 ∩ K2 = {e}. So a1 is not adjacent with
a2 in GI(G). Which contradicts that GI(G) is complete graph. So for a finite group G, the graph
GI(G) is complete implies that G is a p-group with a unique nontrivial minimal subgroup. So if G
is abelian then it is a cyclic otherwise it is a generalized quaternion group [16].

Let G be a group and C be a subset of G that is closed under taking inverses and does not
contain the identity. Then the Cayley graph Γ(G,C) is the graph with the vertex set V (Γ(G,C)) =
G and two vertices a and b are adjacent if ab−1 ∈ C. Every complete graph with n-vertices is the
Cayley graph Γ(Zn,Zn \ {0}). It is well known that every Cayley graph is regular.

Theorem 3.2. Let G be a finite group. Then GI(G) is a Cayley graph of some group if and only if
either G is cyclic p-group or G is generalized quaternion group.

Proof. Let G be a cyclic group of order pm or it is generalized quaternion group. Then the inter-
section power graph GI(G) is complete. Hence a Cayley graph.

Conversely, suppose that the graph GI(G) is a Cayley graph of some group. Then GI(G) is
regular. Since the vertex e is adjacent to every other vertices, it follows that GI(G) is complete.
Hence the result.

A graph Γ is said to be planar if it can be drawn in a plane so that no two edges intersect. A
graph is planer if and only if it does not contain a graph which is isomorphic to either of the graphs
K3,3 or K5.

Theorem 3.3. Let G be a group. If there is a prime p ≥ 5 such that p is a divisor of |G|. Then the
intersection power graph GI(G) is not planar.
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Proof. Suppose that, there is a prime p ≥ 5 such that p||G|. Then there is an element a of order p.
Now by Proposition 2.1, Ga forms a clique in GI(G) and |Ga| ≥ 4 as φ(p) ≥ 4. So the vertices
in Ga with e forms a clique which is isomorphic to Kφ(p)+1. So we get K5 in GI(G). Hence the
intersection power graph is not planar.

So for the intersection power graph GI(G) to be planar, it is necessary that |G| = 2r3k, r, k ∈ N.

Theorem 3.4. Let G be a group of order 2r, r ∈ N. Then the intersection power graph GI(G) is
planar if and only if o(a) ≤ 4, for all a ∈ G and 〈a1〉 ∩ 〈a2〉 = {e}, where 〈a1〉 and 〈a2〉 two
distinct cyclic subgroups of G of order 4.

Proof. Let GI(G) be planar. Suppose there is an element a ∈ G such that o(a) = 2m with m ≥ 3.
Now φ(2m) = 2m−1 ≥ 4, as m ≥ 3 and these 2m−1 vertices along with e form a clique containing
a copy of K5 in GI(G), a contradiction. So order of each element of G is at most 4. Now let if
possible there exists a, b ∈ G such that o(a) = o(b) = 4, 〈a〉 6= 〈b〉 and 〈a〉 ∩ 〈b〉 6= {e}. Clearly
|Ga| = |Gb| = 2. Now by Proposition 2.3 and Ga ∪Gb ∪ {e} forms a subgraph isomorphic to K5.

Conversely, suppose that o(a) ≤ 4 for all a ∈ G and 〈a1〉 ∩ 〈a2〉 = {e}, where 〈a1〉 and 〈a2〉
are two distinct cyclic subgroups of G of order 4 (for example, Z2 × Z2 × · · · × Z2 and D4, the
symmetric group of a square satisfies the above conditions). So for any two elements a1, a2 of
order 4 with 〈a1〉 6= 〈a2〉, a1 is not adjacent to a2 in the graph GI(G). Again any two vertices of
order 2 of GI(G) are not adjacent. Now for any element x ∈ G with o(x) = 4, 〈x〉 has exactly one
element y of order 2 and x ∼ y. Hence it is clear that GI(G) does not contain any copy of K5.
If possible there exists a copy of K3,3 in GI(G). That is we have two disjoint subsets of vertices
namely, A and B such that |A| = 3 = |B| and each vertex of A is adjacent to each vertex of B.
Suppose that A contains a vertex v1 of order 2. Note that the degree of the vertex v1 is 3. Now by
our assumptions v1 belongs to exactly one cyclic subgroup H of order 4. Hence the elements of B
are precisely identity and the two generators u1, u2 of H . Now deg(u1) = 3 also and the adjacent
vertices to u1 are u2, v1 and e. So u1 is not adjacent to each vertices inA, because u2 and e does not
belong to A, a contradiction. Now if we assume that A contains a vertex of order 4, then similarly
as above we get a contradiction. Hence the intersection power graph is planar.

