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Abstract

A simple graph G = (V (G), E(G)) admits an H-covering if every edge in E(G) belongs to at
least one subgraph of G isomorphic to a given graph H . A total k-labeling ϕ : V (G) ∪ E(G) →
{1, 2, . . . , k} is called to be anH-irregular total k-labeling of the graphG admitting anH-covering
if for every two different subgraphs H ′ and H ′′ isomorphic to H there is wtϕ(H ′) 6= wtϕ(H ′′),
where wtϕ(H) =

∑
v∈V (H)

ϕ(v) +
∑

e∈E(H)

ϕ(e). The total H-irregularity strength of a graph G,

denoted by ths(G,H), is the smallest integer k such that G has an H-irregular total k-labeling. In
this paper we determine the exact value of the cycle-irregularity strength of ladders and fan graphs.
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1. Introduction

Let G be a connected, simple and undirected graph with vertex set V (G) and edge set E(G).
By a labeling we mean any mapping that maps a set of graph elements to a set of numbers (usually
positive integers), called labels. If the domain is the vertex-set or the edge-set, the labelings are
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called respectively vertex labelings or edge labelings. If the domain is V (G) ∪ E(G) then we call
the labeling total labeling. The most complete recent survey of graph labelings is [12].

Bača, Jendrol’, Miller and Ryan in [9] defined the total labeling ϕ : V (G)∪E(G)→ {1, 2, . . . ,
k} to be an edge irregular total k-labeling of the graph G if for every two different edges xy and
x′y′ of G one has

wt(xy) = ϕ(x) + ϕ(xy) + ϕ(y) 6= wt(x′y′) = ϕ(x′) + ϕ(x′y′) + ϕ(y′).

The total edge irregularity strength, tes(G), is defined as the minimum k for which G has an edge
irregular total k-labeling.

Ivančo and Jendrol’ [14] posed a conjecture that for arbitrary graph G different from K5 and
maximum degree ∆(G),

tes(G) = max
{⌈
|E(G)|+2

3

⌉
,
⌈

∆(G)+1
2

⌉}
.

This conjecture has been verified for complete graphs and complete bipartite graphs in [15] and
[16], for the Cartesian, categorical and strong products of two paths in [17, 3, 2], for the categorical
product of two cycles in [4], for generalized Petersen graphs in [13], for generalized prisms in
[10], for corona product of a path with certain graphs in [19] and for large dense graphs with
(|E(G)|+ 2)/3 ≤ (∆(G) + 1)/2 in [11].

There are several modifications of irregularity strength, namely the total vertex irregularity
strength introduced in [9] and the edge irregularity strength introduced in [1]. In [20] there is
confirmed the conjecture proposed by Nurdin, Baskoro, Salman and Gaos [18] for all trees with
maximum degree five. The edge irregularity strength of some chain graphs is determined in [5].

An edge-covering of G is a family of subgraphs H1, H2, . . . , Ht such that each edge of E(G)
belongs to at least one of the subgraphs Hi, i = 1, 2, . . . , t. Then it is said that G admits
an (H1, H2, . . . , Ht)-(edge) covering. If every subgraph Hi is isomorphic to a given graph H ,
then the graph G admits an H-covering. Note, that in this case every subgraph isomorphic to H
must be in the H-covering.

Let G be a graph admitting H-covering. For the subgraph H ⊆ G under the total k-labeling ϕ,
we define the associated H-weight as

wtϕ(H) =
∑

v∈V (H)

ϕ(v) +
∑

e∈E(H)

ϕ(e).

A total k-labeling ϕ is called an H-irregular total k-labeling of the graph G if for every two
different subgraphs H ′ and H ′′ isomorphic to H there is wtϕ(H ′) 6= wtϕ(H ′′). The total H-
irregularity strength of a graph G, denoted ths(G,H), is the smallest integer k such that G has
an H-irregular total k-labeling. If H is isomorphic to K2, then the K2-irregular total k-labeling
is isomorphic to the edge irregular total k-labeling and thus the total K2-irregularity strength of a
graph G is equivalent to the total edge irregularity strength, that is ths(G,K2) = tes(G).

Analogously we can define an H-irregular edge k-labeling and an H-irregular vertex k-labe-
ling. For the subgraph H ⊆ G under the vertex k-labeling α, α : V (G) → {1, 2, . . . , k}, the
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associated H-weight is defined as

wtα(H) =
∑

v∈V (H)

α(v)

and under the edge k-labeling β, β : E(G)→ {1, 2, . . . , k}, we define the associated H-weight

wtβ(H) =
∑

e∈E(H)

β(e).

A vertex k-labeling α is called an H-irregular vertex k-labeling of the graph G if for every two
different subgraphs H ′ and H ′′ isomorphic to H there is wtα(H ′) 6= wtα(H ′′). The vertex H-
irregularity strength of a graph G, denoted by vhs(G,H), is the smallest integer k such that G
has an H-irregular vertex k-labeling. Note, that vhs(G,H) =∞ if there exist two subgraphs in G
isomorphic toH that have the same vertex sets. An edge k-labeling β is called anH-irregular edge
k-labeling of the graph G if for every two different subgraphs H ′ and H ′′ isomorphic to H there
is wtβ(H ′) 6= wtβ(H ′′). The edge H-irregularity strength of a graph G, denoted by ehs(G,H), is
the smallest integer k such that G has an H-irregular edge k-labeling.

