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Abstract

Let G be a graph and k be a positive integer. A vertex set D is called a k-distance dominating
set of G if each vertex of G is either in D or at a maximum distance k from some vertex of D.
k-distance domination number of G is the minimum cardinality among all k-distance dominating
sets of G. In this note we give upper bounds on the k-distance domination number of a connected
bipartite graph, and improve some results have been given like Theorems 2.1 and 2.7 in [Tian and
Xu, A note on distance domination of graphs, Australasian Journal of Combinatorics, 43 (2009),
181-190].
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1. Introduction

We refer the reader to [9] for terminology and notation on graph theory not given here. In a
simple graph G with vertex set V (G) = V and edge set E(G) = E, the order and the size of G
is denoted by n = |V (G)| and m = |E(G)|, respectively. The open neighborhood of a vertex v
is defined as N(v) := {u ∈ V : uv ∈ E}, and the set N [v] = N(v) ∪ {v} is called the closed
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neighborhood of v. Similarly, the set N(S) = ∪v∈SN(v) is called the open neighborhood of a
set S ⊆ V and the set N [S] = N(S) ∪ S is the closed neighborhood of S. For a vertex v ∈ V ,
the degree of v is degG(v) = deg(v) = |N(v)|. δ = δ(G) and ∆ = ∆(G) denote the minimum
degree and maximum degree, respectively, among all vertices of G. For a vertex v ∈ V , the set
Nk(v) = {u : d(u, v) ≤ k and u 6= v} is called the open k-neighborhood of v. In the other words,
Nk(v) is the set of all vertices in within distance k of v. The set Nk[v] = Nk(v)∪ {v} is said to be
the closed k-neighborhood of v.
A set D ⊆ V is a dominating set if every vertex in V − D has a neighbor in D. The minimum
cardinality among all dominating sets of G is called the domination number of G and is denoted
by γ(G). A vertex set K ⊆ V is a k-distance dominating set if every vertex in V − K is within
distance k of some vertex in K. In the other words, if K ⊆ V is a k-distance dominating set of
G, then Nk[K] = V . The k-distance domination number of G, γk(G), is the minimum cardinality
among all k-distance dominating sets in G, for further see, [3, 4, 5, 8]. The kth power graph
of G is a new graph with V (Gk) = V (G) and two vertices x, y ∈ V (Gk) are adjacent in Gk

if dG(x, y) ≤ k. Note that γk(G) equals to γ(Gk), where Gk is the kth power graph of G, see
[2, 4, 6, 7].

2. Previous known results

Tian and Xu [7] studied k-distance domination number in graphs. They have proved the fol-
lowing results.

Theorem 2.1 (Tian and Xu [7], Theorem 2.1). Let V = {1, 2, · · · , n} be the vertex set of a

connected graph G. Then γk(G) ≤ min
(p1,p2,··· ,pn)∈(0,1)n

n∑
i=1

(
pi + (1 − pi) Π

j∈Nk(i)
(1 − pj)

)
where pi ∈

(0, 1) is the probability of existence of the vertex i in a random subset of V .

Then they considered connected bipartite graph.

Lemma 2.1 (Tian and Xu [7], Lemma 2.5). Let G be a connected bipartite graph with bipartition
V1 and V2, where |Vj| = nj and δj = min{deg(v) : v ∈ Vj}, for j = 1, 2.
For any vertex v ∈ V1 with Nk[v] 6= V ,

|Nk(v) ∩ V1| ≥ (dk/6e − 1)(δ2 + 1), (1)

|Nk(v) ∩ V2| ≥ dk/6e(δ1 + 1)− 1. (2)

Similarly, for any vertex v ∈ V2 with Nk[v] 6= V ,

|Nk(v) ∩ V1| ≥ dk/6e(δ2 + 1)− 1, (3)

|Nk(v) ∩ V2| ≥ (dk/6e − 1)(δ1 + 1). (4)

