On topological integer additive set-labeling of star graphs

Hafizh M. Radiapradanaa, Suhadi Wido Saputroa, Erma Suwastikaa, Oki Neswana, Andrea Semaničová-Feňovčíkováb

aDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung, Indonesia
bDepartment of Applied Mathematics and Informatics, Technical University, Letná 9, Košice, Slovakia

hafizhmcdc@gmail.com, \{suhadi, ermasuwastika, oneswan\}@math.itb.ac.id, andrea.fenovcikova@tuke.sk

Abstract

For integer \(k \geq 2 \), let \(X = \{0, 1, 2, \ldots, k\} \). In this paper, we determine the order of a star graph \(K_{1,n} \) of \(n + 1 \) vertices, such that \(K_{1,n} \) admits a topological integer additive set-labeling (TIASL) with respect to a set \(X \). We also give a condition for a star graph \(K_{1,n} \) such that \(K_{1,n} \) is not a TIASL-graph on set \(X \).

Keywords: set-labeling, set topology, star graph, sumset, topological integer additive set-labeling

Mathematics Subject Classification: 05C78

DOI: 10.5614/ejgta.2018.6.2.13

1. Introduction

Research on graph labeling was started after Rosa introduced the concept of \(\beta \)-valuation of graphs \cite{2}. The concept of set-assignment \cite{1}, which is defined as follows, is analogous to the number valuations of graphs. Let \(G(V,E) \) be a graph, \(X \) be a non-empty set, and \(\mathcal{P}(X) \) be the power set of \(X \). Then the set-valued function \(f : V(G) \rightarrow \mathcal{P}(X) \) is called the set-assignment of \(G \). We can also define a set-assignment of edges or both elements (vertices and edges)
in a similar way. A set-assignment of a graph G is called a set-labeling (or a set-valuation) of G if it is injective.

In this paper, we combine the concept of the vertex set-labeling and the set topology. A topology on a non-empty set X is a collection \mathcal{T} of subsets of X having the following properties:

1. The set X and \emptyset are in \mathcal{T}.
2. The union of the elements of any sub-collection of \mathcal{T} is in \mathcal{T}.
3. The intersection of the elements of any finite sub-collection of \mathcal{T} is in \mathcal{T}.

Let G be a connected, simple, and finite graph. Let X be a finite non-empty set of non-negative integers. A vertex set-labeling $f : V(G) \to P(X) - \{\emptyset\}$ is called a topological integer additive set-labeling (TIASL) of G if f is an injective function, $\{f(V(G)) \cup \{\emptyset\}\}$ is a topology of X, and there exists the corresponding function $f^+ : E(G) \to P(X) - \{\emptyset\}$ such that for every edge $uv \in E(G)$, $f^+(uv) = f(u) + f(v)$. We recall that the sumset (or Minkowski sum) of two non-empty sets A and B, denoted by $A + B$, is defined by $A + B = \{a + b \mid a \in A; b \in B\}$. A graph G which admits TIASL is called a topological integer additive set-labelled graph (in short, TIASL-graph).

The topological integer additive set-labeling was introduced by Sudev and Germina [3]. They give a tight condition for a TIASL-graph. They proved that G is a TIASL-graph if and only if G has at least one pendant vertex. They also characterized all TIASL-graphs with respect to either the indiscrete topology or Sierpenski’s topology.

Let G be a graph having a pendant vertex. For integer $k \geq 2$, let $X = \{0, 1, 2, \ldots, k\}$. It seems that every graph G admits a topological integer additive set-labeling on set X if the cardinality of X is big enough. In [3], Sudev and Germina proved that an (n, m)-tadpole graph is a TIASL-graph. An (n, m)-tadpole graph is a graph obtained from one copies of cycle C_n, $n \geq 3$, and path P_m, $m \geq 2$, by identifying an end point of the path P_m to a vertex of cycle C_n. They have shown that an (n, m)-tadpole graph of $n + m - 1$ vertices admits a topological integer additive set-labeling on set $X = \{0, 1, 2, \ldots, k\}$ where $k = 2(m + n) - 5$.