Theorem 3.5. Let G be a group of order 3k, k ∈ N. Then the intersection graph GI(G) is planar
if and only if o(a) = 3, for all a ∈ G \ {e}.

Proof. Let the graph GI(G) be planar. Suppose that there is an element a ∈ G such that o(a) > 3.
So o(a) = 3r, where r ≥ 2. Then φ(3r) = 23r−1 ≥ 6 and by Proposition 2.1, these 23r−1 vertices
form a clique in the graph GI(G). Since 23r−1 > 5 we get a copy of K5 in GI(G), a contradiction.

Conversely suppose that o(a) = 3, for all a ∈ G \ {e}. Then |Ga| = 2 for any a ∈ G \ {e}.
Let a, b ∈ G such that 〈a〉 6= 〈b〉. Then for any x ∈ Ga and y ∈ Gb, 〈x〉 ∩ 〈y〉 = {e}. So x is not
adjacent to b implies that GI(G) planar.

Combining the above two theorems we have the following theorem.

Theorem 3.6. Let G be a group of order 2m3n,m, n ∈ N. Then the intersection power graph is
planar if and only if both of the following conditions hold:
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1. o(a) = 2, 3 or 4, for all non-identity element a ∈ G and.
2. 〈a1〉 ∩ 〈a2〉 = {e}, where 〈a1〉 and 〈a2〉 two distinct cyclic subgroups of G of order 4.

Proof. First suppose that G satisfies the above conditions. Then form Theorems 3.4 and 3.5 the
intersection power graph is planar.

Conversely, let GI(G) be planar. Now we show that G has no element of order 6k, k ∈ N.
If possible there is an element a ∈ G such that o(a) = 6k. Then 〈a〉 has φ(6k) generators
and φ(6k) ≥ 2. Let a16, a26, a12, a13, a23 ∈ 〈a〉 with o(a16) = 6 = o(a26), o(a12) = 2 and
o(a13) = 3 = o(a23). Then take A = {a16, a26, e} and B = {a12, a13, a23} as partition sets to form
K3,3 as subgraph of GI(G). a contradiction. Hence the result holds.

A graph Γ is called Eulerian if it has a closed trail containing all the vertices of Γ. An useful
equivalent characterization of an Eulerian graph is that a graph Γ is Eulerian if and only if every
vertex of Γ is of even degree.

Theorem 3.7. Let G be a group of order n. Then the intersection power graph GI(G) is Eulerian
if and only if n is odd.

Proof. The proof is similar to the proof of Theorem 2.5 in [4]. Suppose that the graph GI(G) is
Eulerian. Since the vertex e is edge connected with every other vertices of the graph GI(G), it
follows that the degree of e is n− 1. Now n− 1 is even implies that n is odd.

Conversely assume that n is odd. Then the degree of e in GI(G) is n − 1 and so even. Now
we show that the degree of every non-identity element a is even. The vertex set of the intersection
power graph can be written as V (GI(G)) =

⋃
x∈GGx. Now by Proposition 2.1, Gx form a clique

for each x ∈ G. Again by Proposition 2.3, if x ∼ y then all the vertices in Gx are adjacent to
all the vertices in Gy. Now Gy contains φ(o(y)) vertices and every vertex is adjacent to e, so the
degree of a vertex a in the graph GI(G) is of the form (φ(o(a))− 1) +φ(o(x1)) +φ(o(x2)) + · · ·+
φ(o(xm)) + 1 = φ(o(a)) + φ(o(x1)) + φ(o(x2)) + · · ·+ φ(o(xm)). Now n is odd implies that o(x)
is odd and so φ(o(x)) is even for all x ∈ G. Thus the degree of every vertex of the graph GI(G) is
even. Hence the intersection power graph is Eulerian.