Let G be a connected bipartite graph. It is said to be perfect if δ1δ2 > 1, n2[M(δ2 + 1)− 1] >
n1[(M − 1)(δ1 + 1) + 1] and n1[M(δ1 + 1)− 1] > n2[(M − 1)(δ2 + 1) + 1], where M = dk/6e.
A simple calculation shows that a connected bipartite graph is perfect if and only if n1 − n2δ2 <
M [n1(δ1 + 1)−n2(δ2 + 1)] < n1δ1−n2. As a consequence of Lemma 2.1 and Theorem 2.1, Tian
and Xu obtained the following.
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Theorem 2.2 (Tian and Xu [7], Theorem 2.7). Let G be a perfect bipartite graph and

0 < p1 =
[(M − 1)(δ1 + 1) + 1] lnu− [M(δ1 + 1)− 1] ln v

(2M − 1)(δ1δ2 − 1)
< 1

0 < p2 =
[(M − 1)(δ2 + 1) + 1] ln v − [M(δ2 + 1)− 1] lnu

(2M − 1)(δ1δ2 − 1)
< 1,

where u = n2[M(δ2+1)−1]−n1[(M−1)(δ1+1)+1]
n1(2M−1)(δ1δ2−1) and v = n1[M(δ1+1)−1]−n2[(M−1)(δ2+1)+1]

n2(2M−1)(δ1δ2−1) . Then

γk(G) ≤ h(p1, p2) ≤ min
0<p<1

h(p, p) ≤ n(1 + ln[(2M − 1)(δ + 1)])

(2M − 1)(δ + 1)
,

where M = dk/6e.

In this manuscript we improve Theorem 2.2 via improving the Lemma 2.1.

3. Main results

In order to improve Theorem 2.2, we first improve Lemma 2.1.

Lemma 3.1. Let G be a connected bipartite graph with bipartition V1 and V2, where |Vj| = nj
and δj = min{deg(v) : v ∈ Vj}, for j = 1, 2. Then
(i) For any vertex v ∈ V1 with Nk[v] 6= V ,

|Nk(v) ∩ V1| ≥ d(k − 1)/4emax{2, δ2}+ 2bk/4c − bk/2c, (5)

|Nk(v) ∩ V2| ≥ δ1 + (dk/4e − 1) max{2, δ1}+ b(k − 1)/2c − 2b(k − 1)/4c. (6)

Furthermore, (5) and (6), improve (1) and (2), repectively.
(ii) For any vertex v ∈ V2 with Nk[v] 6= V ,

|Nk(v) ∩ V1| ≥ dk/4emax{2, δ2}+ b(k − 1)/2c − 2b(k − 1)/4c, (7)

|Nk(v) ∩ V2| ≥ d(k − 1)/4emax{2, δ1}+ 2bk/4c − bk/2c. (8)

Furthermore, (7) and (8) improve (3) and (4), respectively.

Proof. Let G be a connected bipartite graph with bipartition V1 and V2, where |Vj| = nj and
δj = min{deg(v) : v ∈ Vj}, for j = 1, 2. For any vertex v and any integer l with 1 ≤ l ≤ k,
let Xl(v) = {u ∈ V |d(v, u) = l}. It is obvious that Nk(v) = X1(v) ∪ X2(v) ∪ · · · ∪ Xk(v).
Furthermore, X1(v), X2(v),...,and . . . , Xk(v) are pairly disjoint.
(i) Let v ∈ V1 be a vertex with Nk[v] 6= V . Observe that X1(v) ∪X3(v) ∪ · · · ∪X2b(k+1)/2c−1(v)
⊆ V2, X2(v) ∪X4(v) ∪ · · · ∪X2bk/2c(v) ⊆ V1, and