In this paper, we consider a star graph $K_{1,n}$ of $n+1$ vertices and a given set $X = \{0, 1, 2, \ldots, k\}$ where $k \geq 2$. We obtain two main results. The first result is related to the order of a star graph $K_{1,n}$ such that $K_{1,n}$ is a TIASL-graph on the set X.

Theorem 1.1. Let $K_{1,n}$ be a star graph with $n + 1$ vertices. For $k \geq 2$, let $X = \{0, 1, 2, \ldots, k\}$. If n is one of the positive integers below, then $K_{1,n}$ is a TIASL-graph on set X.

(a) $n \in \{1, 2, \ldots, 4k - 4\}$, or
(b) $n = 2^{r_1} + 2^{r_2} - 2$ for $r_1 \in \{2, 3, \ldots, k - 1\}$ and $r_2 \in \{1, 2\}$.

In the second result, we give a condition for a star graph $K_{1,n}$ such that $K_{1,n}$ is not a TIASL-graph on set X.

Theorem 1.2. Let $K_{1,n}$ be a star graph with $n + 1$ vertices. For $k \geq 2$, let $X = \{0, 1, 2, \ldots, k\}$. If $3 \cdot 2^{k-1} - 2 \leq n \leq 2^{k+1} - 2$, then $K_{1,n}$ is not a TIASL-graph on set X.

In order to prove both theorems above, we also consider the following useful proposition.

Proposition 1.1. Let S be a finite non-empty set of non-negative integers with s elements. Then $\mathcal{P}(S)$ is a topology of S with 2^s elements.
2. Proof of Theorem 1.1

For an integer \(k \geq 2 \), let \(X = \{0, 1, 2, \ldots, k\} \). First we must consider the following proposition which has been proved by Sudev and Germina [3].

Proposition 2.1. Let \(f : V(G) \to X - \{\emptyset\} \) is a TIASL of a graph \(G \). Then, the vertices whose set-labels containing the maximal element of the ground set \(X \) are pendant vertices which are adjacent to the vertex having the set-label \(\{0\} \).

From Proposition 2.1, if \(f \) is a TIASL of a graph \(G \), then there exists a vertex \(v \) of \(G \) such that \(f(v) = \{0\} \). Therefore, we must construct a topology of \(X \) containing \(\{0\} \).

Proposition 2.2. There exists a topology \(T \) containing \(\{0\} \) on set \(X \) such that \(|T| = t\), where \(t \) is one of the positive integers as follows.

(a) \(3 \leq t \leq 4k - 2 \), or
(b) \(t = 2^{r_1} + r_2 \) for \(r_1 \in \{2, 3, \ldots, k - 1\} \) and \(r_2 \in \{1, 2\} \).

Proof. We distinguish two cases.

Part 2.2.1. \(3 \leq t \leq 4k - 2 \)

Let \(I_0 = X \). For \(i \in \{1, 2, \ldots, k\} \), we define recursively

\[I_i = I_{i-1} - \max(I_{i-1}) \]

and

\[I_i = \{I_k\} \cup \{I_s \mid 0 \leq s \leq i - 1\} \].

Note that \(|I_i| = i+1\). We also define \(I_i^* = I_{k+1} - \{0\} \) and \(I_i^* = \{I_s^* \mid 1 \leq s \leq i\} \). In this case, \(|I_i^*| = i\). For \(j \in \{1, 2, \ldots, k-2\} \), we define

\[\hat{I}_j = I_{j+2} \cup \{k-1\} \]

and

\[\hat{I}_j^* = \hat{I}_j - \{0\} \].

We also define

\[I_j^{**} = \hat{I}_j \cup \hat{I}_j^* \]

where \(\hat{I}_j = \{I_s \mid 1 \leq s \leq j\} \) and \(\hat{I}_j^* = \{I_s^* \mid 1 \leq s \leq j\} \). Note that \(|I_j^{**}| = 2j\).