4. Dominatability of intersection power graph

A vertex of a graph Γ is called a dominating vertex if it is adjacent to every other vertex. The
identity element e is a dominating vertex of every intersection power graph GI(G). We call an
intersection power graph GI(G) is dominatable if it has a dominating vertex other than e. In the
context of power graphs, dominatability has been studied in [9], [10] and for enhanced power
graph it was studied in [4]. Here we characterize all abelian groups and non-abelian p-groups G
such that GI(G) is dominatable. Throughout this section p1, p2, · · · , pr are distinct primes and
α1, α2, · · · , αr ∈ N∪{0}. In the following theorem we characterize all finite abelian groups G for
which the intersection power graph GI(G) is dominatable.

Theorem 4.1. Let G be a finite abelian group. Then the graph GI(G) is dominatable if and only if
G is a cyclic group.
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Proof. First suppose that the group G is cyclic. Then there exists a ∈ G such that G = 〈a〉 and
〈a〉 ∩ 〈x〉 = 〈x〉, for any x ∈ G. Hence a is a dominating vertex.

Conversely, suppose that the graph GI(G) is dominatable. We show that the group G is cyclic.
Let a ∈ G is dominating vertex. Suppose π(G) = {p1, p2 · · · , pr}. Now G has elements ai
with order pi for all i = 1, 2, · · · , r. Since a is a dominating vertex a ∼ ai(i = i, 2, · · · , r) in
GI(G). Now we show that G has a unique subgroup of order pi for all i = 1, 2, · · · , r. If possible
there exists x, y ∈ G such that o(x) = pi = o(y) and 〈x〉 6= 〈y〉, for some pi. Then a ∼ x
and a ∼ y implies that 〈x〉 and 〈y〉 are subgroups of order pi of 〈a〉, a contradiction since 〈a〉
is a cyclic group. So G has a unique subgroup of order pi, i = 1, 2, · · · , r. Since G is abelian,
G ∼= Zpα11

× Zpα22
× · · · × Zpαrr . Hence G is a cyclic group.

Theorem 4.2. Let G be a non-abelian group of order p1p2 · · · pr. Then the intersection power
graph GI(G) does not satisfy the dominatability property, where r ≥ 2.

Proof. Suppose that a ∈ G, (a 6= e) is a dominating vertex. Now G has elements api of order
pi, (i = 1, 2, · · · , r). Since a is a dominating vertex, a ∼ api for all i = 1, 2, · · · , r and o(api) =
pi is a prime implies that api ∈ 〈a〉 ∩ 〈api〉. So 〈api〉 is a subgroup of 〈a〉 and pi|o(a), for all
i = 1, 2, · · · , r implies that p1p2 · · · pr is a divisor of o(a). Now |G| = p1p2 · · · pr implies o(a) =
p1p2 · · · pr. Hence G is a cyclic group and G = 〈a〉 contradicts the group G is non-abelian.

Now we turn our attention to the non-abelian p-groups.

Theorem 4.3. Let G be a non-abelian p-group. Then the intersection power graph is dominatable
if and only if G is generalized quaternion group.

Proof. Suppose G is generalized quaternion group. Then the intersection power graph is complete
implies that it is dominatable.

Conversely, Let GI(G) be dominatable. Let a ∈ G be a dominating vertex. Now we claim that
G has unique nontrivial minimal subgroup. Let H1 and H2 be two nontrivial minimal subgroups
of G. Clearly |H1| = p = |H2|, a prime implies that H1 and H2 are cyclic groups. Let H1 = 〈b〉
and H2 = 〈d〉. Now from the given condition a ∼ b and a ∼ d. Again o(b) = o(d) = p, a prime
and 〈a〉 ∩ 〈b〉 6= {e} implies that 〈b〉 is a subgroup of 〈a〉. Similarly 〈d〉 is a subgroup of 〈a〉 that
contradicts a cyclic group contains unique subgroup of each order. So our claim is true and G is
generalized quaternion group [16].