Nk(v) ∩ V1 =

bk/2c⋃
m=1

X2m(v), Nk(v) ∩ V2 =

b(k+1)/2c⋃
m=1

X2m−1(v).
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Thus, |Nk(v) ∩ V1| =
bk/2c∑
m=1

|X2m(v)| and |Nk(v) ∩ V2| =
b(k+1)/2c∑
m=1

|X2m−1(v)|. Since Nk[v] 6= V ,

there exists a vertex u such that d(v, u) > k. Therefore, there exists a path, P := vx1x2 . . . u of
length of at least k + 1. For l = 1, 2, · · · , k, Xl(v) 6= ∅, because xl ∈ Xl(v). Moreover, if l is
odd, then deg(xl) ≥ max{2, δ2}, because xl ∈ V2; while if l is even, then deg(xl) ≥ max{2, δ1},
because xl ∈ V1. We continue with two following claims.
Claim 1. |X2(v)| ≥ max{2, δ2} − 1 ≥ δ2 − 1.
To see this, note that since x1 ∈ X1(v) ⊆ V2, we have |X2(v)| = deg(x1) − 1. Since deg(x1) ≥
max{2, δ1}, we find that |X2(v)| ≥ max{2, δ2} − 1, as desired.
Claim 2. For 2 ≤ l ≤ k − 1, |Xl−1(v)|+ |Xl+1(v)| ≥ deg(xl).
To see this, note that for 2 ≤ l ≤ k − 1, we have N1(xl) = N(xl) ⊆ Xl−1(v) ∪ Xl+1(v), since
xl ∈ Xl(v).

By Claim 2, |X4m(v)| + |X4m+2(v)| ≥ deg(x4m+1) for every m = 1, 2, ..., b bk/2c−1
2
c. To

compute |Nk(v) ∩ V1|, we discuss on bk/2c−1
2

which may be an integer or not.
First we assume that bk/2c−1

2
is an integer. Hence,

|Nk(v) ∩ V1| =
bk/2c∑
m=1

|X2m(v)| = |X2(v)|+
bk/2c∑
m=2

|X2m(v)|

= |X2(v)|+
(bk/2c−1)/2∑

m′=1

(|X4m′(v)|+ |X4m′+2(v)|)

≥ max{2, δ2} − 1 +

(bk/2c−1)/2∑
m′=1

max{2, δ2} (by Claims 1 and 2).

Thus, |Nk(v)∩V1| ≥ (bk/2c+ 1) max{2, δ2}/2− 1 and a simple calculation shows that (bk/2c+
1) max{2, δ2}/2− 1 = d(k − 1)/4emax{2, δ2}+ 2bk/4c − bk/2c, as desired.

Next we assume that bk/2c−1
2

is not an integer. Hence,

|Nk(v) ∩ V1| =
bk/2c∑
m=1

|X2m(v)| = |X2(v)|+
bk/2c−1∑
m=2

|X2m(v)|+ |X2bk/2c|

= |X2(v)|+
(bk/2c−2)/2∑

m′=1

(|X4m′(v)|+ |X4m′+2(v)|) + |X2bk/2c|

≥ max{2, δ2} − 1 +

(bk/2c−2)/2∑
m′=1

max{2, δ2}+ 1 (by Claims 1 and 2).

Therefore, we have |Nk(v) ∩ V1| ≥ bk/2cmax{2, δ2}/2 and a simple calculation shows that
bk/2cmax{2, δ2}/2 = d(k − 1)/4eδ2 + 2bk/4c − bk/2c, as desired.

Consequently, inequality (5) holds. We next prove inequality (6). Since deg(v) ≥ δ1 and
N(v) = X1(v) ⊆ V2, we find that |X1(v)| ≥ δ1.
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From Claim 2, we can easily see that |X4m−1(v)|+ |X4m+1(v)| ≥ deg(x4m) ≥ max{2, δ1} for
every m = 1, 2, ..., bk−1

4
c. We discuss on b(k+1)/2c

2
which may be an integer or not.

First we assume that b(k+1)/2c
2

is an integer. Hence,

|Nk(v) ∩ V2| =
b(k+1)/2c∑
m=1

|X2m−1(v)| = |X1(v)|+
b(k+1)/2c∑
m=2

|X2m−1(v)|

= |X1(v)|+
b(k+1)/2c/2−1∑

m′=1

(|X4m′−1(v)|+ |X4m′+1(v)|) + |X2b(k+1)/2c−1(v)|

≥ δ1 +

b(k+1)/4c−1∑
m′=1

max{2, δ1}+ 1 (by Claim 2).

