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Abstract

A connected graph is said to be of QE class if it admits a quadratic embedding in a Hilbert space, or
equivalently, if the distance matrix is conditionally negative definite. Several criteria for a graph to
be of QE class are derived from the point of view of graph operations. For a quantitative criterion
the QE constant is introduced and concrete examples are shown with explicit calculation. If the
distance matrix admits a constant row sum, the QE constant coincides with the second largest
eigenvalue of the distance matrix. The QE constants are determined for all graphs on n vertices
with n ≤ 5, among which two are not of QE class.
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1. Introduction

Since Schoenberg [20, 21, 22] introduced essentially the concept of quadratic embedding of
a metric space, many relevant works have appeared with wide applications often under the name
of Euclidean distance geometry, see e.g., the excellent survey by Liberti et al [15] and references
cited therein. In this line, discrete spaces have also attracted much attention from various aspects.

In this paper we focus on quadratic embedding of graphs, being motivated by two lines of
researches. First, although less actively considered than the adjacency or Laplacian matrices, dis-
tance matrices are also interesting in characterization of graphs. Noteworthy characteristic prop-
erties of the distance matrices of trees are derived by Balaji–Bapat [2], see also Bapat [3, Chapter
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8]. More recently, Jaklič–Modic [11, 12, 13] determine some classes of graphs of QE class (in
our terminology) and their explicit embeddings in Euclidean spaces. Second, the Q-matrix of a
graph, the entrywise exponential of the distance matrix, has become important in relation to the
q-deformation of spectral distributions of graphs, see e.g., Hora–Obata [9]. In this context it is fun-
damental to know whether the Q-matrix of a graph is positive definite or not. In fact, this property
is closely related to that the graph admits a quadratic embedding, as is discussed by Haagerup [7]
for a tree and by Bożejko [5] for an elegant extension in terms of a Markov product. For further
developments, see Obata [17, 18].

Now let G = (V,E) be a connected (finite or infinite) graph and denote by d(x, y) the graph
distance between two vertices x, y ∈ V , i.e., the length of a shortest walk (or path) connecting x
and y. A map φ from V into a Hilbert space H is called a quadratic embedding of G if

∥φ(x)− φ(y)∥2 = d(x, y), x, y ∈ V, (1)

where ∥ · ∥ stands for the norm of H. A graph G is said to be of QE class if it admits a quadratic
embedding. A criterion for a graph G = (V,E) to be of QE class is given by a kind of spectral
characteristic of the distance matrix D = [d(x, y)]x,y∈V . In this paper we concentrate on the study
of the QE constant of a graph G defined by

QEC(G) = sup{⟨f,Df⟩ ; f ∈ C0(V ), ⟨f, f⟩ = 1, ⟨1, f⟩ = 0}, (2)

for notations see Section 2. By definition the distance matrix D is conditionally negative definite if
and only if QEC(G) ≤ 0. The crucial fact due to Schoenberg [20, 21] (also Young–Householder
[23] for a finite case) says that a graph G admits a quadratic embedding if and only if D is con-
ditionally negative definite. We thus have a quantitative criterion: a graph G is of QE class if and
only if QEC(G) ≤ 0. The main purpose of this paper is to derive several criteria for a graph to
be of QE class, and provide concrete examples with explicit QE constants. We consider the QE
constant itself as an interesting spectral characteristic of a graph.

This paper is organized as follows: In Section 2, after preparation of basic notations and no-
tions, we examine paths Pn, cycles Cn, complete graphs Kn, complete bipartite graphs Km,n, a
tri-partite graphs K1,1,n and so on as first examples.

In Section 3 we discuss graph operations preserving the property of being of QE class, in
particular, isometric embedding of a subgraph, the Cartesian product, the star product, and deletion
of edges. It is noteworthy that QEC(G1 ×G2) = 0 holds whenever both G1 and G2 are graphs of
QE class on two or more vertices (Theorem 3.3). The star product preserves the property of being
QE class (Theorem 3.5). Deleting edges from the complete graphs, we construct graphs of QE
class and of non-QE class.

In Section 4 we provide two methods of calculating the QE constants. As is anticipated from
the definition (2), the method of Lagrange multipliers gives rise to a concise formula, but not
very practical (Proposition 4.2). The second method uses eigenvalues of the distance matrix. It
is shown that QEC(G) coincides with the second largest eigenvalue of D if the distance matrix
admits a constant row sum (Theorem 4.7). The second method is restrictive but still covers a wide
class of graphs.

In Section 5 we examine all graphs on n vertices with 2 ≤ n ≤ 5 together with their QE
constants. As a result, there are two graphs which are not of QE class. It seems that these two
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graphs are well-known among experts, but not easily found in literatures. The full list will be
useful in the further study of graph operations and non-QE graphs.

2. Graphs of QE class

2.1. Notations
For a non-empty set X let C(X) denote the space of R-valued functions on X , and C0(X) the

subspace of ones with finite supports. Obviously, C0(X) = C(X) if X is finite. The canonical
inner product and norm on C0(X) are defined by

⟨f, g⟩ =
∑
x∈X

f(x) g(x), ∥f∥ =
√

⟨f, f⟩ , f, g ∈ C0(X),

respectively. Let 1 ∈ C(X) be the constant function defined by 1(x) = 1 for all x ∈ X . Overusing
the notation, we write

⟨1, f⟩ =
∑
x∈X

f(x), f ∈ C0(X).

A R-valued function K : X × X → R, i.e., K ∈ C(X × X), is called a kernel on X or a
matrix with index set X ×X , and we write

K = [K(x, y)] = [K(x, y)]x,y∈X , (K)xy = K(x, y).

In accordance with usual matrix multiplication, for K ∈ C(X ×X) and f ∈ C0(X) we define

Kf(x) =
∑
y∈X

K(x, y)f(y), x ∈ X, f ∈ C0(X).