The notion of the vertex (edge) H-irregularity strength was introduced in [6]. The total H-
irregularity strength was defined in [7] and its lower bound is given by the following theorem.

Theorem 1.1. [7] Let G be a graph admitting an H-covering given by t subgraphs isomorphic to
H . Then

ths(G,H) ≥
⌈
1 + t−1

|V (H)|+|E(H)|

⌉
.

The precise value of the total H-irregularity strength of G-amalgamation of graphs is given in
[8] and it proves that the lower bound in Theorem 1.1 is tight.

Let G be a graph admitting H-covering. By the symbol HS
m = (HS

1 , H
S
2 , . . . , H

S
m), we denote

the set of all subgraphs of G isomorphic to H such that the graph S, S 6∼= H , is their maximum
common subgraph. Thus V (S) ⊂ V (HS

i ) and E(S) ⊂ E(HS
i ) for every i = 1, 2, . . . ,m. The

next theorem presented in [7] gives another lower bound of the total H-irregularity strength.

Theorem 1.2. [7] Let G be a graph admitting an H-covering. Let Si, i = 1, 2, . . . , z, be all
subgraphs of G such that Si is a maximum common subgraph of mi, mi ≥ 2, subgraphs of G
isomorphic to H . Then

ths(G,H) ≥ max
{⌈

1 + m1−1
|V (H/S1)|+|E(H/S1)|

⌉
, . . . ,

⌈
1 + mz−1

|V (H/Sz)|+|E(H/Sz)|

⌉}
.

In this paper we determine the exact value of the cycle-irregularity strength of ladders and fan
graphs.

2. Total cycle-irregular labelings of ladders

Let Ln ∼= Pn�P2, n ≥ 3, be a ladder with the vertex set V (Ln) = {vi, ui : i = 1, 2, . . . , n}
and the edge set E(Ln) = {vivi+1, uiui+1 : i = 1, 2, . . . , n− 1} ∪ {viui : i = 1, 2, . . . , n}.

In [7] is determined the exact value of the total cycle-irregularity strength of ladders when the
cycle is either of length 4 or 6.
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Theorem 2.1. [7] Let Ln ∼= Pn�P2, n ≥ 3, be a ladder admitting a C2m-covering, m = 2, 3.
Then

ths(Ln, C2m) =
⌈

3m+n
4m

⌉
.

In this section we extend the previous result for all feasible cycle-coverings.

Theorem 2.2. Let Ln ∼= Pn�P2, n ≥ 3, be a ladder admitting a C2m-covering, 2 ≤ m ≤
d(n+ 1)/2e. Then

ths(Ln, C2m) =
⌈

3m+n
4m

⌉
.

Proof. It is easy to see that the ladder Ln ∼= Pn�P2, n ≥ 3, admits a C2m-covering for m =
2, 3, . . . , d(n + 1)/2e. Put k =

⌈
3m+n

4m

⌉
. According to Theorem 1.1 k is the lower bound of

ths(Ln, C2m). In order to show the converse inequality, it only remains to describe a C2m-irregular
total k-labeling ϕm : V (Ln) ∪ E(Ln)→ {1, 2, . . . , k} as follows

ϕm(vi) =
⌈
i+3m

4m

⌉
for i = 1, 2, . . . , n,

ϕm(ui) =

{⌈
i

4m

⌉
for i ≡ 0, 3m (mod 4m), i = 3m, 4m, 7m, 8m, . . . , n,⌈

i+2m−1
4m

⌉
for i 6≡ 0, 3m (mod 4m), i = 1, 2, . . . , n,

ϕm(vivi+1) =
⌈
i+m
4m

⌉
for i = 1, 2, . . . , n− 1,

ϕm(uiui+1) =
⌈
i+1
4m

⌉
for i = 1, 2, . . . , n− 1,

ϕm(viui) =
⌈
i+2m

4m

⌉
for i = 1, 2, . . . , n.

We can see that all edge labels and vertex labels are at most k.
Every cycle C2m in Ln is of the form

Ci
2m = vivi+1 . . . vi+m−1ui+m−1ui+m−2 . . . uivi,

where i = 1, 2, . . . , n−m+ 1. It is easy to see that every edge of Ln belongs to at least one cycle
Ci

2m if m = 2, 3, . . . , d(n+ 1)/2e.
For the C2m-weight of the cycle Ci

2m, i = 1, 2, . . . , n−m+ 1, under the total labeling ϕm, we
get

wtϕm(Ci
2m) =

∑
v∈V (Ci

2m)

ϕm(v) +
∑

e∈E(Ci
2m)

ϕm(e)

=
m−1∑
j=0

ϕm(vi+j) +
m−1∑
j=0

ϕm(ui+j) +
m−2∑
j=0

ϕm(vi+jvi+j+1) +
m−2∑
j=0

ϕm(ui+jui+j+1)