Thus, |Nk(v)∩V2| ≥ δ1 + (b(k+ 1)/4c− 1) max{2, δ1}+ 1. Now a simple calculation shows that
δ1+(b(k+1)/4c−1) max{2, δ1}+1 = δ1+(dk/4e−1) max{2, δ1}+b(k−1)/2c−2b(k−1)/4c
as desired.

Next we assume that b(k+1)/2c
2

is not an integer. Hence,

|Nk(v) ∩ V2| =
b(k+1)/2c∑
m=1

|X2m−1(v)| = |X1(v)|+
b(k+1)/2c∑
m=2

|X2m−1(v)|

= |X1(v)|+
(b(k+1)/2c−1)/2∑

m′=1

(|X4m′−1(v)|+ |X4m′+1(v)|)

≥ δ1 +

b(k−1)/4c∑
m′=1

max{2, δ1} (by Claim 2).

Thus, |Nk(v) ∩ V2| ≥ δ1 + b(k − 1)/4cmax{2, δ1}. Now a simple calculation shows that

δ1 + b(k − 1)/4cmax{2, δ1} = δ1 + (dk/4e − 1) max{2, δ1}+ b(k − 1)/2c − 2b(k − 1)/4c

as desired.
We next show that inequality 5 is an improvement of inequality 1. We will show that:

dk − 1

4
emax{2, δ2}+ 2bk

4
c − bk

2
c ≥ (dk

6
e − 1)(δ2 + 1)

It is obvious that if δ2 = 1, then the left side of the above inequality is 2dk−1
4
e+ 2bk

4
c−bk

2
c = bk

2
c

and the right side is 2(dk
6
e − 1), and clearly 2dk−1

4
e+ 2bk

4
c − bk

2
c = bk

2
c ≥ 2(dk

6
e − 1) for k ≥ 1.

Thus assume that δ2 ≥ 2. We show that

(dk − 1

4
e − dk

6
e+ 1)δ2 ≥ d

k

6
e − 1− 2bk

4
c+ bk

2
c
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for k ≥ 1. Let L = (dk−1
4
e − dk

6
e + 1)δ2 and R = dk

6
e − 1 − 2bk

4
c + bk

2
c. Now, we show that

L ≥ R. Let k = 12p+ q, where 1 ≤ q ≤ 12. Then

L = (dk − 1

4
e − dk

6
e+ 1)δ2 = pδ2 + (dq − 1

4
e − dq

6
e+ 1)δ2.

R = dk
6
e − 1− 2bk

4
c+ bk

2
c = 2p+ dq

6
e − 1− 2bq

4
c+ bq

2
c.

Since δ2 ≥ 2, we have pδ2 ≥ 2p. So we need to show that (d q−1
4
e−d q

6
e+1)δ2 ≥ d q6e−1−2b q

4
c+

b q
2
c. Since 1 ≤ q ≤ 12, we show this by Table 1.

q 1 2 3 4 5 6 7 8 9 10 11 12
(d q−1

4
e − d q

6
e+ 1)δ2. 0 δ2 δ2 δ2 δ2 2δ2 δ2 δ2 δ2 2δ2 2δ2 2δ2

d q
6
e − 1− 2b q

4
c+ b q

2
c 0 1 1 0 0 1 2 1 1 2 2 1

Table 1.

Thus, inequality (5) is an improvement of inequality (1). Next, we show that inequality (6) is an
improvement of inequality (2). We will show that :

δ1 + (dk/4e − 1) max{2, δ1}+ b(k − 1)/2c − 2b(k − 1)/4c ≥ dk/6e(δ1 + 1)− 1

If δ1 = 1, then the above inequality becomes 1 + 2(dk/4e − 1) + b(k − 1)/2c − 2b(k − 1)/4c =
dk/2e ≥ 2dk

6
e − 1 which is valid for any k ≥ 1. Thus we assume that δ1 ≥ 2. It is sufficient to

show that
(dk

4
e − dk

6
e)δ1 ≥ d

k

6
e − 1− bk − 1

2
c+ 2bk − 1

4
c

for k ≥ 1. Let L = (dk
4
e − dk

6
e)δ1 and R = dk

6
e − 1 − bk−1

2
c + 2bk−1

4
c. Thus, we need to show

that L ≥ R. Let k = 12p+ q, where 1 ≤ q ≤ 12. Hence,

L = (dk
4
e − dk

6
e)δ1 = pδ1 + (dq

4
e − dq

6
e)δ1.