Then Kf ∈ C(X) but not necessarily Kf ∈ C0(X). Overusing the notation again, we write

⟨f,Kg⟩ =
∑
x,y

K(x, y)f(x)g(x), f, g ∈ C0(X).

The canonical basis of C0(X) is denoted by {ex ; x ∈ X}, where ex(y) = δxy (Kronecker symbol).
Obviously, ⟨ex, ey⟩ = δxy. Note the obvious relation:

⟨ex, Key⟩ = K(x, y), x, y ∈ X.

The transposed matrix is defined by KT (x, y) = K(y, x). We then have

⟨f,Kg⟩ = ⟨KTf, g⟩, f, g ∈ C0(X).

A matrix K is called symmetric if KT = K.

39



www.ejgta.org

Distance matrices and quadratic embedding of graphs | N. Obata and A. Y. Zakiyyah

2.2. Conditionally negative definite matrices and quadratic embedding of a metric space
A symmetric matrix K = [K(x, y)] with index set X × X is called conditionally negative

definite if
⟨f,Kf⟩ =

∑
x,y∈X

K(x, y)f(x)f(y) ≤ 0

for all f ∈ C0(X) with ⟨1, f⟩ = 0.
Let (X, d) be a metric space. A map φ from X into a Hilbert space H is called a quadratic

embedding of (X, d) if
∥φ(x)− φ(y)∥2 = d(x, y), x, y ∈ X,

where ∥ · ∥ is the norm of the Hilbert space H. The following result is due to Schoenberg [21], for
relevant results see also Hayden–Reams–Wells [8], Józiak [14], Young–Householder [23].

Theorem 2.1. For a metric space (X, d) the following two conditions are equivalent:

(i) the metric space (X, d) admits a quadratic embedding;
(ii) the distance matrix D = [d(x, y)]x,y∈X is conditionally negative definite.

Remark 2.2. A symmetric matrix K satisfying K(x, x) = 0 for all x ∈ X is called a Schoenberg
kernel. A finite symmetric matrix K is called a Euclidean distance matrix if there is a map φ from
X into a Euclidean space such that K(x, y) = ∥φ(x)− φ(y)∥2 for all x, y ∈ X .

2.3. QE constants of graphs
A graph is a pair G = (V,E), where V is a non-empty set of vertices and E a set of edges,

i.e., a subset of {{x, y} ; x, y ∈ V, x ̸= y}. If {x, y} ∈ E, we write x ∼ y for simplicity. A finite
sequence of vertices x0, x1, . . . , xm ∈ V is called an m-step walk if x0 ∼ x1 ∼ · · · ∼ xm. In this
case we say that x0 and xm are connected by a walk of length m. A graph is called connected if
any pair of vertices are connected by a walk. A graph is called finite if V is a finite set. Throughout
this paper by a graph we always mean a (finite or infinite) connected graph.

For x, y ∈ V with x ̸= y let d(x, y) denote the length of a shortest walk (or path) connecting
x and y. By definition we set d(x, x) = 0. Then d(x, y) becomes a metric on V , which we call
the graph distance. A graph G = (V,E) is called of QE class if the metric space (V, d) admits a
quadratic embedding, i.e., there exist a Hilbert space H and a map φ : V → H such that

∥φ(x)− φ(y)∥2 = d(x, y), x, y ∈ V.

Such a map φ is called a quadratic embedding of G.
Let D = [d(x, y)]x,y∈V be the distance matrix of a graph G = (V,E). The QE constant of a

graph G is defined by

QEC(G) = sup{⟨f,Df⟩ ; f ∈ C0(V ), ∥f∥ = 1, ⟨1, f⟩ = 0}. (3)

Obviously, QEC(G) is characterized as the infimum among constants C satisfying

⟨f,Df⟩ ≤ C∥f∥2 for all f ∈ C0(V ) with ⟨1, f⟩ = 0.

By definition D is conditionally negative definite if and only if QEC(G) ≤ 0. Then, combining
Theorem 2.1, we come to the following
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Theorem 2.3. Let G = (V,E) be a graph with distance matrix D = [d(x, y)]. Then the following
conditions are equivalent:

(i) G is of QE class;
(ii) D is conditionally negative definite;

(iii) QEC(G) ≤ 0.

Remark 2.4. If G is a finite graph, say V = {1, 2, . . . , n}, then through the natural identification
of C(V ) with Rn the domain

{f ∈ Rn ; ∥f∥ = 1, ⟨1, f⟩ = 0}

is homeomorphic to a sphere of n− 2 dimension. Therefore, QEC(G) is attained by some f ∈ Rn

with ∥f∥ = 1 and ⟨1, f⟩ = 0, that is,

QEC(G) = max{⟨f,Df⟩ ; f ∈ C(V ), ∥f∥ = 1, ⟨1, f⟩ = 0}. (4)

2.4. First examples of graphs of QE class

Theorem 2.5 (Jaklič–Modic [11]). For any n ≥ 1 the path Pn on n vertices is of QE class.

Theorem 2.6. For any n ≥ 1 the complete graph Kn on n vertices is of QE class.

In fact, a path along the mutually vertical edges of a hypercube gives rise to a quadratic em-
bedding of Pn into Rn−1. Similarly, a natural realization of Kn as a regular polytope in Rn−1 is a
quadratic embedding.

The QE constant of Kn is obtained easily. Taking V = {1, 2, . . . , n}, we see that all entries of
D are 1 except the zero diagonals. Then for f = [x1 · · · xn]

T ∈ Rn we have

⟨f,Df⟩ =
∑
i ̸=j

xixj =
n∑

i,j=1

xixj −
n∑

i=1

x2
i = ⟨1, f⟩2 − ∥f∥2.

Obviously, ⟨f,Df⟩ ≤ 0 whenever ⟨1, f⟩ = 0. Moreover, for n ≥ 2 we have

QEC(Kn) = max{⟨f,Df⟩ ; f ∈ C(V ), ∥f∥ = 1, ⟨1, f⟩ = 0} = −1.

Note that QEC(K1) = 0 by definition.