5. The automorphism group of the graph GI(Zn)

In this section we determine the automorphism group of the intersection power graph of any
finite cyclic group. LetG be a cyclic group of order n. ThenG ∼= Zn implies that GI(G) ∼= GI(Zn).
Denote the automorphism group of GI(Zn) by Aut(GI(Zn)). First note that, if n = pm, p is a prime,
then GI(Zn) is complete implies that Aut(GI(Zn)) = Sn. Here we show that, if n 6= pm then
Aut(GI(Zn)) =

⊕
φ 6=I&[r] SP I−1

⊕
S(p

α1
1 −1)(p

α2
2 −1)···(pαrr −1)+1, where P I − 1 = (p

αi1
i1
− 1)(p

αi2
i2
−

1) · · · (pαikik − 1) for I = {i1, i2, · · · , ik}. Throughout this section G is a cyclic group of order
n, where n = pα1

1 p
α2
2 · · · pαrr , p1, p2, · · · , pr are distinct primes, r ≥ 2 and α1, α2, · · · , αr ∈ N.

Denote Xd, the set of all vertices of degree d of the graph GI(G).
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Lemma 5.1. Let G be a group. Suppose that a ∈ G be such that o(a) = p
xi1
i1
p
xi2
i2
· · · pxikik . Then

deg(a) = n− n

p
αi1
i1

p
αi2
i2
···p

αik
ik

, where 1 ≤ xij ≤ αij for all j = 1, 2, · · · , k and k ≤ r.

Proof. Without loss of generality we assume that o(a) = px11 p
x2
2 · · · p

xk
k . First we count the number

of vertices v which are not adjacent with the vertex a. Now v is not adjacent with a implies that
there is no common divisor (except 1) between o(a) and o(v). So for any vertex v which is not
adjacent to a, o(v) is of the form p

xk+1

k+1 p
xk+2

k+2 · · · pxrr , where 0 ≤ xi ≤ αi for all i and at least one
xi > 0. So, o(v) is a divisor of pαk+1

k+1 p
αk+2

k+2 · · · pαrr . Hence the number of vertices v which are not
adjacent to a is

T =
∑

d|p
αk+1
k+1 p

αk+2
k+2 ···p

αr
r , d 6=1

φ(d)

=(p
αk+1

k+1 p
αk+2

k+2 · · · p
αr
r − 1).

Hence the degree of the vertex a is

(n− 1)− (p
αk+1

k+1 p
αk+2

k+2 · · · p
αr
r − 1) = n− n

pα1
1 p

α2
2 · · · p

αk
k

.

Now we determine the number of vertices v of the graph GI(Zn) of same degree. Let v be
any vertex of the graph GI(Zn). If o(v) contains prime factors p1, p2, · · · , pk, then from the above
lemma deg(v) = n − n

p
α1
1 p

α2
2 ···p

αk
k

. So the degree of any vertex of the graph GI(Zn) depends only
on the prime factors present in the order of that vertex not in the power of those primes.

Lemma 5.2. LetG be a group. Let a ∈ G be such that o(a) contains the prime factors pi1pi2 · · · pik
and deg(a) = d. Then the number of vertices of degree d in the graph GI(Zn) is (p

αi1
i1
− 1)(p

αi2
i2
−

1) · · · (pαikik − 1), where k ≤ r.

Proof. Without loss of generality we assume that o(a) contains the prime divisors p1, p2, · · · , pk.
Let Y = (y1, y2, · · · , yk) be a k-tuple of positive integers such that 1 ≤ yi ≤ αi for all i. Clearly
from Lemma 5.1 we get d = n− n

p
α1
1 p

α2
2 ···p

αk
k

. Again remembering that π(o(a)) = π(o(b)) implies
that deg(a) = deg(b) in GI(Zn). So the number of vertices of degree d is

S =
∑
Y

φ(py11 p
y2
2 · · · p

yk
k )

=
∑
Y

φ(py11 )φ(py22 ) · · ·φ(pykk )

= (

α1∑
t=1

φ(pt1))(

α2∑
t=1

φ(pt2)) · · · (
αk∑
t=1

φ(ptk))

= (
∑
d1|p

α1
1

φ(d1)− 1)(
∑
d2|p

α2
2

φ(d2)− 1) · · · (
∑
dk|p

αk
k

φ(dk)− 1)

= (pα1
1 − 1)(pα2

2 − 1) · · · (pαkk − 1).
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Lemma 5.3. Let G be a group. Then Xd forms a clique in the intersection power graph GI(G).