R = dk
6
e − 1− bk − 1

2
c+ 2bk − 1

4
c = 2p+ dq

6
e − 1− bq − 1

2
c+ 2bq − 1

4
c.

q 1 2 3 4 5 6 7 8 9 10 11 12
(d q

4
e − d q

6
e)δ1 0 0 0 0 δ1 δ1 0 0 δ1 δ1 δ1 δ1

d q
6
e − 1− b q−1

2
c+ 2b q−1

4
c 0 0 -1 -1 0 0 0 0 1 1 0 0

Table 2.

Since δ1 ≥ 2, we have pδ1 ≥ 2p. Therefore, it is sufficient to show that (d q
4
e − d q

6
e)δ1 ≥

d q
6
e − 1− b q−1

2
c + 2b q−1

4
c. We do this in Table 2, since 1 ≤ q ≤ 12. Thus (6) is an improvement

of (2).
The proof of part (ii), (i.e. (7) and (8)) is similar and straightforward, and therefore is omitted.
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Theorem 3.1. If G is a bipartite graph and k is a positive integer, then

γk(G) ≤ min
(p1,p2)∈(0,1)2

h∗(p1, p2),

where h∗(p1, p2) = n1p1 + n1e
−p1(A11+1)−p2A12 + n2p2 + n2e

−p1A21−p2(A22+1)

A11 = d(k − 1)/4emax{2, δ2}+ 2bk/4c − bk/2c
A12 = δ1 + (dk/4e − 1) max{2, δ1}+ b(k − 1)/2c − 2b(k − 1)/4c
A21 = δ2 + (dk/4e − 1) max{2, δ2}+ b(k − 1)/2c − 2b(k − 1)/4c
A22 = d(k − 1)/4emax{2, δ1}+ 2bk/4c − bk/2c

This bound improve the given bound in Theorem 2.2.

Proof. By Theorem 2.1, we have

γk(G) ≤ min
(p1,p2)∈(0,1)2

(∑
v∈V1

[
p1 + (1− p1)|Nk(v)∩V1|+1(1− p2)|Nk(v)∩V2|

]
+
∑
v∈V2

[
p2 + (1− p1)|Nk(v)∩V1|(1− p2)|Nk(v)∩V2|+1

])
.

By Lemma 3.1, we have

γk(G) ≤ min
(p1,p2)∈(0,1)2

(∑
v∈V1

[
p1 + (1− p1)A11+1(1− p2)A12

]
+
∑
v∈V2

[
p2 + (1− p1)A21(1− p2)A22+1

])
≤ min

(p1,p2)∈(0,1)2

([
n1p1 + n1(1− p1)A11+1(1− p2)A12

]
+
[
n2p2 + n2(1− p1)A21(1− p2)A22+1

])
≤ min

(p1,p2)∈(0,1)2

(
n1p1 + n1e

−p1(A11+1)−p2A12 + n2p2 + n2e
−p1A21−p2(A22+1)

)
.

That is γk(G) ≤ min
(p1,p2)∈(0,1)2

h∗(p1, p2). To show that our bound is an improvement of the bound

given in Theorem 2.2, note that by Lemma 3.1 one can easily see that h∗(p1, p2) ≤ h(p1, p2), since
exp(−x) is a decreasing function.

Example 3.1. It remains to show that there are perfect graphs that our bound is better than the
older one. For this purpose, let G be a connected bipartite graph with n1 = n2 = n

2
, δ1 = δ2 =

δ ≥ 2, and k = 4m+ 1 with m = 1, 2, 3, · · · . We can easily see that the graph is perfect. Now we
have A11 = A22 = mδ,A12 = A21 = (m+ 1)δ and

h∗(p1, p2) =
n

2
[p1 + p2 + e−p1(mδ+1)−p2(m+1)δ + e−p1(m+1)δ−p2(mδ+1)].

