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Abstract

A proper total weighting of a graphG is a mappingφ which assigns to each vertex and each
edge ofG a real number as its weight so that for any edgeuv of G,

∑

e∈E(v) φ(e) + φ(v) 6=
∑

e∈E(u) φ(e) + φ(u). A (k, k′)-list assignment ofG is a mappingL which assigns to each vertex
v a setL(v) of k permissible weights and to each edgee a setL(e) of k′ permissible weights.
An L-total weighting is a total weightingφ with φ(z) ∈ L(z) for eachz ∈ V (G) ∪ E(G). A
graphG is called(k, k′)-choosable if for every(k, k′)-list assignmentL of G, there exists a proper
L-total weighting. As a strenghtening of the well-known 1-2-3 conjecture, it was conjectured in
[ Wong and Zhu, Total weight choosability of graphs, J. GraphTheory 66 (2011), 198-212] that
every graph without isolated edge is(1, 3)-choosable. It is easy to verified this conjecture for trees,
however, to prove it for wheels seemed to be quite non-trivial. In this paper, we develop some tools
and techniques which enable us to prove this conjecture for generalized Halin graphs.
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1. Introduction

A total weightingof G is a mappingφ : V (G) ∪ E(G) → R. A total weightingφ is proper if
for any edgeuv of G,

∑

e∈E(u)

φ(e) + φ(u) 6=
∑

e∈E(v)

φ(e) + φ(v),
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whereE(v) is the set of edges incident tov. A total weightingφ with φ(v) = 0 for all verticesv is
also called anedge weighting.

Proper edge weighting (also called vertex colouring edge weighting) of graphs was introduced
in [9]. It was conjectured in [9] that every graph with no isolated edges has a proper edge weighting
φ with φ(e) ∈ {1, 2, 3} for e ∈ E(G). This conjecture, now called the1-2-3 Conjecture, has
received a lot of attention [1, 2, 7, 9, 10, 11, 13, 17]. It still remains open, and the best partial
result on this conjecture was proved in [10]: every graph with no isolated edge has a proper edge
weightingφ with φ(e) ∈ {1, 2, 3, 4, 5} for all e ∈ E(G).

Proper total weighting was first studied in [13]. It was conjectured in [13] that every graph has
a proper total weightingφ with φ(z) ∈ {1, 2} for all z ∈ V (G) ∪ E(G). This conjecture, now
called the1-2 Conjecturehas also received a lot of attention and the best partial result was proved
in [8]: for any graphG, there is a proper total weightingφ with φ(v) ∈ {1, 2} for each vertexv
andφ(e) ∈ {1, 2, 3} for eache ∈ E(G).

A total list assignment ofG is a mappingL which assigns to each elementz ∈ V (G)∪E(G) a
setL(z) of real numbers as permissible weights. AnL-total weighting is a total weightingφ with
φ(z) ∈ L(z) for eachz ∈ V (G) ∪ E(G). Assumeψ : V (G) ∪ E(G) → {1, 2, . . .} is a mapping
which assigns to each vertex or edgez of G a positive integer. A total list assignmentL of G is
called aψ-total list assignmentof G if |L(z)| = ψ(z) for all z ∈ V (G) ∪ E(G). A graphG is
calledψ-choosableif for everyψ-list assignmentL of G, there exists a properL-total weighting.
A graphG is called(k, k′)-choosable ifG is ψ-choosable, whereψ(v) = k for each vertexv and
ψ(e) = k′ for each edgee.

The list version of total weighting are studied in a few papers [6, 12, 14, 19, 18, 20] It is known
[20] thatG is (k, 1)-choosable if and only ifG is (vertex)k-choosable. So the concept of(k, k′)-
choosability is a common generalization of vertex choosability, edge weighting and total weighting
of graphs. As strengthening of the 1-2-3 conjecture and the 1-2 conjecture, it was conjectured in
[6, 20] that every graph with no isolated edges is(1, 3)-choosable and conjectured in [20] that every
graph is(2, 2)-choosable. These two conjectures are called the(1, 3)-choosability conjectureand
the(2, 2)-choosability conjecture, respectively.

In the study of total weighting of graphs, one main algebraictool is Combinatorial Nullstellen-
satz.

For eachz ∈ V (G) ∪E(G), letxz be a variable associated toz. Fix an arbitrary orientationD
of G. Consider the polynomial

PG({xz : z ∈ V (G) ∪ E(G)}) =
∏

e=uv∈E(D)









∑

e∈E(u)

xe + xu



−





∑

e∈E(v)

xe + xv







 .

Assign a real numberφ(z) to the variablexz, and viewφ(z) as the weight ofz. Let PG(φ) be
the evaluation of the polynomial atxz = φ(z). Thenφ is a proper total weighting ofG if and
only if PG(φ) 6= 0. The question is under what condition one can find an assignment φ for which
PG(φ) 6= 0.