Theorem 2.7 (Jaklič–Modic [12]). For any n ≥ 3 the cycle Cn is of QE class.

Calculation of QEC(Cn) is postponed, see Example 4.9.

Theorem 2.8. Let 1 ≤ m ≤ n. The complete bipartite graph Km,n is of QE class if and only if

(i) m = 1 and n ≥ 1, that is, K1,n is a star; or
(ii) m = n = 2, that is, K2,2

∼= C4 is a cycle on 4 vertices.
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Proof. The distance matrix is written in the form:

D =

[
A J
JT B

]
,

where A is an m × m matrix with off-diagonal entries being all 2 and diagonal ones all 0, B
is an n × n matrix of the same type, and J is an m × n matrix with entries being all 1. For
f = [x1 · · · xm y1 · · · yn]T ∈ Rm+n we have

⟨f,Df⟩ = 2
∑

1≤i̸=j≤m

xixj + 2
m∑
i=1

n∑
j=1

xiyj + 2
∑

1≤i̸=j≤n

yiyj

= 2

(
m∑

i,j=1

xixj −
m∑
i=1

x2
i

)
+ 2

m∑
i=1

n∑
j=1

xiyj + 2

(
n∑

i,j=1

yiyj −
n∑

j=1

y2j

)

= −2

(
m∑
i=1

x2
i +

n∑
j=1

y2j

)
+ 2

(
m∑

i,j=1

xixj +
m∑
i=1

n∑
j=1

xiyj +
n∑

i,j=1

yiyj

)
. (5)

It is sufficient to find the maximum of ⟨f,Df⟩, where f ∈ Rm+n runs over the domain determined
by

∥f∥2 = ⟨f, f⟩ =
m∑
i=1

x2
i +

n∑
j=1

y2j = 1, ⟨1, f⟩ =
m∑
i=1

xi +
n∑

j=1

yj = 0. (6)

The above conditions being taken into account, (5) admits a simpler expression:

⟨f,Df⟩ = −2 + 2

(
m∑
i=1

xi

)2

.

The maximum of ⟨f,Df⟩ subject to (6) is computed by elementary calculus (see Appendix No. 1)
and we come to

QEC(Km,n) = −2 +
2mn

m+ n
=

2

m+ n
{(m− 1)(n− 1)− 1},

from which the assertion follows immediately.

Theorem 2.9. Let n ≥ 1. A tri-partite graph K1,1,n is of QE class if and only if 1 ≤ n ≤ 4.

Proof. Let V = {1, 2, . . . , n, n + 1, n + 2} and assume that the three components are given by
{1, 2, . . . , n}, {n+1} and {n+2}. For f = [x1 · · · xn xn+1 xn+2]

T ∈ Rn+2, under the conditions
∥f∥ = 1 and ⟨1, f⟩ = 0 we have

⟨f,Df⟩ = −∥f∥2 +
∑

1≤i<j≤n

2xixj ,
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of which the maximum subject to ∥f∥ = 1 and ⟨1, f⟩ = 0 is the QE constant. By elementary
calculus (see Appendix No. 3) we obtain

QEC(K1,1,n) = −1 +
(n− 1){(n+ 2)− n}

n+ 2
=

n− 4

n+ 2
,

which proves the assertion.

Remark 2.10. The tri-partite graph K1,1,n is also called the n-fold edge-amalgamation of K3.

Figure 1. K1,1,n: n-fold edge amalgamation of K3

3. Graph operations preserving QE class

3.1. Subgraphs
Theorem 3.1. Let G = (V,E) be a subgraph of G̃ = (Ṽ , Ẽ). Let d and d̃ be the graph distances
of G and G̃, respectively. If d(x, y) = d̃(x, y) for all x, y ∈ V , i.e., G is isometrically embedded in
G̃, then we have

QEC(G) ≤ QEC(G̃).

In particular, if G̃ is of QE class, so is G.

Proof. Let D̃ and D be the distance matrices of G̃ and G, respectively. Then D̃ admits an expres-
sion in the form of block matrices:

D̃ =

[
D C
CT B

]
.

By definition of QEC(G), for any ϵ > 0 there exists an f ∈ C0(V ) with ∥f∥ = 1 and ⟨1, f⟩ = 0
such that ⟨f,Df⟩ ≥ QEC(G) − ϵ. Define f̃ ∈ C0(Ṽ ) by f̃(x) = f(x) for x ∈ V and = 0
otherwise. Then, we have ∥f̃∥ = 1, ⟨1, f̃⟩ = 0 and

⟨f̃ , D̃f̃⟩ =
⟨[

f
0

]
,

[
D C
CT B

] [
f
0

]⟩
= ⟨f,Df⟩ ≥ QEC(G)− ϵ.

Hence QEC(G̃) ≥ QEC(G)− ϵ. Since ϵ > 0 is arbitrary, we have QEC(G̃) ≥ QEC(G).

Theorem 3.1 is useful for constructing a graph of not QE class from a smaller one. For example,

Proposition 3.2. Let G = (V,E) be a graph with diam(G) ≤ 2. Let G̃ = (Ṽ , Ẽ) be a graph
obtained by adding a vertex to G with one or more edges. If G is not of QE class, either is not G̃.
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3.2. Cartesian product
For two graphs G1 = (V1, E1) and G2 = (V2, E2) the Cartesian product G1 ×G2 is defined to

be a graph on V1 × V2 with the adjacency relation:

(x1, y1) ∼ (x2, y2) ⇐⇒ (i)
x1 ∼ x2,
y1 = y2

or (ii)
x1 = x2,
y1 ∼ y2.

Theorem 3.3. If both G1 and G2 are of QE class, so is the Cartesian product G1 ×G2. Moreover,
QEC(G1 ×G2) = 0 whenever |V1| ≥ 2 and |V2| ≥ 2.