+ ϕm(viui) + ϕm(vi+m−1ui+m−1) (1)

and for the C2m-weight of the cycle Ci+1
2m , i = 1, 2, . . . , n−m, we obtain

wtϕm(Ci+1
2m ) =

∑
v∈V (Ci+1

2m )

ϕm(v) +
∑

e∈E(Ci+1
2m )

ϕm(e)
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=
m∑
j=1

ϕm(vi+j) +
m∑
j=1

ϕm(ui+j) +
m−1∑
j=1

ϕm(vi+jvi+j+1) +
m−1∑
j=1

ϕm(ui+jui+j+1)

+ ϕm(vi+1ui+1) + ϕm(vi+mui+m). (2)

Now we count the difference between the C2m-weights of the cycle Ci+1
2m and Ci

2m for i = 1, 2, . . . ,
n−m. According to (1) and (2) we get

wtϕm(Ci+1
2m )− wtϕm(Ci

2m) =ϕm(vi+1ui+1) + ϕm(vi+m−1vi+m) + ϕm(vi+m) + ϕm(vi+mui+m)

+ ϕm(ui+m) + ϕm(ui+m−1ui+m)− ϕm(vi)− ϕm(vivi+1)

− ϕm(viui)− ϕm(ui)− ϕm(uiui+1)− ϕm(vi+m−1ui+m−1).

Let us distinguish four cases.
Case 1. i ≡ 0 (mod 4m)

For the difference of weights of cycles we get

wtϕm(Ci+1
2m )− wtϕm(Ci

2m) =
⌈
i+1+2m

4m

⌉
+
⌈
i+2m−1

4m

⌉
+
⌈
i+4m

4m

⌉
+
⌈
i+3m

4m

⌉
+
⌈
i+3m−1

4m

⌉
+
⌈
i+m
4m

⌉
−
⌈
i+3m

4m

⌉
−
⌈
i+m
4m

⌉
−
⌈
i+2m

4m

⌉
−
⌈

i
4m

⌉
−
⌈
i+1
4m

⌉
−
⌈
i+3m−1

4m

⌉
=
⌈
i+2m+1

4m

⌉
+
⌈
i+2m−1

4m

⌉
+ 1−

⌈
i+2m

4m

⌉
−
⌈
i+1
4m

⌉
.

Since i = 4mt, t = 1, 2, . . . , thus

wtϕm(Ci+1
2m )− wtϕm(Ci

2m) =
⌈

4mt+2m+1
4m

⌉
+
⌈

4mt+2m−1
4m

⌉
+ 1−

⌈
4mt+2m

4m

⌉
−
⌈

4mt+1
4m

⌉
=t+

⌈
2m+1

4m

⌉
+ t+

⌈
2m−1

4m

⌉
+ 1− t−

⌈
2m
4m

⌉
− t−

⌈
1

4m

⌉
= 1.

Case 2. i ≡ 2m (mod 4m)
For the difference of weights of cycles we get

wtϕm(Ci+1
2m )− wtϕm(Ci

2m) =
⌈
i+1+2m

4m

⌉
+
⌈
i+2m−1

4m

⌉
+
⌈
i+4m

4m

⌉
+
⌈
i+3m

4m

⌉
+
⌈
i+m
4m

⌉
+
⌈
i+m
4m

⌉
−
⌈
i+3m

4m

⌉
−
⌈
i+m
4m

⌉
−
⌈
i+2m

4m

⌉
−
⌈
i+2m−1

4m

⌉
−
⌈
i+1
4m

⌉
−
⌈
i+3m−1

4m

⌉
=
⌈
i+2m+1

4m

⌉
+ 1 +

⌈
i

4m

⌉
+
⌈
i+m
4m

⌉
−
⌈
i+2m

4m

⌉
−
⌈
i+1
4m

⌉
−
⌈
i+3m−1

4m

⌉
.

For i = 4mt+ 2m, t = 1, 2, . . . , we get

wtϕm(Ci+1
2m )− wtϕm(Ci

2m) =
⌈

4mt+2m+2m+1
4m

⌉
+ 1 +

⌈
4mt+2m

4m

⌉
+
⌈

4mt+2m+m
4m

⌉
−
⌈

4mt+2m+2m
4m

⌉
−
⌈

4mt+2m+1
4m

⌉
−
⌈

4mt+2m+3m−1
4m

⌉
=t+ 1 +

⌈
1

4m

⌉
+ 1 + t+

⌈
2m
4m

⌉
+ t+

⌈
3m
4m

⌉
− t− 1− t−

⌈
2m+1

4m

⌉
− t− 1−

⌈
m−1
4m

⌉
= 1.