By some definitions above, we define a collection-set \(T_1 \) with \(t \) elements as follows.

\[T_1 = \{\emptyset\} \cup \begin{cases}
I_{t-2}, & \text{if } 3 \leq t \leq k + 2, \\
I_k \cup I_{k-2}^*, & \text{if } k + 3 \leq t \leq 2k + 2, \\
I_k \cup I_{k-1} \cup I_{k+1}^{**}, & \text{if } 2k + 3 \leq t \leq 4k - 3 \text{ and } t \text{ is odd}, \\
I_k \cup I_{k-2} \cup I_{k+2}^{**}, & \text{if } 2k + 4 \leq t \leq 4k - 2 \text{ and } t \text{ is even}.
\end{cases} \]

Note that \(I_k = \{0\} \in T_1 \). Now, we will show that \(T_1 \) is a topology of \(X \).

Let \(A \) and \(B \) be two distinct elements of \(T_1 \) where \(|A| \leq |B|\). If \(A \subset B \), then \(A \cap B = A \in T_1 \) and \(A \cup B = B \in T_1 \). Otherwise, we distinguish six cases.
Part 2.2.2.

1. \(A \in \mathcal{I}_k \) and \(B \in \mathcal{I}_k^* \) for \(i \in \{1, 2, \ldots, k\} \) (or \(B \in \mathcal{I}_k \) and \(A \in \mathcal{I}_k^* \))
 Then \(A \cap B \in \mathcal{I}_k^* \) and \(A \cup B \in \mathcal{I}_k \).

2. \(A \in \mathcal{I}_k \) and \(B \in \mathcal{I}_j \) for \(j \in \{1, 2, \ldots, k - 2\} \) (or \(B \in \mathcal{I}_k \) and \(A \in \mathcal{I}_j \))
 Then \(A \cap B \in \mathcal{I}_k \) and either \(A \cup B \in \mathcal{I}_k \) or \(A \cup B \in \mathcal{I}_j \).

3. \(A \in \mathcal{I}_k \) and \(B \in \mathcal{I}_j^* \) for \(j \in \{1, 2, \ldots, k - 2\} \) (or \(B \in \mathcal{I}_k \) and \(A \in \mathcal{I}_j^* \))
 Then \(A \cap B \in \mathcal{I}_k \) and either \(A \cup B \in \mathcal{I}_j^* \) or \(A \cup B \in \mathcal{I}_k \).

4. \(A \in \mathcal{I}_k^* \) and \(B \in \mathcal{I}_j \) for \(i \in \{k - 1, k\} \) and \(j \in \{1, 2, \ldots, k - 2\} \) (or \(B \in \mathcal{I}_k^* \) and \(A \in \mathcal{I}_j \))
 Then either \(A \cap B = \emptyset \) or \(A \cap B \in \mathcal{I}_k^* \) or \(A \cap B \in \mathcal{I}_j^* \). Also, we have either \(A \cup B \in \mathcal{I}_j^* \) or \(A \cup B \in \mathcal{I}_k \).

5. \(A \in \mathcal{I}_k^* \) and \(B \in \mathcal{I}_j^* \) for \(i \in \{k - 1, k\} \) and \(j \in \{1, 2, \ldots, k - 2\} \) (or \(B \in \mathcal{I}_k^* \) and \(A \in \mathcal{I}_j^* \))
 Then either \(A \cap B \in \mathcal{I}_k \) or \(A \cap B = \emptyset \). Also, we have either \(A \cup B \in \mathcal{I}_k^* \) or \(A \cup B \in \mathcal{I}_j^* \).

6. \(A \in \mathcal{I}_j \) and \(B \in \mathcal{I}_j^* \) for \(j \in \{1, 2, \ldots, k - 2\} \) (or \(B \in \mathcal{I}_j \) and \(A \in \mathcal{I}_j^* \))
 Then \(A \cap B \in \mathcal{I}_j^* \) and \(A \cup B \in \mathcal{I}_j \).