Proof. For i = 1, 2 let αi : Vi → Hi be a quadratic embedding. Define a map β : V1 × V2 →
H1 ⊕H2 by

β(x, y) = α1(x)⊕ α2(y), x ∈ V1, y ∈ V2 .

We then see that

∥β(x1, y1)− β(x2, y2)∥2 = ∥α1(x1)⊕ α2(y1)− α1(x2)⊕ α2(y2)∥2

= ∥(α1(x1)− α1(x2))⊕ (α2(y1)− α2(y2)∥2

= ∥α1(x1)− α1(x2)∥2 + ∥α2(y1)− α2(y2)∥2. (7)

Let d1 and d2 be the graph distances of G1 and G2, respectively. Since α1 and α2 are quadratic
embeddings, (7) becomes

∥β(x1, y1)− β(x2, y2)∥2 = d1(x1, x2) + d2(y1, y2). (8)

On the other hand, the graph distance d of G = G1 ×G2 satisfies

d((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2).

Hence (8) means that β is a quadratic embedding of G into H1 ⊕H2. Therefore G is of QE class
and QEC(G) ≤ 0.

In order to infer that QEC(G) = 0 it is sufficient to show that ⟨f,Df⟩ = 0 holds for some
f ∈ C0(V ) satisfying ⟨1, f⟩ = 0 and f ̸= 0. In fact, for i = 1, 2 choosing gi ∈ C0(Vi) such that
⟨1, gi⟩ = 0 and gi ̸= 0 (this is possible whenever |Vi| ≥ 2), we see easily that f(x, y) = g1(x)g2(y)
possesses the desired properties.

Example 3.4. Since C4
∼= K2 × K2 we have QEC(C4) = 0 by Theorem 3.3. That C4 is of QE

class follows also from Theorems 2.7 and 2.8.

3.3. Star product
Suppose that two graphs G1 = (V1, E1) and G2 = (V2, E2) are given with distinguished ver-

tices o1 ∈ V1 and o2 ∈ V2, respectively. The graph obtained by gluing vertices o1 and o2 is called
the star product or the vertex amalgamation, and is denoted by G1 ⋆ G2. It is convenient to write
the vertex set of G1 ⋆ G2 as

V = (V1\{o1}) ∪ (V2\{o2}) ∪ {o},
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where o corresponds to the glued vertices o1 and o2. Let di denote the graph distance of Gi for
i = 1, 2, and d the graph distance of G1 ⋆ G2. Then we have

d(x, y) =


d1(x, y), if x, y ∈ V1,

d1(x, o) + d2(o, y), if x ∈ V1 and y ∈ V2,

d2(x, o) + d1(o, y), if x ∈ V2 and y ∈ V1,

d2(x, y), if x, y ∈ V2.

Theorem 3.5. If both G1 and G2 are of QE class, so is the star product G1 ⋆ G2.

Proof. For i = 1, 2 let αi : Vi → Hi be a quadratic embedding. We may assume that αi(oi) = 0.
Define a map β : V → H1 ⊕H2 by

β(x) =

{
α1(x)⊕ 0, if x ∈ V1;

0⊕ α2(x), if x ∈ V2.

Note that β(o) = 0⊕ 0 follows from α1(o1) = α2(o2) = 0. We will show that

∥β(x)− β(y)∥2 = d(x, y), x, y ∈ V. (9)

In fact, if x, y ∈ V1, we have

∥β(x)− β(y)∥2 = ∥α1(x)− α1(y)∥2 = d1(x, y) = d(x, y).

Similarly, (9) is verified for x, y ∈ V2. For x ∈ V1 and y ∈ V2 we have

∥β(x)− β(y)∥2 = ∥α1(x)⊕ 0− 0⊕ α2(y)∥2 = ∥α1(x)∥2 + ∥α2(y)∥2

= ∥α1(x)− α1(o1)∥2 + ∥α2(y)− α2(o2)∥2

= d(x, o1) + d(y, o2) = d(x, y).

Thus, β is a quadratic embedding and G1 ⋆ G2 is of QE class.

A star product of G and K2
∼= P2 is called a segment concatenation of G. Since K2 is of QE

class, we have the following

Corollary 3.6. If G is a graph of QE class, so is any segment concatenation of G.

Corollary 3.7. Any tree is of QE class.

Remark 3.8. In some literatures, the star product of G1 and G2 is defined to be a graph on V1 × V2

equipped with the adjacency relation defined by

(x1, y1) ∼ (x2, y2) ⇐⇒ (i)
x1 ∼ x2,
y1 = y2 = o2 ,

or (ii)
x1 = x2 = o1,
y1 ∼ y2,

see e.g., Obata [19]. According to this definition the star product contains many isolated vertices.
The connected component containing (o1, o2) coincides with G1 ⋆ G2 defined at the beginning of
this subsection.
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3.4. Deleting edges from complete graphs
For a graph G = (V,E) and a subset E0 ⊂ E we define G\E0 = (V,E\E0), which is the graph

obtained from the original graph G by deleting edges in E0. We consider graphs obtained from the
complete graph Kn by deleting edges. The vertex set of Kn is taken to be V = {1, 2, . . . , n} and
f ∈ C(V ) is identified with a column vector [x1 · · · xn]

T ∈ Rn.
We start with the case of deleting edges which are mutually disjoint.

Theorem 3.9. Let r ≥ 1 and 2r ≤ n. The graph obtained from the complete graph Kn by deleting
r mutually disjoint edges, denoted by Kn\{e1, . . . , er}, is of QE class and

QEC(Kn\{e1}) = − 2

n
,

QEC(Kn\{e1, . . . , er}) = 0, r ≥ 2.

Proof. Without loss of generality we may assume that e1 = {1, 2}, e2 = {3, 4}, . . . , er = {2r −
1, 2r}. Then, under the conditions ∥f∥ = 1 and ⟨1, f⟩ = 0, we have

⟨f,Df⟩ = −∥f∥2 + 2x1x2 + 2x3x4 + · · ·+ 2x2r−1x2r .

of which the maximum subject to ∥f∥ = 1 and ⟨1, f⟩ = 0 is the QE constant of Kn\{e1, . . . , er}.
First for r = 1 an elementary argument (see Appendix No. 3) shows that

max {2x1x2 ; ∥f∥ = 1, ⟨1, f⟩ = 0} =
n− 2

n

and hence,

QEC(Kn\{e1}) = −1 +
n− 2

n
= − 2

n
.