Case 3. i ≡ 3m (mod 4m)
Now

wtϕm(Ci+1
2m )− wtϕm(Ci

2m) =
⌈
i+1+2m

4m

⌉
+
⌈
i+2m−1

4m

⌉
+
⌈
i+4m

4m

⌉
+
⌈
i+3m

4m

⌉
+
⌈
i+m
4m

⌉
+
⌈
i+m
4m

⌉
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−
⌈
i+3m

4m

⌉
−
⌈
i+m
4m

⌉
−
⌈
i+2m

4m

⌉
−
⌈

i
4m

⌉
−
⌈
i+1
4m

⌉
−
⌈
i+3m−1

4m

⌉
=
⌈
i+2m+1

4m

⌉
+
⌈
i+2m−1

4m

⌉
+ 1 +

⌈
i+m
4m

⌉
−
⌈
i+2m

4m

⌉
−
⌈
i+1
4m

⌉
−
⌈
i+3m−1

4m

⌉
.

Since i = 4mt+ 3m, t = 1, 2, . . . , it follows

wtϕm(Ci+1
2m )− wtϕm(Ci

2m) =
⌈

4mt+3m+2m+1
4m

⌉
+
⌈

4mt+3m+2m−1
4m

⌉
+ 1 +

⌈
4mt+3m+m

4m

⌉
−
⌈

4mt+3m+2m
4m

⌉
−
⌈

4mt+3m+1
4m

⌉
−
⌈

4mt+3m+3m−1
4m

⌉
=t+ 1 +

⌈
m+1
4m

⌉
+ t+ 1 +

⌈
m−1
4m

⌉
+ 1 + t+ 1− t− 1−

⌈
m
4m

⌉
− t

−
⌈

3m+1
4m

⌉
− t− 1−

⌈
2m−1

4m

⌉
= 1.

Case 4. i 6≡ 0, 2m, 3m (mod 4m)
In this case for the difference of weights of cycles we obtain

wtϕm(Ci+1
2m )− wtϕm(Ci

2m) =
⌈
i+1+2m

4m

⌉
+
⌈
i+2m−1

4m

⌉
+
⌈
i+4m

4m

⌉
+
⌈
i+3m

4m

⌉
+
⌈
i+3m−1

4m

⌉
+
⌈
i+m
4m

⌉
−
⌈
i+3m

4m

⌉
−
⌈
i+m
4m

⌉
−
⌈
i+2m

4m

⌉
−
⌈
i+2m−1

4m

⌉
−
⌈
i+1
4m

⌉
−
⌈
i+3m−1

4m

⌉
=
⌈
i+2m+1

4m

⌉
+
⌈
i+4m

4m

⌉
−
⌈
i+2m

4m

⌉
−
⌈
i+1
4m

⌉
.

Let i = 4mt+ s, t = 0, 1, 2, . . . and 1 ≤ s ≤ 4m− 1, s 6= 2m, 3m. Then we have

wtϕm(Ci+1
2m )− wtϕm(Ci

2m) =
⌈

4mt+s+2m+1
4m

⌉
+
⌈

4mt+s+4m
4m

⌉
−
⌈

4mt+s+2m
4m

⌉
−
⌈

4mt+s+1
4m

⌉
=t+

⌈
s+2m+1

4m

⌉
+ t+ 1 +

⌈
s

4m

⌉
− t−

⌈
s+2m

4m

⌉
− t−

⌈
s+1
4m

⌉
=
⌈
s+2m+1

4m

⌉
+
⌈
s

4m

⌉
−
⌈
s+2m

4m

⌉
−
⌈
s+1
4m

⌉
+ 1.

If 1 ≤ s ≤ 2m− 1 then⌈
s+2m+1

4m

⌉
= 1,

⌈
s

4m

⌉
= 1,

⌈
s+2m

4m

⌉
= 1 and

⌈
s+1
4m

⌉
= 1.

If 2m+ 1 ≤ s ≤ 3m− 1 or 3m+ 1 ≤ s ≤ 4m− 1 then⌈
s+2m+1

4m

⌉
= 2,

⌈
s

4m

⌉
= 1,

⌈
s+2m

4m

⌉
= 2 and

⌈
s+1
4m

⌉
= 1.

We can see that for every value of parameter s

wtϕm(Ci+1
2m )− wtϕm(Ci

2m) =1.

Previous cases prove that the labeling ϕm is the desired C2m-irregular total k-labeling of Ln.
This concludes the proof.

3. Total cycle-irregular labelings of fan graphs

A fan graph Fn, n ≥ 2, is a graph obtained by joining all vertices of a path Pn to a further
vertex. Thus Fn contains n+1 vertices, say, u, v1, v2, . . . , vn and 2n−1 edges uvi, i = 1, 2, . . . , n,
and vivi+1, i = 1, 2, . . . , n− 1.

In [7] was given the exact value of the total C3-irregularity strength of the fan graph Fn.
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Theorem 3.1. [7] Let Fn, n ≥ 2, be a fan graph on n+ 1 vertices. Then

ths(Fn, C3) =

⌈
n+ 3

5

⌉
.

The next theorem completes this result for arbitrary cycle-covering.

Theorem 3.2. Let Fn be a fan graph on n+ 1 vertices, n ≥ 2 and 3 ≤ m ≤ d(n+ 3)/2e. Then

ths(Fn, Cm) =

⌈
n+m

2m− 1

⌉
.