From the six cases above, we obtain that every two distinct elements \(A \) and \(B \) in \(\mathcal{T}_1 \) satisfy \(A \cap B \in \mathcal{T}_1 \) and \(A \cup B \in \mathcal{T}_1 \). Since \(\mathcal{T}_1 \) also contains \(\emptyset \) and \(X \), it implies that \(\mathcal{T}_1 \) is a topology of \(X \).

Part 2.2.2. \(t = 2^r_1 + r_2 \) for \(r_1 \in \{2, 3, \ldots, k - 1\} \) and \(r_2 \in \{1, 2\} \)

We define the sets \(J_{r_1} = \{0, 1, \ldots, r_1\} \). Now, we consider an element \(a \) of \(X \) such that \(a \neq \max(X) \). Let \(X^- = X - \{a\} \). By these definitions, we define a collection-set \(\mathcal{T}_2 \) with \(t \) elements as follows.

\[
\mathcal{T}_2 = \begin{cases}
\mathcal{P}(J_{r_1}) \cup \{X\}, & \text{if } t = 2^r_1 + 1, \\
\mathcal{P}(J_{r_1}) \cup \{\{X\}, \{X^-\}\}, & \text{if } t = 2^r_1 + 2.
\end{cases}
\]

Now, we will show that \(\mathcal{T}_2 \) is a topology of \(X \).

Note that \(\emptyset, \{0\}, X \in \mathcal{T}_2 \). Let \(A \) and \(B \) be two distinct elements of \(\mathcal{T}_2 \). We distinguish three cases.

1. \(A, B \in \mathcal{P}(J_{r_1}) \)
 By Proposition 1.1, then \(A \cap B \in \mathcal{P}(J_{r_1}) \) and \(A \cup B \in \mathcal{P}(J_{r_1}) \).

2. \(A \in \mathcal{P}(J_{r_1}) \) or \(A = X^- \) and \(B = X \)
 Then \(A \cup B = B \) and \(A \cap B = A \).

3. \(A \in \mathcal{P}(J_{r_1}) \) and \(B = X^- \).
 Then \(A \cap B \in \mathcal{P}(J_{r_1}) \) and \(A \cup B \in \{X, X^-\} \).

From three cases above, we obtain that \(A \cap B, A \cup B \in \mathcal{T}_2 \).

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let \(V(K_{1,n}) = \{v_1, v_2, \ldots, v_{n+1}\} \), where \(v_1 \) is the centre of \(K_{1,n} \). Let \(\mathcal{T}_i \) be a topology of \(X \) with \(t \) elements satisfying Proposition 2.2. Let \(\mathcal{T}_i' = \mathcal{T}_i - \{\emptyset\} \). Now, we define a vertex injective labeling \(f : V(S_n) \rightarrow \mathcal{T}_i' \) such that \(f(v_1) = \{0\} \). Since for \(2 \leq i \leq n \), \(v_1 \) is adjacent to \(v_i \) and \(f(v_1) + f(v_i) = f(v_i) \in \mathcal{T}_i' \subseteq \mathcal{P}(X) \), we obtain that \(K_{1,n} \) is a TIASL-graph on the set \(X \).
3. Proof of Theorem 1.2

Let S be a finite non-empty set of non-negative integers. From Proposition 1.1, it is clear that $\mathcal{P}(S)$ is a topology on the set S. Let $\mathcal{A} \subset \mathcal{P}(S)$. On some cases of \mathcal{A}, the collection $\mathcal{P}(S) - \mathcal{A}$ is not a topology on the set S. In proposition below, we prove that if $L \in \mathcal{P}(S)$ is not an element of a topology \mathcal{T} on the set S, then there exists an element $l \in L$ such that $\{l\} \notin \mathcal{T}$.

Proposition 3.1. Let S be a finite non-empty set of non-negative integers with s elements, and \mathcal{T} be a topology of S. Let $A \in \mathcal{P}(S)$ but $A \notin \mathcal{T}$. Then there exists an element a of A such that $\{a\} \notin \mathcal{T}$.