An index functionof G is a mappingη which assigns to each vertex or edgez of G a non-
negative integerη(z). An index functionη of G is valid if

∑

z∈V ∪E η(z) = |E|. Note that|E|
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is the degree of the polynomialPG({xz : z ∈ V (G) ∪ E(G)}). For a valid index functionη, let
cη be the coefficient of the monomial

∏

z∈V ∪E x
η(z)
z in the expansion ofPG. It follows from the

Combinatorial Nullstellensatz [3, 5] that ifcη 6= 0, andL is a list assignment which assigns to
eachz ∈ V (G) ∪ E(G) a setL(z) of η(z) + 1 real numbers, then there exists a mappingφ with
φ(z) ∈ L(z) such that

PG(φ) 6= 0.

Therefore, to prove that a graphG is (k, k′)-choosable, it suffices to show that there exists an
index functionη with η(v) ≤ k−1 for each vertexv andη(e) ≤ k′−1 for each edgee andcη 6= 0.

The coefficientcη is related to the permanent of the matrix below (see Equation(1)).
We write the polynomialPG({xz : z ∈ V (G) ∪ E(G)}) as

PG({xz : z ∈ V (G) ∪ E(G)}) =
∏

e∈E(D)

∑

z∈V (G)∪E(G)

AG[e, z]xz .

Then fore ∈ E(G) andz ∈ V (G) ∪ E(G), if e = (u, v) (oriented fromu to v), then

AG[e, z] =











1, if z = v, or z 6= e is an edge incident tov,

−1, if z = u, or z 6= e is an edge incident tou,

0, otherwise.

Now AG is a matrix, whose rows are indexed by the edges ofG and the columns are indexed by
edges and vertices ofG. Given a vertex or edgez of G, letAG(z) be the column ofAG indexed
by z. For an index functionη of G, letAG(η) be the matrix, each of its column is a column ofAG,
and each columnAG(z) of AG occursη(z) times as a column ofAG(η). It is known [4] and easy
to verify that for a valid index functionη of G,

cη =
1

∏

z∈V ∪E η(z)!
per(AG(η)), (1)

whereper(A) denotes the permanent of the square matrixA. Recall that ifA is anm×m matrix,
then

per(A) =
∑

σ∈Sm

A[i, σ(i)],

whereSm is the symmetric group of orderm.
A square matrixA is permanent-non-singular ifper(A) 6= 0. A square matrix of the form

AG(η) is called an(a, b)-matrix if η(v) ≤ a for each vertexv andη(e) ≤ b for each edgee.
Motivated by an edge weighting and an total weighting problem of graphs, the following two
conjectures were proposed in [6] and [20], respectively.

Conjecture 1. Every graphG has apermanent-non-singular(1, 1)-matrix.

Conjecture 2. Every graphG without isolated edges has apermanent-non-singular(0, 2)-matrix.
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Conjecture 1 and Conjecture 2 have been studied in many papers (see [16] for a survey of
partial results on these two conjectures), and both conjectures remain largely open. It is easy to
verify both conjectures for trees. However, proving these two conjectures for wheels seem to be
quite non-trivial. It was proved in [14] that Conjecture 1 istrue for wheel, and in [21] for Halin
graphs. Quite surprising, Conjecture 2 remained open for wheels for a long time. In this paper, we
develop some tools and techniques and settle Conjecture 2 for generalized Halin graphs.

2. Main theorem and some observations

A Halin graph is a planar graph obtained by taking a plane treeT (an embedding of a tree on
the plane) without degree2 vertices by adding a cycle connecting the leaves of the tree cyclically.
If the treeT is allowed to have degree2 vertices, then the resulting graph is called ageneralized
Halin graph.

Theorem 2.1. Every generalized Halin graphG has apermanent-non-singular(0, 2)-matrix.

We will prove this theorem in the next two sections. In the proof, we shall frequently use the
following observations:

Observation 1. If A is a matrix whose columns are integral liner combinations ofcolumns ofAG

andper(A) 6= 0 and each olumnAG(z) occurs in at mostη(z) times in the combinations, then
there is an index functionη′ with η′(z) ≤ η(z) andper(AG(η

′)) 6= 0. Moreover, ifper(A) 6= 0
(mod p) for some primep, thenper(AG(η

′)) 6= 0 (mod p).

This can be derived directly from the multilinear property of permanent.

Observation 2. ( [20] ) For an edgee = uv ofG,

AG(e) = AG(u) + AG(v). (2)

The above follows easily from the definition of the matrixAG (cf. [20]):
A balloon is a graph obtained by attaching a path to a cycle (i.e., identify one end vertex of

a path with a vertex of a cycle). If the cycle is of odd length, then the balloon is called an odd
balloon. The path could be a single vertex, in which case the balloon is simply a cycle. If the
path is not a single vertex, then the unique vertex of degree1 is called theroot of the balloon.
Otherwise, the root of the balloon (which is a cycle) is an arbtriary vertex of the cycle.