359



www.ejgta.org

On the distance domination number of bipartite graphs | D.A. Mojdeh et al.

By using of calculus method, we see that the unique minimum of h∗ occurs at

p1 = p2 =
ln[(2m+ 1)δ + 1]

(2m+ 1)δ + 1
,

since 0 < p1 = p2 < 1, we have min
(p1,p2)∈(0,1)2

h∗(p1, p2) = n(
1 + ln[(2m+ 1)δ + 1]

(2m+ 1)δ + 1
). By calculus,

we note that the function f(x) = 1+lnx
x

is decreasing on interval (1,∞) and also we have (2m +
1)δ + 1 ≥ (2dk/6e − 1)(δ + 1), thus the new bound refinements the bound in Theorem 2.2.

3.1. Minimizing h∗(p1, p2)
In this part of paper we wish to minimize h∗(p1, p2). For this purpose, we consider two different

cases and we use calculation methods.

3.1.1. k is even
In this case we will show that either h∗ hasn’t local extremum or it has infinitely local minimum

on (0, 1)2. However h∗ has local minimum on closed unit square [0, 1]2, thus we extend the domain
of h∗ into [0, 1]2.

Before introducing our main results, we explain an observation in calculus :

Observation 3.1. Consider the function f(x) = a+lnx
x

where x > 0 and a > 0. f has a unique
maximum in x = e1−a ≤ e thus f(x) ≤ f(e1−a) = ea−1. Now, if a < 1, then f(x) < 1 for all
x > 0.

Our main result in this states is :

Theorem 3.2. If k is an even integer, δ1, δ2 ≥ 2 and T = max{nA12

n2
, nA21

n1
}, in each of three cases

(i) nA12

n2
= nA21

n1

(ii) nA12

n2
< nA21

n1
and 1

A21
ln nA21

n1
< 1

(iii) nA12

n2
> nA21

n1
and 1

A12
ln nA12

n2
< 1

we have inf
(p1,p2)∈(0,1)2

h∗(p1, p2) = min
(p1,p2)∈[0,1]2

h∗(p1, p2) = n(1+lnT
T

).

Proof. If we assume that k
4≡ 0, then

A11 = kδ2/4, A12 = kδ1/4 + 1, A21 = kδ2/4 + 1, A22 = kδ1/4

and if k
4≡ 2, then

A11 = (k + 2)δ2/4− 1, A12 = (k + 2)δ1/4, A21 = (k + 2)δ2/4, A22 = (k + 2)δ1/4− 1.

Thus, in both cases we have A11 + 1 = A21 and A22 + 1 = A12, and therefore,

h∗(p1, p2) = n1p1 + n2p2 + ne−p1A21−p2A12 .
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To minimize h∗(p1, p2), using partial differential, we have h∗p1 = n1 − nA21e
−p1A21−p2A12 and

h∗p2 = n2 − nA12e
−p1A21−p2A12 . From h∗p1 = 0, we obtain that e−p1A21−p2A12 = n1

nA21
, and so

p1A21 + p2A12 = ln nA21

n1
. Likewise, from h∗p2 = 0, we obtain p1A21 + p2A12 = ln nA12

n2
.

(i) If A21

n1
= A12

n2
, then for all (p1, p2) with p1A21 + p2A12 = ln nA12

n2
= ln nA21

n1
, we have:

h∗(p1, p2) = n1p1 + n2p2 + ne−p1A21−p2A12 =
n1

A21

(p1A21 + p2A12) + ne−p1A21−p2A12

=
n1

A21

ln
nA21

n1

+ ne
− ln

nA21
n1 =

n1

A21

(1 + ln
nA21

n1

).

Therefore, h∗ is constant for all (p1, p2) with p1A21 + p2A12 = ln nA12

n2
= ln nA21

n1
(See Figure 1).