Proof. For any vertex v ∈ G we denote Dv, to be the set of all prime divisor of o(v). Then from
the Lemma 5.1, Dv1 = Dv2 for any two vertices in Xd. Now we show that any two vertices in Xd

are adjacent in GI(G). Suppose v1, v2 ∈ Xd. Then Dv1 = Dv2 implies there exists a prime p such
that p divides o(v1) and o(v2). Since G is cyclic, G has a unique subgroup H of order p. Now
|H| = p implies that 〈v1〉 ∩ 〈v2〉 6= {e}. Hence v1 ∼ v2 in GI(G).

Now combining Lemma 5.1, Lemma 5.2 and Lemma 5.3, we have our main theorem.

Theorem 5.1. If n 6= pm. Then Aut(GI(Zn)) =
⊕

φ 6=I&[r] SP I−1

⊕
S(p

α1
1 −1)(p

α2
2 −1)···(pαrr −1)+1,

where P I − 1 = (p
αi1
i1
− 1)(p

αi2
i2
− 1) · · · (pαikik − 1) for I = {i1, i2, · · · , ik}.

Now from Lemma 5.1 and Lemma 5.2 we determine the number of edges in the intersection
power graph GI(Zn). Already we have known that for the cyclic group of order pm, where p is
prime and m ∈ N the graph GI(G) is complete. So in this case the edge number of the graph is
pm(pm−1)

2
. Now we determine the edge number of the graph GI(Zn), where n 6= ps, p is prime and

s ∈ N.

Theorem 5.2. LetG be a group. Then the number of edges in the intersection power graph GI(Zn)

is n2−n−1−(2p
α1
1 −1)(2p

α2
2 −1)···(2pαrr −1)

2
.

Proof. LetG be a cyclic group of order n = pα1
1 p

α2
2 · · · pαrr . Suppose v ∈ G such that o(v) contains

the primes pi1 , pi2 , · · · , pim . Then from Lemma 4.1, the degree of v is n− n

p
αi1
i1

p
αi2
i2
···pαimim

. Again from

Lemma 4.2, the number of vertices of degree n− n

p
αi1
i1

p
αi2
i2
···pαimim

is (p
αi1
i1
−1)(p

αi2
i2
−1) · · · (pαimim −1).

Now deg(e) = n− 1. Let S = {i1, i2, · · · , im} ⊂ [r] with |S| ≥ 1 and denote

PS = (p
αi1
i1
− 1)(p

αi2
i2
− 1) · · · (pαimim − 1)(n− n

pαi1i1
pαi2i2
· · · pαimim

)

Let Γ be any graph. Then Γ satisfies the relation 2e1 =
∑

v∈V (Γ) deg(v). So for the intersection
graph GI(G),
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2e1 =
∑

S⊂[r] PS + (n− 1)

=
∑
S⊂[r]

(p
αi1
i1
− 1)(p

αi2
i2
− 1) · · · (pαimim − 1)(n− n

pαi1i1
pαi2i2
· · · pαimim

) + (n− 1)

= n
∑
S⊂[r]

(p
αi1
i1
− 1)(p

αi2
i2
− 1) · · · (pαimim − 1)− n

∑
S⊂[r]

(p
αi1
i1
− 1)(p

αi2
i2
− 1) · · · (pαimim − 1)

pαi1i1
pαi2i2
· · · pαimim

+ (n− 1)

= n(1 + (pα1
1 − 1))(1 + (pα2

2 − 1)) · · · (1 + (pαrr − 1))− n

− n
∑
S⊂[r]

(1− 1

p
αi1
i1

)(1− 1

p
αi2
i2

) · · · (1− 1

p
αim
im

) + (n− 1)

= n(pα1
1 p

α2
2 · · · pαrr )− n− n(1 + (1− 1

pα1
1

))(1 + (1− 1

pα2
2

)) · · · (1 + (1− 1

pαrr
))− n+ (n− 1)

= n2 − n− n(2− 1

pα1
1

)(2− 1

pα1
1

) · · · (2− 1

pαrr
)− 1

= n2 − n− n(2− 1

pα1
1

)(2− 1

pα1
1

) · · · (2− 1

pαrr
)− 1

= n2 − n− 1− (2pα1
1 − 1)(2pα2

2 − 1) · · · (2pαrr − 1)

Hence the result holds.