For r ≥ 2 we apply Appendix No. 4 to obtain

QEC(Kn\{e1, . . . , er}) = −1 + 1 = 0.

In particular, Kn\{e1, . . . , er} is of QE class.

Example 3.10. Note that C4
∼= K4\{e1, e2}, where e1 and e2 are mutually disjoint edges. Then

QEC(C4) = 0 follows also from Theorem 3.9.

Let us consider the case of deleting two edges e1 and e2 which are connected. We write
Kn\P3 = Kn\{e1, e2} for convenience.

Theorem 3.11. Let n ≥ 4. We have

QEC(Kn\P3) =
n− 10

n+ 2 +
√
2(n− 1)(n− 2)

.

In particular, Kn\P3 is of QE class if and only if 4 ≤ n ≤ 10.
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Proof. Without loss of generality we may assume that e1 = {1, 2} and e2 = {1, 3}. Then, under
the conditions ∥f∥ = 1 and ⟨1, f⟩ = 0, we have

⟨f,Df⟩ = −∥f∥2 + 2x1x2 + 2x1x3 .

With the help of Appendix No. 5 we come to

QEC(Kn\P3) = −1 +
−2 +

√
2(n− 1)(n− 2)

n
,

from which the assertion follows immediately.

Finally, we consider the case of deleting edges of a clique, i.e., a subgraph isomorphic to a
complete graph. To be precise, for 2 ≤ r < n we denote by Kn\Kr the graph obtained from Kn

by deleting r(r − 1)/2 edges which constitute a complete graph on r vertices. Note that no vertex
is deleted.

Theorem 3.12. For 2 ≤ r < n we have

QEC(Kn\Kr) = r − 2− r(r − 1)

n
.

In particular, Kn\Kr is of QE class if and only if one of the following four cases occurs:

(i) r = 2 and n ≥ 3;
(ii) r = 3 and n = 4, 5, 6;

(iii) r = 4 and n = 5, 6;
(iv) r ≥ 5 and n = r + 1.

Proof. Let {1, 2, . . . , r} be the set of vertices of Kr. Then, under the conditions ∥f∥ = 1 and
⟨1, f⟩ = 0, we have

⟨f,Df⟩ = −∥f∥2 +
∑

1≤i<j≤r

2xixj ,

of which the maximum subject to ∥f∥ = 1 and ⟨1, f⟩ = 0 is the QE constant of Kn\Kr. With the
help of Appendix No. 3 we come to

QEC(Kn\Kr) = −1 +
(r − 1)(n− r)

n
= r − 2− r(r − 1)

n
,

as desired. The rest of the assertion follows by a simple algebra.

Remark 3.13. Since the tri-partite graph K1,1,n is obtained as Kn+2\Kn, Theorem 2.9 is a conse-
quence of Theorem 3.12.
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4. Calculating QE constants of finite graphs

4.1. Method of Lagrange multipliers
Let G = (V,E) be a graph on V = {1, 2, . . . , n} with n ≥ 3, and D the distance matrix of G

as usual. We identify f ∈ C(V ) with a column vector [x1 . . . xn]
T ∈ Rn. By definition the QE

constant is the maximum of ⟨f,Df⟩ subject to

∥f∥2 = ⟨f, f⟩ =
n∑

i=1

x2
i = 1, (10)

⟨1, f⟩ =
n∑

i=1

xi = 0. (11)

We set
F (f, λ, µ) = ⟨f,Df⟩ − λ(⟨f, f⟩ − 1)− µ⟨1, f⟩. (12)

By differentiation we obtain

∂F

∂xi

= 2⟨ei, Df⟩ − 2λ⟨ei, f⟩ − µ⟨1, ei⟩ = ⟨ei, 2(D − λ)f − µ1⟩,

where {ei} is the canonical basis of Rn. Hence ∂F/∂xi = 0 for all 1 ≤ i ≤ n is equivalent to
2(D − λ)f − µ1 = 0, that is,

(D − λ)f =
µ

2
1. (13)

Let S(D) be the set of (f = [xi], λ, µ) satisfying (10), (11) and (13).
Since relations (10) and (11) define a sphere of n−2 dimension, which is smooth and compact,

the maximum of ⟨f,Df⟩ is attained at a certain f appearing in S(D). On the other hand, for
(f, λ, µ) ∈ S(D) we have

⟨f,Df⟩ = ⟨f, λf +
µ

2
1⟩ = λ⟨f, f⟩+ µ

2
⟨f,1⟩ = λ. (14)

Consequently, the maximum to be found coincides with the maximum of λ appearing in S(D).
The above argument is summarized in the following

Proposition 4.1. Let D be the distance matrix of a graph G on n vertices with n ≥ 3. Let S(D)
be the set of (f = [xi], λ, µ) satisfying (10), (11) and (13). Then QEC(G) coincides with the
maximum of λ appearing in S(D).

We go back to equation (13). Suppose first that λ ̸∈ ev(D), or equivalently det(D − λ) ̸= 0.
Then from (13) we obtain

f =
µ

2
(D − λ)−11. (15)

Moreover, (10) and (11) become

µ2

4
∥(D − λ)−11∥2 = 1, (16)

µ

2
⟨1, (D − λ)−11⟩ = 0, (17)
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respectively. Note that µ ̸= 0 by (16). After solving the equation

⟨1, (D − λ)−11⟩ = 0, (18)

we decide µ by (16) and then f by (15). Recall that

(D − λ)−1 =
1

det(D − λ)
[pij(λ)], (19)

where pij(λ) is the (j, i)-cofactor of D − λ, i.e., (−1)i+j times the determinant of the submatrix
obtained by deleting jth row and ith column of D−λ. We then see that equation (18) is equivalent
to an algebraic equation:

P (λ) = 0,

where

P (λ) =
n∑

i,j=1

pij(λ).