Note that two points (0, 1
A12

ln nA12

n2
) and ( 1

A21
ln nA21

n1
, 0) are located on the line p1A21 + p2A12 =

ln nA12

n2
= ln nA21

n1
and by Observation 3.1, we have 0 < min{ 1

A12
ln nA12

n2
, 1
A21

ln nA21

n1
} < 1 because

0 < min{ln n
n2
, ln n

n1
} < 1.

p2

p1

(1, 1)

h∗p2 = 0

h∗p1 = 0

A21

n1
= A12

n2

1
A21

ln nA21

n1
< 1 < 1

A12
ln nA12

n2

p2

p1

(1, 1)

h∗p2 = 0

h∗p1 = 0

A21

n1
= A12

n2

1
A21

ln nA21

n1
, 1
A12

ln nA12

n2
< 1

p2

p1

(1, 1)

h∗p2 = 0

h∗p1 = 0

A21

n1
= A12

n2

1
A12

ln nA12

n2
< 1 < 1

A21
ln nA21

n1

Figure 1.
A21

n1
=

A12

n2

Thus the minimum of h∗(p1, p2) is n1

A21
(1 + ln nA21

n1
), and note that it happens for every pairs

(p1, p2) ∈ (0, 1)2, satisfying h∗p1 = h∗p2 = 0. Now letting T = nA21

n1
= nA12

n2
, we obtain that

min
p1,p2

h∗(p1, p2) = n(1+lnT
T

), as desired.

If A21

n1
6= A12

n2
, then p1A21 + p2A12 = ln nA21

n1
and p1A21 + p2A12 = ln nA12

n2
are two distinct

parallel lines in the p1p2-coordinate system. Thus, h∗ has no extremum in (0, 1)2 but it has an
infimum value in (0, 1)2. For this purpose we seek the extremum of h∗ in [0, 1]2. Observe that
the line p1A21 + p2A12 = ln nA21

n1
intersects the p1-axis in M1 = ( 1

A21
ln nA21

n1
, 0) and p2−axis in

N1 = (0, 1
A12

ln nA21

n1
). Similarly, the line p1A21 + p2A12 = ln nA12

n2
intersects the p1-axis in M2 =

( 1
A21

ln nA12

n2
, 0) and p2-axis in N2 = (0, 1

A12
ln nA12

n2
). Moreover, let Q1 = (1, 0) and Q2 = (0, 1).

(ii) nA12

n2
< nA21

n1
and 1

A21
ln nA21

n1
< 1 we prove that the minimum of h∗ occurs in M1. For each

point (p1, p2) in unit square [0, 1]2 there is a unique point (p′1, p2) on segments M1N1 or N1Q2
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(dotted segments in Figure 2) such that h∗(p′1, p2) ≤ h∗(p1, p2). Hence, the minimum of h∗ occurs
on M1N1 ∪ N1Q2. Also, there is a unique point (p1, p

′
2) on segments M2N2 or M2Q1 (dashed

segments in Figure 2) such that h∗(p1, p′2) ≤ h∗(p1, p2). Therefore, the minimum of h∗ occurs on
M2N2 ∪ M2Q1. This two sets of points intersect in one point, M1. Hence, we have h(M1) ≤
h∗(p1, p2) and h∗(M1) = h(

1

A21

ln
nA21

n1

, 0) =
n1

A21

(1 + ln
nA21

n1

).

Minimum occures in M1

p1

p2

M1M2 Q1

N1

N2

Q2

(1, 1)

(0, 0)

h∗p1 = 0

h∗p2 = 0

A21

n1
> A12

n2

Minimum occures in N2

p1

p2

M2M1 Q1

N2

N1

Q2

(1, 1)

(0, 0)

h∗p1 = 0

h∗p2 = 0

A21

n1
< A12

n2

Figure 2.
A21

n1
6= A12

n2

(iii) If nA12

n2
> nA21

n1
and 1

A12
ln nA12

n2
< 1, then we prove that the minimum of h∗ occurs in N2. For

each point (p1, p2) in unit square [0, 1]2, there is a unique point (p′1, p2) on segmentsM1N1 orN1Q2

such that h∗(p′1, p2) ≤ h∗(p1, p2). Hence, the minimum of h∗ occurs on M1N1∪N1Q2. Also, there
is a unique point (p1, p