Proof. Clearly, for every m, 3 ≤ m ≤ d(n+ 3)/2e, the fan graph Fn admits a Cm-covering with
exactly n−m+ 2 cycles Cm. In view of the lower bound from Theorem 1.2 it suffices to prove the
existence of a Cm-irregular total labeling ϕ : V (Fn)∪E(Fn)→ {1, 2, . . . , d(n+m)/(2m− 1)e}
such that wtϕ(Cj

m) 6= wtϕ(Ci
m) for every i, j = 1, 2, . . . , n − m + 2, j 6= i. We describe the

irregular total labeling ϕm in the following way

ϕm(u) = 1,

ϕm(vi) =


⌈

i+2
2m−1

⌉
for i 6≡ m+ 1 (mod (2m− 1)), i = 1, 2, . . . , n,⌈

i+2
2m−1

⌉
+ 1 for i ≡ m+ 1 (mod (2m− 1)), i = m+ 1, 3m, . . . , n,

ϕm(vivi+1) =



⌈
i+m

2m−1

⌉
for i 6≡ m+ 1, 2m− 3, 2m− 1 (mod (2m− 1)),

i = 1, 2, . . . , n,⌈
i+m

2m−1

⌉
− 1 for i ≡ m+ 1, 2m− 3, 2m− 1 (mod (2m− 1)),

i = m+ 1, 2m− 3, 2m− 1, 3m, 4m− 4, 4m− 2, . . . , n,

ϕm(viu) =


⌈
i+m

2m−1

⌉
for i 6≡ m+ 1, 2m− 2 (mod (2m− 1)), i = 1, 2, . . . , n,⌈

i+m
2m−1

⌉
− 1 for i ≡ m+ 1, 2m− 2 (mod (2m− 1)),

i = m+ 1, 2m− 2, 3m, 4m− 3, . . . , n.

Evidently, every edge label and vertex label is not greater than d(n+m)/(2m− 1)e.
Every cycle Cm in Fn is of the form

Ci
m = vivi+1 . . . vi+m−2uvi,

where i = 1, 2, . . . , n−m+ 2.
For the Cm-weight of the cycle Ci

m, i = 1, 2, . . . , n −m + 2, under the total labeling ϕm, we
get

wtϕm(Ci
m) =

∑
v∈V (Ci

m)

ϕm(v) +
∑

e∈E(Ci
m)

ϕm(e)

=
m−2∑
j=0

ϕm(vi+j) + ϕm(u) +
m−3∑
j=0

ϕm(vi+jvi+j+1) + ϕm(viu) + ϕm(vi+m−2u) (3)
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and for the Cm-weight of the cycle Ci+1
m , i = 1, 2, . . . , n−m+ 1, we obtain

wtϕm(Ci+1
m ) =

∑
v∈V (Ci+1

m )

ϕm(v) +
∑

e∈E(Ci+1
m )

ϕm(e)

=
m−1∑
j=1

ϕm(vi+j) + ϕm(u) +
m−2∑
j=1

ϕm(vi+jvi+j+1) + ϕm(vi+1u) + ϕm(vi+m−1u). (4)

Now we count the difference between the Cm-weights of the cycle Ci+1
m and Ci

m for i = 1, 2, . . . ,
n−m+ 1. According to (3) and (4) we get

wtϕm(Ci+1
m )− wtϕm(Ci

m) =ϕm(vi+m−1) + ϕm(vi+m−2vi+m−1) + ϕm(vi+m−1u) + ϕm(vi+1u)

− ϕm(vi)− ϕm(vivi+1)− ϕm(viu)− ϕm(vi+m−2u).

Let us distinguish nine cases.
Case 1. i ≡ 2 (mod (2m− 1)), i.e., i = 2 + (2m− 1)t, t = 0, 1, . . . , then

wtϕm(Ci+1
m )− wtϕm(Ci

m) =ϕm(vm+1+(2m−1)t) + ϕm(vm+(2m−1)tvm+1+(2m−1)t)

+ ϕm(vm+1+(2m−1)tu) + ϕm(v3+(2m−1)tu)− ϕm(v2+(2m−1)t)

− ϕm(v2+(2m−1)tv3+(2m−1)t)− ϕm(v2+(2m−1)tu)

− ϕm(vm+(2m−1)tu)

=
⌈
m+3+(2m−1)t

2m−1

⌉
+ 1 +

⌈
2m+(2m−1)t

2m−1

⌉
+
⌈

2m+1+(2m−1)t
2m−1

⌉
− 1

+
⌈
m+3+(2m−1)t

2m−1

⌉
−
⌈

4+(2m−1)t
2m−1

⌉
−
⌈
m+2+(2m−1)t

2m−1

⌉
−
⌈
m+2+(2m−1)t

2m−1

⌉
−
⌈

2m+(2m−1)t
2m−1

⌉
=(1 + t) + 1 + (2 + t) + (2 + t)− 1 + (1 + t)− (1 + t)

− (1 + t)− (1 + t)− (2 + t) = 1.