Since pij(λ) is a polynomial of degree at most n− 1, so is P (λ). Taking in mind that the zeros of
P (λ) may contain an eigenvalue of D, we set

Λ1(D) = {λ ∈ R ; P (λ) = 0}\ev(D).

Then, for each λ ∈ Λ1(D) we may construct a solution (f, λ, µ) ∈ S(D).
Let Λ2(D) denote the set of eigenvalues λ ∈ ev(D) which generate solutions (f, λ, µ) ∈ S(D).

Then Proposition 4.1 may be rephrased as follows.

Proposition 4.2. Let D be the distance matrix of a graph G on n vertices with n ≥ 3. Let Λ1(D)
and Λ2(D) be as above. Then,

QEC(G) = maxΛ1(D) ∪ Λ2(D). (20)

Formula (20) looks concise, however, involves many routine calculations and further improve-
ment is necessary for application. The situation is suggested by the examples below.

Example 4.3. Consider K3 ⋆ K2 with distance matrix

D =


0 1 2 2
1 0 1 1
2 1 0 1
2 1 1 0

 .

First we have
det(λ−D) = (λ+ 1)(λ3 − λ2 − 11λ− 7),

from which we see that D has four distinct real eigenvalues. A direct calculation shows that there
is no solution (f, λ, µ) ∈ S corresponding to an eigenvalue satisfying λ3 − λ2 − 11λ − 7 = 0.
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While, for λ = −1 ∈ ev(D) there is a solution in S. Thus we have Λ2(D) = {−1}. On the other
hand, by routine calculation we obtain

P (λ) = 2(λ+ 1)(2λ2 + 6λ+ 3)

and

Λ1(D) = {P (λ) = 0}\ev(D) = {2λ2 + 6λ+ 3 = 0} =

{
−3±

√
3

2

}
.

Consequently,

QEC(G) = max

{
−1,

−3±
√
3

2

}
=

−3 +
√
3

2
.

Example 4.4. Consider the complete graph Kn with n ≥ 3. Then, for the distance matrix D we
have

det(λ−D) = (λ+ 1)n−1(λ− (n− 1))

and Λ2(D) = {−1} by direct verification. On the other hand, we obtain

P (λ) = n(λ+ 1)n−1

and Λ1(D) = ∅. Consequently,

QEC(Kn) = max{−1} = −1.

4.2. Use of spectra of distance matrices
For convenience we say that a finite graph G is of (CRS) if the distance matrix D = [d(x, y)]

admits a constant row sum, i.e.,
δ =

∑
y∈V

d(x, y) (21)

is a constant independent of x ∈ V . In order to avoid a trivial case, we consider a finite graph on
two or more vertices.

Lemma 4.5. Let G = (V,E) be a finite graph with |V | ≥ 2, and D the distance matrix. The
following two conditions are equivalent:

(i) G is of (CRS);
(ii) 1 ∈ C(V ) is an eigenvector of D.

In that case, D1 = δ1 with the constant δ given by (21).

Following Brouwer–Cohen–Neumaier [4, Section 4.1], a connected graph G = (V,E) is called
distance degree regular if for any k ≥ 0, the number |{y ∈ V ; d(x, y) = k}| is independent of
x ∈ V . Apparently, a distance degree regular graph is of (CRS). Note that a distance-regular graph
is distance degree regular, and that a distance degree regular graph is regular.
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Lemma 4.6. If the distance matrix D admits a constant row sum δ, then ev(D) ⊂ [−δ, δ]. More-
over, δ ∈ ev(D) and it is a simple eigenvalue.

Proof. In general, every eigenvalue of a complex matrix A = [aij] lies in the centered disk with
radius maxi

∑
j |aij|. Then ev(D) ⊂ [−δ, δ] follows from the fact that every eigenvalue of the

distance matrix D is real and the assumption that δ in (21) is independent of x ∈ V . Moreover,
from Lemma 4.5 we see that δ ∈ ev(D), that is, δ is the largest eigenvalue of D. Since D is an
irreducible matrix, it follows from the Perron-Frobenius theorem (see e.g., Bapat [3, Chapter 6],
Horn–Johnson [10, Chapter 8]) that δ is a simple eigenvalue.

Theorem 4.7. Let G = (V,E) be a graph of (CRS). Then QEC(G) coincides with the second
largest eigenvalue of D. In particular, if the second largest eigenvalue of D is non-positive, the
graph G is of QE class.

Proof. By virtue of Lemma 4.6 we may arrange the eigenvalues of D as follows:

λ1 ≤ λ2 ≤ · · · ≤ λn−1 < λn = δ.

Let {fk} be an orthonormal basis of C(V ) such that Dfk = λkfk and fn = 1/∥1∥. Any f ∈ C(V )
with ⟨1, f⟩ = 0 admits an expression:

f =
n−1∑
k=1

⟨fk, f⟩fk.

Then we have

⟨f,Df⟩ =
n−1∑
k=1

λk⟨fk, f⟩2 ≤ λn−1

n−1∑
k=1

⟨fk, f⟩2 = λn−1∥f∥2.

Since the equality holds for f = fn−1, the maximum of ⟨f,Df⟩ subject to ∥f∥ = 1 and ⟨1, f⟩ = 0
is λn−1. Consequently, QEC(G) = λn−1.

It is noted that λn−1 ≤ QEC(G) ≤ λn holds in general. For more on distance spectra, see e.g.,
an excellent survey by Aouchiche–Hansen [1].

Example 4.8. The complete graph Kn (n ≥ 2) is distance-regular. The eigenvalues of its distance
matrix D are n−1 with multiplicity 1 and −1 with multiplicity n−1. It then follows from Theorem
4.7 that QEC(Kn) = −1.