6. Vertex connectivity of GI(Zn)

The vertex connectivity of a graph Γ, denoted by κ(Γ), is the minimum number of vertices
whose deletion increases the number of connected components of the graph Γ or has only one
vertex. In [5] Bera et al. proved that the vertex connectivity κ(G(Zn)) of the power graph G(Zn) is
κ(G(Zn)) = φ(p1p2 · · · pr−1)(pr−2)+p1p2 · · · pr−1, where n = p1p2 · · · pr and pi(i = 1, 2, · · · , r)
are primes such that p1 < p2 < p3 · · · < pr. In this section we give an upper bound of the vertex
connectivity of the intersection power graph of any finite cyclic group. Throughout this section we
denote the group G is a cyclic group of order n, where n = pα1

1 p
α2
2 · · · pαrr , p1 < p2 < · · · < pr are

distinct primes, r ≥ 2 and α1, α2, · · · , αr ∈ N.

Theorem 6.1. Let G be a group. Then κ(GI(Zn)) ≤ 2 + (pα1
1 − 1)pα2

2 p
α3
3 · · · pαrr − p

α1
1 .

Proof. Let S = {i1, i2, · · · , ik} ⊂ [r], where 1 ≤ k ≤ (r−1). Now for S = {i1, i2, · · · , ik} ⊂ [r],
consider VS ⊂ V (GI(Zn)) such that v ∈ VS if and only if π(v) = {pi1 , pi2 , · · · , pik}. Let S be any
subset [r] such that |S| = r − 1. Then we have r such subsets of the set [r]. And by definition
of VS , for each such subset S(|S| = r − 1) there is a unique subset VS of V (GI(Zn)). Now we
prove that to disconnect the graph we have to delete all the vertices present in any r − 1 subsets
VS(|S| = r − 1) of V (GI(Zn)) (i.e. to disconnect the graph we can keep all the vertices present
in at most one such VS(|S| = r − 1) in the graph). In fact if we keep vertices present in two
such sets, namely VS1 , VS2 such that |S1| = r − 1 = |S2| in the intersection graph then we show
that the graph is connected. Let a1, a2 be two vertices in GI(Zn). Then there is a prime divisor
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pk of o(a1) such that either pk is a divisor of order of each vertex in VS1 or each vertex in VS2 .
So either a1 is adjacent to each vertex of VS1 or to each vertex of VS2 . Similarly it is true for the
case a2. Again each vertex of VS1 is adjacent to each vertex of VS2 . So there is a path between
the vertices a1 and a2. So we delete all the vertices in all VS(S ⊂ [r], |S| = r − 1) except the
vertices in VŚ , where Ś = {2, 3, · · · , r}. Also we delete all other vertices v such that order of v
is of the form px11 p

x2
2 · · · pxrr , where (x1, x2, · · · , xr) be such that 1 ≤ x1 ≤ α1 and at least one

xk(k 6= 1) > 0 and the identity e of the group. Now it is easy to see that the resulting graph is
disconnected. In this case the total number of deleted vertices is 1+

∑
(x1,x2,··· ,xr) φ(px11 p

x2
2 · · · pxrr ),

[here (x1, x2, · · · , xr) be such that 1 ≤ x1 ≤ α1 and at least one xk(k 6= 1) > 0].
= 1 +

∑
(x1,x2,··· ,xr) φ(px11 p

x2
2 · · · pxrr ) − (pα1

1 − 1), [here (x1, x2, · · · , xr) be such that x1 ≥ 1 and
xi ≥ 0 for all i 6= 1]
= 1 + (φ(p1) + φ(p2

1) + · · ·+ φ(pα1
1 ))(1 + φ(p2) + φ(p2

2) + · · ·+ φ(pα2
2 )) · · · (1 + φ(pr) + φ(p2

r) +
· · ·+ φ(pαrr ))− (pα1

1 − 1)
= 2 + (pα1

1 − 1)pα2
2 p

α3
3 · · · pαrr − p

α1
1 .

Hence κ(GI(Zn)) ≤ 2 + (pα1
1 − 1)pα2

2 p
α3
3 · · · pαrr − p

α1
1 .
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