Case 2. i ≡ 3 (mod (2m− 1)), i.e., i = 3 + (2m− 1)t, t = 0, 1, . . . , then we get

wtϕm(Ci+1
m )− wtϕm(Ci

m) =ϕm(vm+2+(2m−1)t) + ϕm(vm+1+(2m−1)tvm+2+(2m−1)t)

+ ϕm(vm+2+(2m−1)tu) + ϕm(v4+(2m−1)tu)− ϕm(v3+(2m−1)t)

− ϕm(v3+(2m−1)tv4+(2m−1)t)− ϕm(v3+(2m−1)tu)

− ϕm(vm+1+(2m−1)tu)

=
⌈
m+4+(2m−1)t

2m−1

⌉
+
⌈

2m+1+(2m−1)t
2m−1

⌉
− 1 +

⌈
2m+2+(2m−1)t

2m−1

⌉
+
⌈
m+4+(2m−1)t

2m−1

⌉
−
⌈

5+(2m−1)t
2m−1

⌉
−
⌈
m+3+(2m−1)t

2m−1

⌉
−
⌈
m+3+(2m−1)t

2m−1

⌉
−
⌈

2m+1+(2m−1)t
2m−1

⌉
+ 1

=(1 + t) + (2 + t)− 1 + (2 + t) + (1 + t)− (1 + t)
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− (1 + t)− (1 + t)− (2 + t) + 1 = 1.

Case 3. i ≡ m− 1 (mod (2m− 1)), i.e., i = m− 1 + (2m− 1)t, t = 0, 1, . . . , then we get

wtϕm(Ci+1
m )− wtϕm(Ci

m) =ϕm(v2m−2+(2m−1)t) + ϕm(v2m−3+(2m−1)tv2m−2+(2m−1)t)

+ ϕm(v2m−2+(2m−1)tu) + ϕm(vm+(2m−1)tu)

− ϕm(vm−1+(2m−1)t)− ϕm(vm−1+(2m−1)tvm+(2m−1)t)

− ϕm(vm−1+(2m−1)tu)− ϕm(v2m−3+(2m−1)tu)

=
⌈

2m+(2m−1)t
2m−1

⌉
+
⌈

3m−3+(2m−1)t
2m−1

⌉
− 1 +

⌈
3m−2+(2m−1)t

2m−1

⌉
− 1 +

⌈
2m+(2m−1)t

2m−1

⌉
−
⌈
m+1+(2m−1)t

2m−1

⌉
−
⌈

2m−1+(2m−1)t
2m−1

⌉
−
⌈

2m−1+(2m−1)t
2m−1

⌉
−
⌈

3m−3+(2m−1)t
2m−1

⌉
=(2 + t) + (2 + t)− 1 + (2 + t)− 1 + (2 + t)− (1 + t)

− (1 + t)− (1 + t)− (2 + t) = 1.

Case 4. i ≡ m (mod (2m− 1)), i.e., i = m+ (2m− 1)t, t = 0, 1, . . . In this case holds

wtϕm(Ci+1
m )− wtϕm(Ci

m) =ϕm(v2m−1+(2m−1)t) + ϕm(v2m−2+(2m−1)tv2m−1+(2m−1)t)

+ ϕm(v2m−1+(2m−1)tu) + ϕm(vm+1+(2m−1)tu)− ϕm(vm+(2m−1)t)

− ϕm(vm+(2m−1)tvm+1+(2m−1)t)− ϕm(vm+(2m−1)tu)

− ϕm(v2m−2+(2m−1)tu)

=
⌈

2m+1+(2m−1)t
2m−1

⌉
+
⌈

3m−2+(2m−1)t
2m−1

⌉
+
⌈

3m−1+(2m−1)t
2m−1

⌉
+
⌈

2m+1+(2m−1)t
2m−1

⌉
− 1−

⌈
m+2+(2m−1)t

2m−1

⌉
−
⌈

2m+(2m−1)t
2m−1

⌉
−
⌈

2m+(2m−1)t
2m−1

⌉
−
⌈

3m−2+(2m−1)t
2m−1

⌉
+ 1

=(2 + t) + (2 + t) + (2 + t) + (2 + t)− 1− (1 + t)− (2 + t)

− (2 + t)− (2 + t) + 1 = 1.

Case 5. i ≡ m+ 1 (mod (2m− 1)), i.e., i = m+ 1 + (2m− 1)t, t = 0, 1, . . . , thus

wtϕm(Ci+1
m )− wtϕm(Ci

m) =ϕm(v2m+(2m−1)t) + ϕm(v2m−1+(2m−1)tv2m+(2m−1)t)

+ ϕm(v2m+(2m−1)tu) + ϕm(vm+2+(2m−1)tu)− ϕm(vm+1+(2m−1)t)

− ϕm(vm+1+(2m−1)tvm+2+(2m−1)t)− ϕm(vm+1+(2m−1)tu)

− ϕm(v2m−1+(2m−1)tu)

=
⌈

2m+2+(2m−1)t
2m−1

⌉
+
⌈

3m−1+(2m−1)t
2m−1

⌉
− 1 +

⌈
3m+(2m−1)t

2m−1

⌉
+
⌈

2m+2+(2m−1)t
2m−1

⌉
−
⌈
m+3+(2m−1)t

2m−1

⌉
− 1−

⌈
2m+1+(2m−1)t

2m−1

⌉
+ 1

−
⌈

2m+1+(2m−1)t
2m−1

⌉
+ 1−

⌈
3m−1+(2m−1)t

2m−1

⌉
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=(2 + t) + (2 + t)− 1 + (2 + t) + (2 + t)− (1 + t)− 1

− (2 + t) + 1− (2 + t) + 1− (2 + t) = 1.