Example 4.9. The cycle Cn (n ≥ 3) is distance-regular. The distance matrix D of Cn is a circular
matrix and its eigenvalues are easily calculated, see e.g., Aouchiche–Hansen [1], Graovac–Jashari–
Strunje [6]. In fact, for C2n+1 with n ≥ 1 the eigenvalues of D are

λ0 = n(n+ 1), λk = − 1

4 cos2
kπ

2n+ 1

, k = 1, 2, . . . , n,
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where λ0 is multiplicity free and λk appears with multiplicity two for all k = 1, 2, . . . , n. Hence
the second largest eigenvalues of D is found in {λ1, . . . , λn} and we come to

QEC(C2n+1) = − 1

4 cos2
π

2n+ 1

.

In particular, C2n+1 is of QE class. Similarly, for C2n with n ≥ 2 the eigenvalues of D are

λ0 = n2, λ2 = λ4 = · · · = λ2n−2 = 0, λk = − 1

sin2 kπ

2n

, k = 1, 3, . . . , 2n− 1.

Hence the second largest eigenvalues of D is 0 and QEC(C2n) = 0. In particular, C2n is of QE
class too.

Now we give examples of graphs which are not of (CRS).

Proposition 4.10. For i = 1, 2 let Gi = (Vi, Ei) be a finite graph with |Vi| ≥ 2. Then G1 ⋆ G2 is
not of (CRS).

Proof. Let m,n be integers such that |V1| = m + 1 and |V2| = n + 1. Without loss of generality
we may assume that m ≤ n. We set

V1 = {o, x1, x2, . . . , xm}, V2 = {o, y1, y2, . . . , yn},

where o is the common contact point of G1 ⋆ G2. Then

V = {o, x1, . . . , xm, y1, . . . , yn}

becomes the set of vertices of G1 ⋆ G2. Let D1, D2 and D be the distance matrices of G1, G2 and
G1 ∗G2, respectively. Now we compare two row sums of D given by

S1 =
∑
z∈V

(D)oz =
m∑
i=1

(D)oxi
+

n∑
j=1

(D)oyj , (22)

S2 =
∑
z∈V

(D)x1z = (D)x1o +
m∑
i=1

(D)x1xi
+

n∑
j=1

(D)x1yj . (23)

Since xi ∈ V1 and yj ∈ V2 we have

S1 =
m∑
i=1

d1(o, xi) +
n∑

j=1

d2(o, yj).

On the other hand, since (D)x1yj = d1(x1, o) + d2(o, yj) we have

S2 = d1(x1, o) +
m∑
i=1

d1(x1, xi) +
n∑

j=1

(d1(x1, o) + d2(o, yj))

= d1(x1, o) +
m∑
i=1

d1(x1, xi) + nd1(x1, o) +
n∑

j=1

d2(o, yj).
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Then

S2 − S1 = nd1(x1, o) +
m∑
i=2

(d1(x1, xi)− d1(o, xi)).

Since d1(o, xi) ≤ d1(o, x1) + d1(x1, xi) by the triangle inequality, we have

S2 − S1 ≥ nd1(x1, o)−
m∑
i=2

d1(o, x1) = (n−m+ 1)d1(o, x1) > 0.

Hence S1 < S2, which means that D does not admit a constant row sum.

Proposition 4.11. The complete bipartite graph Km,n is of (CRS) if and only if m = n.

Proposition 4.12. The graphs of (CRS) on n vertices with 1 ≤ n ≤ 5 are Kn and Cn.

The proofs of the above results are straightforward and omitted.

5. The graphs of QE class on n vertices with n ≤ 5

5.1. Graphs on n = 2, 3, 4 vertices
Theorem 5.1. Every graph on n vertices with n = 2, 3, 4 is of QE class.

Proof. For n = 2 we have just one graph, which is K2
∼= P2. For n = 3 we have P3 and K3

∼= C3.
As is readily shown in Subsection 2.4, they are of QE class. For n = 4, the graphs No. 1–3 are
the star products of smaller graphs of QE class, so they are also of QE class (Theorem 3.5). The
graphs No. 4 (C4) and No. 6 (K4) are readily known to be of QE class. The graph No. 5 (K4\{e})
is of QE class by Theorem 3.9.

The QE constants are shown in the following table, where we employ the list of finite connected
graphs by McKay [16]. Calculation is routine and omitted, see also Subsection 5.3.

n No. graphs edges QE comments QE constants

2 1 1 QE K2
∼= P2 −1

3 1 2 QE P3 −2

3

2 3 QE K3
∼= C3 −1
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n No. graphs edges QE comments QE constants

4 1 3 QE K1,3 −1

2

2 3 QE P4 − 2

2 +
√
2

3 4 QE star − 3

3 +
√
3

4 4 QE C4
∼= K2 ×K2 0

5 5 QE K4\{e} −1

2

6 6 QE K4 −1

5.2. Graphs on n = 5 vertices
There are 21 graphs. It is an easy task to list star products of smaller graphs of QE class. They

are numbered by No. 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, and 15. Next, we pickup graphs judged by
means of general criteria. No. 8 (C5) and No. 21 (K5) are of QE class. No. 14 (K5\K3) and No. 18
(K5\P3) are of QE class by Theorems 3.12 and 3.11, respectively. No. 19 (K5\{e1, e2}) and No. 20
(K5\{e}) are of QE class by Theorems 3.9. We see from Theorem 2.8 that No. 10 (K2,3) is not of
QE class. The rest are No. 13, 16, and 17, for which the QE constants are calculated directly from
their distance matrices.

No. 13 (K5\P5) Under ∥f∥ = 1 and ⟨1, f⟩ = 0, we have

⟨f,Df⟩ = −∥f∥2 + 2x1x4 + 2x1x5 + 2x2x5 + 2x3x4 .