Proof. By the definition of a topology, we have $A \neq \emptyset$. Let $A = \{a_1, a_2, \ldots, a_r\}$. If $r = 1$, then we are done. Now, we assume that $r \geq 2$. Suppose that $\{a_i\} \in \mathcal{T}$ for $1 \leq i \leq r$. Note that $\bigcup_{i=1}^{r} \{a_i\} = A \notin \mathcal{T}$, a contradiction.

Let the collection \mathcal{T} be a topology on the set S which is satisfying Proposition 3.1 above and the set $L \in \mathcal{P}(S)$ but $L \notin \mathcal{T}$. Let $l \in L$ and $\{l\} \notin \mathcal{T}$. So, there are no two distinct sets A_1 and A_2 in \mathcal{T} such that $A_1 \cap A_2 = \{l\}$. Therefore, we need to determine how many elements of \mathcal{T} such that \mathcal{T} may be a topology on the set S.

Proposition 3.2. Let S be a finite non-empty set of non-negative integers with $s \geq 2$ elements. Let \mathcal{A} be a non-empty collection-set, where every element of \mathcal{A} is an element of $\mathcal{P}(S)$. If $\mathcal{P}(S) - \mathcal{A}$ is a topology of S, then $|\mathcal{P}(S) - \mathcal{A}| \leq 3 \cdot 2^{s-2}$.

Proof. Let $S = \{v_1, v_2, \ldots, v_s\}$. By Proposition 1.1, $\mathcal{P}(S)$ is a topology of S with 2^s elements. Let \mathcal{A} be a non-empty collection-set, where every element of \mathcal{A} is element of $\mathcal{P}(S)$. Let $\mathcal{T} = \mathcal{P}(S) - \mathcal{A}$ be a topology of S.

Let $E \in \mathcal{A}$. Since \mathcal{T} is a topology of S, it is clear that $E \neq \emptyset$ and $E \neq S$. By considering Proposition 3.1, without lost of generality, let $v_s \in E$ and $\{v_s\} \notin \mathcal{T}$. We can say that $\{v_s\} \in \mathcal{A}$.

Let $\mathcal{B} = \{\{v_s, v_i\} | 1 \leq i \leq s-1\}$. Note that $|\mathcal{B}| = s - 1$. Since \mathcal{T} is a topology of S, then at least $s - 2$ elements of \mathcal{B} are in \mathcal{A}. Without lost of generality, let $\mathcal{B} = \{\{v_s, v_i\} | 1 \leq i \leq s-2\} \subset \mathcal{A}$. Now, we define $\hat{\mathcal{B}} = \{v \in \mathcal{B} | \{v, v_s\} \notin \mathcal{B}\}$. We also define $\mathcal{C} = \{\{v_s\} \cup C | C \in \mathcal{P}(\mathcal{B})\}$. Note that $|\mathcal{C}| = 2^{s-2}$, $\{v_s\} \in \mathcal{C}$, and $\mathcal{B} \subset \mathcal{C}$. Note that for any distinct elements $C_1, C_2 \in \mathcal{C}$, we have $C_1 \cup C_2$ and $C_1 \cap C_2$ are also in \mathcal{C}. However, every $C \in \mathcal{C}$ satisfy $C \cap \{v_s, v_{s-1}\} = \{v_s\} \in \mathcal{A}$. So, it must be $\mathcal{C} \subset \mathcal{A}$. Therefore, we obtain

$$|\mathcal{P}(S) - \mathcal{A}| \leq 2^s - 2^{s-2} = 3 \cdot 2^{s-2}.$$

Proof of Theorem 2. Theorem 1.2 is a direct consequence of Propositions 1.1 and 3.2.

Acknowledgement

This work is partially supported by Riset Program Penelitian, Pengabdian Masyarakat, dan Inovasi (P3MI) 1016/1/I.C01/PL/2017, by APVV-15-0116, and by VEGA 1/0233/18.
References