Case 6. i ≡ 2m− 3 (mod (2m− 1)), i.e., i = 2m− 3 + (2m− 1)t, t = 0, 1, . . . , thus

wtϕm(Ci+1
m )− wtϕm(Ci

m) =ϕm(v3m−4+(2m−1)t) + ϕm(v3m−5+(2m−1)tv3m−4+(2m−1)t)

+ ϕm(v3m−4+(2m−1)tu) + ϕm(v2m−2+(2m−1)tu)

− ϕm(v2m−3+(2m−1)t)− ϕm(v2m−3+(2m−1)tv2m−2+(2m−1)t)

− ϕm(v2m−3+(2m−1)tu)− ϕm(v3m−5+(2m−1)tu)

=
⌈

3m−2+(2m−1)t
2m−1

⌉
+
⌈

4m−5+(2m−1)t
2m−1

⌉
+
⌈

4m−4+(2m−1)t
2m−1

⌉
+
⌈

3m−2+(2m−1)t
2m−1

⌉
− 1−

⌈
2m−1+(2m−1)t

2m−1

⌉
−
⌈

3m−3+(2m−1)t
2m−1

⌉
+ 1−

⌈
3m−3+(2m−1)t

2m−1

⌉
−
⌈

4m−5+(2m−1)t
2m−1

⌉
=(2 + t) + (2 + t) + (2 + t) + (2 + t)− 1− (1 + t)

− (2 + t) + 1− (2 + t)− (2 + t) = 1.

Case 7. i ≡ 2m− 2 (mod (2m− 1)), i.e., i = 2m− 2 + (2m− 1)t, t = 0, 1, . . . , thus

wtϕm(Ci+1
m )− wtϕm(Ci

m) =ϕm(v3m−3+(2m−1)t) + ϕm(v3m−4+(2m−1)tv3m−3+(2m−1)t)

+ ϕm(v3m−3+(2m−1)tu) + ϕm(v2m−1+(2m−1)tu)

− ϕm(v2m−2+(2m−1)t)− ϕm(v2m−2+(2m−1)tv2m−1+(2m−1)t)

− ϕm(v2m−2+(2m−1)tu)− ϕm(v3m−4+(2m−1)tu)

=
⌈

3m−1+(2m−1)t
2m−1

⌉
+
⌈

4m−4+(2m−1)t
2m−1

⌉
+
⌈

4m−3+(2m−1)t
2m−1

⌉
+
⌈

3m−1+(2m−1)t
2m−1

⌉
−
⌈

2m+(2m−1)t
2m−1

⌉
−
⌈

3m−2+(2m−1)t
2m−1

⌉
−
⌈

3m−2+(2m−1)t
2m−1

⌉
+ 1−

⌈
4m−4+(2m−1)t

2m−1

⌉
=(2 + t) + (2 + t) + (2 + t) + (2 + t)− (2 + t)

− (2 + t)− (2 + t) + 1− (2 + t) = 1.

Case 8. i ≡ 2m− 1 (mod (2m− 1)), i.e., i = 2m− 1 + (2m− 1)t, t = 0, 1, . . . , thus

wtϕm(Ci+1
m )− wtϕm(Ci

m) =ϕm(v3m−2+(2m−1)t) + ϕm(v3m−3+(2m−1)tv3m−2+(2m−1)t)

+ ϕm(v3m−2+(2m−1)tu) + ϕm(v2m+(2m−1)tu)

− ϕm(v2m−1+(2m−1)t)− ϕm(v2m−1+(2m−1)tv2m+(2m−1)t)

− ϕm(v2m−1+(2m−1)tu)− ϕm(v3m−3+(2m−1)tu)

=
⌈

3m+(2m−1)t
2m−1

⌉
+
⌈

4m−3+(2m−1)t
2m−1

⌉
+
⌈

4m−2+(2m−1)t
2m−1

⌉
+
⌈

3m+(2m−1)t
2m−1

⌉
−
⌈

2m+1+(2m−1)t
2m−1

⌉
−
⌈

3m−1+(2m−1)t
2m−1

⌉
+ 1
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−
⌈

3m−1+(2m−1)t
2m−1

⌉
−
⌈

4m−3+(2m−1)t
2m−1

⌉
=(2 + t) + (2 + t) + (2 + t) + (2 + t)− (2 + t)

− (2 + t) + 1− (2 + t)− (2 + t) = 1.