Then, using x1 = −x2 − x3 − x4 − x5, we obtain

2x1x4 + 2x1x5 + 2x2x5 + 2x3x4 = −2(x4 + x5)
2 − 2x2x4 − 2x3x5

≤ −2(x4 + x5)
2 + (x2

2 + x2
4) + (x2

3 + x2
5) = −2(x4 + x5)

2 + 1− x2
1.
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Hence, under the conditions ∥f∥ = 1 and ⟨1, f⟩ = 0, we have 2x1x4+2x1x5+2x2x5+2x3x4 ≤ 1
and the equality holds for

x1 = 0, x2 = x5 = ±1

2
. x3 = x4 = ∓1

2
.

Consequently, QEC(K5\P4) = −1 + 1 = 0.

No. 16 (K5\P4) We need to find the maximum of

⟨f,Df⟩ = −∥f∥2 + 2x2x4 + 2x2x5 + 2x3x5

subject to ∥f∥ = 1 and ⟨1, f⟩ = 0. Applying the method of Lagrange multipliers, we obtain

max {2x2x4 + 2x2x5 + 2x3x5 ; ∥f∥ = 1, ⟨1, f⟩ = 0} =

√
5− 1

2
.

Then,

QEC(K5\P4) = −1 +

√
5− 1

2
= − 2

3 +
√
5
.

No. 17 (K5\{P3, e}) We need to find the maximum of

⟨f,Df⟩ = −∥f∥2 + 2x1x4 + 2x1x5 + 2x2x3

subject to ∥f∥ = 1 and ⟨1, f⟩ = 0. After a natural guess, setting

x1 =
2√
14

, x2 = x3 = − 2√
14

, x4 = x5 =
1√
14

,

we obtain
⟨f,Df⟩ = 1

7
> 0.

Therefore, this graph is not of QE class. The QE constant is calculated with the help of the method
of Lagrange multipliers:

QEC(K5\{P3, e}) =
4

11 +
√
161

.

Theorem 5.2. Among 21 graphs on 5 vertices there are two graphs which are not of QE class.
They are No. 10 and 17.

The above statement should be a folklore. In fact, the graph No. 10 is known as Bożejko’s
obstruction, see Hora–Obata [9, Chapter 2].

The following table summarizes the results. The QE constants are found by using the Schwartz
inequality, the method of Lagrange multipliers and some elementary consideration, see also Sub-
section 5.3.
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n No. graphs edges QE comments QE constants

5 1 4 QE K1,4 −2

5

2 4 QE star −2 + 2λ∗
1

≈ −0.4796

3 4 QE P5 − 4

5 +
√
5

4 5 QE star − 12

15 +
√
105

5 5 QE star − 2

2 +
√
2

6 5 QE star 0

7 5 QE star − 6

6 +
√
21

8 5 QE C5 − 2

3 +
√
5

9 6 QE star −1 + λ∗
2

≈ −0.4463

10 6 NO K2,3
2

5
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n No. graphs edges QE comments QE constants

5 11 6 QE star −3

5

12 6 QE star − 4

5 +
√
5

13 6 QE K5\P5 0

14 7 QE K5\K3 −1

5

15 7 QE star − 4

4 +
√
6

16 7 QE K5\P4 − 2

3 +
√
5

17 7 NO K5\{P3, e}
4

11 +
√
161

18 8 QE K5\P3 − 5

7 + 2
√
6

19 8 QE K5\{e1, e2} 0

20 9 QE K5\{e} −2

5
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n No. graphs edges QE comments QE constants

5 21 10 QE K5 −1

Note: (1) λ∗
1 is the maximal real root of 5λ3 − 2λ2 − 4λ+ 2 = 0.

(2) λ∗
2 is the maximal real root of 5λ3 + 3λ2 − 5λ+ 1 = 0.

5.3. Appendix
In practical calculation of the QE constant of a graph, we need to find the maximum of a certain

quadratic function φ = φ(x1, x2, . . . , xn), f = (x1, x2, . . . , xn), subject to

⟨f, f⟩ = ∥f∥2 = x2
1 + x2

2 + · · ·+ x2
n = 1,

⟨1, f⟩ = x1 + x2 + · · ·+ xn = 0.

We record some results used in the previous arguments for convenience. For the proofs we only
need to apply the Schwartz inequality and the method of Lagrange multipliers.

No. φ(x1, . . . , xn) parameters condmaxφ

1

(
r∑

i=1

xi

)2

1 ≤ r ≤ n
r(n− r)

n

2
r∑

i=1

x2
i 2 ≤ r ≤ n 1

3
∑

1≤i<j≤r

2xixj 2 ≤ r < n
(r − 1)(n− r)

n

4
r∑

i=1

2x2i−1x2i 2 ≤ r ≤ n

2
1

5 2x1x2 + 2x1x3 n ≥ 3
−2 +

√
2(n− 1)(n− 2)

n

6 2x2
1 − 2x2x3 n ≥ 3

n+
√
9n2 − 24n

2n

7 2x2
1 + 2x1x2 + 2x2

2 n ≥ 3 3− 6

n

58



www.ejgta.org

Distance matrices and quadratic embedding of graphs | N. Obata and A. Y. Zakiyyah

Acknowledgements

NO is supported by JSPS KAKENHI 16H03939 and by JSPS Open Partnership Joint Research
Project “Extremal graph theory, algebraic graph theory and mathematical approach to network
science” (2017–18). AYZ is grateful for kind hospitality at the Graduate School of Information
Sciences, Tohoku University and for the support by the Ministry of Research, Technology and
Higher Education of the Republic of Indonesia through Sandwich-Like Program.

References

[1] M. Aouchiche and P. Hansen, Distance spectra of graphs: a survey, Linear Algebra Appl. 458
(2014), 301–386.

[2] R. Balaji and R.B. Bapat, On Euclidean distance matrices, Linear Algebra Appl. 424 (2007),
108–117.

[3] R.B. Bapat, Graphs and Matrices, Springer, Hindustan Book Agency, New Delhi, 2010.

[4] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag,
Berlin, 1989.
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