′
2) on segmentsM2N2 orM2Q1 such that h∗(p1, p′2) ≤ h∗(p1, p2). Therefore,

the minimum of h∗ occurs on M2N2 ∪M2Q1. This two sets of points intersect in one point, N2,

that is, h∗(N2) ≤ h∗(p1, p2) and h∗(N2) = h∗(0,
1

A12

ln
nA12

n2

) =
n2

A12

(1 + ln
nA12

n2

).

In each of three cases, if we set T = max{nA12

n2

,
nA21

n1

}, then we have :

min
p1,p2

h∗(p1, p2) = n(
1 + lnT

T
).

We now pose a problem.

Problem 3.1. Minimize h∗ if δ1 = 1 or δ2 = 1.
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3.1.2. k is odd
We assume that k is an odd integer and we wish to minimize h∗(p1, p2). For this purpose, we

use calculus methodes.{
hp1 = n1 − n1(A11 + 1)e−p1(A11+1)−p2A12 − n2A21e

−p1A21−p2(A22+1)

hp2 = −n1A12e
−p1(A11+1)−p2A12 + n2 − n2(A22 + 1)e−p1A21−p2(A22+1){

hp1 = 0
hp2 = 0

=⇒
{
n1(A11 + 1)e−p1(A11+1)−p2A12 + n2A21e

−p1A21−p2(A22+1) = n1

n1A12e
−p1(A11+1)−p2A12 + n2(A22 + 1)e−p1A21−p2(A22+1) = n2

Therefore, we have:
e−p1A21−p2(A22+1) =

n2(A11 + 1)− n1A12

n2[A12A21 − (A11 + 1)(A22 + 1)]

e−p1(A11+1)−p2A12 =
n1(A22 + 1)− n2A21

n1[A12A21 − (A11 + 1)(A22 + 1)]

Let E1 =
n2(A11 + 1)− n1A12

n2[A12A21 − (A11 + 1)(A22 + 1)]
, E2 =

n1(A22 + 1)− n2A21

n1[A12A21 − (A11 + 1)(A22 + 1)]
.

If E1 > 0 and E2 > 0, then we have a linear equations system{
p1A21 + p2(A22 + 1) = − lnE1

p1(A11 + 1) + p2A12 = − lnE2

with a unique answer and we set :
P1 =

(A22 + 1) lnE2 − A12 lnE1

A12A21 − (A11 + 1)(A22 + 1)

P2 =
(A11 + 1) lnE1 − A21 lnE2

A12A21 − (A11 + 1)(A22 + 1)

Definition 3.1. A connected bipartite graph G is called 4-perfect if E1 > 0 , E2 > 0 where

E1 =
n2(A11 + 1)− n1A12

n2[A12A21 − (A11 + 1)(A22 + 1)]
and E2 =

n1(A22 + 1)− n2A21

n1[A12A21 − (A11 + 1)(A22 + 1)]
.

So we get the following.

Corollary 3.1. If G is a 4-perfect graph, 0 < P1 < 1 and 0 < P2 < 1, then

min
(p1,p2)∈(0,1)2

h∗(p1, p2) = h∗(P1, P2) = n1[E2 + P1] + n2[E1 + P2].

Note that Corollary 3.1 improves Theorem 2.2 if G is both perfect and 4-perfect. It remains
to show that there are perfect graphs that are 4-perfect as well. For this purpose, we consider the
graph introduced in Example 3.1.

Example 3.2. Let n1 = n2 = n
2
, δ1 = δ2 = δ, and k = 4m+ 1. Thus,

E1 = E2 =
1

(2m+ 1)δ + 1
,P1 = P2 =

ln[(2m+ 1)δ + 1]

(2m+ 1)δ + 1

Since E1, E2 > 0, G is 4-perfect. It is also easy to see that G is perfect.
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