Case 9. i 6≡ 2, 3,m− 1,m,m+ 1, 2m− 3, 2m− 2, 2m− 1 (mod (2m− 1)). Then

wtϕm(Ci+1
m )− wtϕm(Ci

m) =ϕm(vi+m−1) + ϕm(vi+m−2vi+m−1) + ϕm(vi+m−1u) + ϕm(vi+1u)

− ϕm(vi)− ϕm(vivi+1)− ϕm(viu)− ϕm(vi+m−2u)

=
⌈

(i+m−1)+2
2m−1

⌉
+
⌈

(i+m−2)+m
2m−1

⌉
+
⌈

(i+m−1)+m
2m−1

⌉
+
⌈

(i+1)+m
2m−1

⌉
−
⌈

i+2
2m−1

⌉
−
⌈
i+m

2m−1

⌉
−
⌈
i+m

2m−1

⌉
−
⌈

(i+m−2)+m
2m−1

⌉
=2
⌈
i+m+1
2m−1

⌉
− 2

⌈
i+m

2m−1

⌉
+
⌈

i
2m−1

⌉
−
⌈

i+2
2m−1

⌉
+ 1.

Now we distinguish three subcases.
If i = 1 + (2m− 1)t, t = 0, 1, . . . , then

wtϕm(Ci+1
m )− wtϕm(Ci

m) =2
⌈

1+(2m−1)t+m+1
2m−1

⌉
− 2

⌈
1+(2m−1)t+m

2m−1

⌉
+
⌈

1+(2m−1)t
2m−1

⌉
−
⌈

1+(2m−1)t+2
2m−1

⌉
+ 1 = 2(1 + t)− 2(1 + t) + (1 + t)− (1 + t) + 1

=1.

If i = s+ (2m− 1)t, t = 0, 1, . . . and 4 ≤ s ≤ m− 2, then

wtϕm(Ci+1
m )− wtϕm(Ci

m) =2
⌈
s+(2m−1)t+m+1

2m−1

⌉
− 2

⌈
s+(2m−1)t+m

2m−1

⌉
+
⌈
s+(2m−1)t

2m−1

⌉
−
⌈
s+(2m−1)t+2

2m−1

⌉
+ 1 = 2(1 + t)− 2(1 + t) + (1 + t)− (1 + t) + 1

=1.

If i = s+ (2m− 1)t, t = 0, 1, . . . and m+ 2 ≤ s ≤ 2m− 4, in this case we get

wtϕm(Ci+1
m )− wtϕm(Ci

m) =2
⌈
s+(2m−1)t+m+1

2m−1

⌉
− 2

⌈
s+(2m−1)t+m

2m−1

⌉
+
⌈
s+(2m−1)t

2m−1

⌉
−
⌈
s+(2m−1)t+2

2m−1

⌉
+ 1 = 2(2 + t)− 2(2 + t) + (1 + t)− (1 + t) + 1

=1.

Thus, according to all these cases we get that

wtϕm(Ci+1
m )− wtϕm(Ci

m) = 1

for every i, i = 1, 2, . . . , n−m+ 1. This concludes the proof.
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4. Conclusion

In this paper we determined the exact value of the cycle-irregularity strength of ladders and
fan graphs. We proved that for the ladder Ln ∼= Pn�P2, n ≥ 3, admitting a C2m-covering,
2 ≤ m ≤ d(n+ 1)/2e, ths(Ln, C2m) =

⌈
3m+n

4m

⌉
. Moreover, for the fan graph Fn on n+ 1 vertices,

n ≥ 2 and 3 ≤ m ≤ d(n+ 3)/2e, ths(Fn, Cm) =
⌈
n+m
2m−1

⌉
.

For the edge (vertex) cycle-irregularity strength of ladders was proved the following.

Theorem 4.1. [6] Let Ln ∼= Pn�P2, n ≥ 2, be a ladder. Then

ehs(Ln, C4) =

⌈
n+ 2

4

⌉
.

Theorem 4.2. [6] Let Ln ∼= Pn�P2, n ≥ 3, be a ladder. Let m be a positive integer, m ≤
d(n+ 1)/2e. Then

vhs(Ln, C2m) =

⌈
m+ n

2m

⌉
.

In [6] is also given the exact value for the vertex cycle-irregularity strength for fan graphs.

Theorem 4.3. [6] Let Fn be a fan graph on n+1 vertices, n ≥ 2 and 3 ≤ m ≤ d(n+ 3)/2e. Then

vhs(Fn, Cm) =

⌈
n

m− 1

⌉
.

According to results proved in [6] it is needed to find the edge cycle-irregularity strength for
ladders and fans for every feasible length of cycles. We suppose that these parameters equal to the
lower bounds. We conclude the paper with the following conjectures.

Conjecture 1. Let Ln ∼= Pn�P2, n ≥ 2, be a ladder admitting a C2m-covering, 3 ≤ m ≤
d(n+ 1)/2e. Then

ehs(Ln, C2m) =
⌈
m+n
2m

⌉
.

Conjecture 2. Let Fn be a fan graph on n+ 1 vertices, n ≥ 2 and 3 ≤ m ≤ d(n+ 3)/2e. Then

ehs(Fn, Cm) =
⌈
n+1
m

⌉
.
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