Observation 3. If B is an odd balloon with rootv, then2AG(v) is an integral linear combination
ofAG(e) for e ∈ E(B).

Indeed, ifP = (v1, v2, . . . , vk) andC = (u1, u2, . . . , u2p+1) and the balloon is obtained by
identifyingvk with u1, let ei = vivi+1(for 1 ≤ i ≤ k − 1) ande′i = uiui+1 (for 1 ≤ i ≤ 2p+ 1 and
u2p+2 = u1 ), then

2AG(v1) = 2AG(e1)− . . .+ (−1)k2AG(ek−1) + (−1)k−1(AG(e
′

1)− . . .+ AG(e
′

2p+1)).
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3. Non-bipartite generalized Halin graphs

In this section, we consider non-bipartite generalized Halin graphs.

Lemma 3.1. Let G be a connected non-bipartite graph. If there is a matrixA whose columns
consists of vertex columns ofAG andper(A) 6= 0 (mod p) for some odd primep, thenG has a
permanent-non-singular(0, p− 1)-matrix.

Proof. Sincep is an odd prime, by replacing each columnAG(v) with 2AG(v) in A, the resulting
matrixA′ hasper(A′) = 2nper(A) 6= 0 (mod p). SinceG is connected and non-bipartite, for any
vertexv, there is an odd balloonB of G with root v. By Observation 3,2AG(v) can be written as
an integral linear combination of edge columns ofG. By Observation 1, there is an index function
η with η(v) = 0 for each vertexv such thatper(AG(η)) 6= 0 (mod p). It is obvious that ifη′ is an
index function for whichη′(e) ≥ p for some edgee, thenper(AG(η

′)) = 0 (mod p). Therefore
η(e) ≤ p − 1 for eache ∈ E(G). I.e.,AG(η) is a permanent-non-singular(0, p − 1)-matrix of
G.

Corollary 3.1. If p is a prime,G is a connected non-bipartite(p − 1)-degenerate graph, thenG
has apermanent-non-singular(0, p− 1)-matrix.

Proof. Order the verticesv1, v2, . . . , vn in such a way that each vertexvi has back-degreedi ≤
p− 1, i.e.,vi has at mostp− 1 neighboursvj with j < i. LetA be the matrix consistingdi copies
of the column ofAG indexed byvi for i = 1, 2, . . . , n. It is easy to verify that|per(A)| =

∏n

i=1 di!.
Henceper(A) 6= 0 (mod p). It follows from Lemma 3.1 thatG has a permanent-non-singular
(0, p− 1)-matrix.

Lemma 3.2. Assumep is an odd prime,G is a connected non-bipartite graph,v is a vertex ofG of
degreed andG − v has apermanent-non-singular(0, p− 1)-matrixAG−v(η). If there aret edge
disjoint odd balloonsB1, B2, . . . , Bt with rootv such that for any1 ≤ i ≤ t ande ∈ Bi, η(e) = 0
andt ≥ d/(p− 1), thenG has apermanent-non-singular(0, p− 1)-matrix.

Proof. Let η′(z) = η(z) except thatη′(v) = d. Let A′ be obtained fromAG(η
′) by replacing

each copy ofAG(v) by 2AG(v). Thenper(AG(η
′)) = 2dd!per(AG−v(η)) 6= 0. By Observation

3, each copy of2AG(v) can be written as integral linear combination of edge columnsAG(e) for
e ∈ E(Bi), i.e.,

∑

e∈E(Bi)
ai,eAG(e) for eachi, whereai,e are integers. Ast ≥ d/(p − 1), we

can replace thed copies of2AG(v) with integral linear combinations
∑

e∈E(Bi)
ai,eAG(e), so that

eachBi is used at mostp − 1 times. Therefore we can write each colummn ofAG(η
′) as linear

combination of edge columns ofAG, and each edge column is used at mostp− 1 times. SoG has
a permanent-non-singular(0, p− 1)-matrix.

By Lemma 3.1, to prove that a non-bipartite generalized Halin graphG has a permanent-non-
singular(0, 2)-matrix, it suffices to show that there is a matrixA consisting of vertex columns
of AG andper(A) 6= 0 (mod 3). By Equation (1), this is equivalent to the existence of a valid
index functionη of G such thatη(v) ≤ 2 for each vertexv, η(e) = 0 for each edgee andcη 6= 0
(mod 3).
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Recall that the graph polynomial ofG is defined asQG({xv : v ∈ V (G)}) =
∏

uv∈E(~G)(xu −

xv), where ~G is an orientation ofG. SoQG is obtained fromPG by letting xe = 0 for each
edgee of G. Therefore, ifη(e) = 0 for all edgese, cη is indeed the coefficient of the monomial
∏

v∈V (G) x
η(v)
v in the expansion of the graph polynomialQG of G. For the purpose of calculating

cη for such an index functionη, we use a result of Alon and Tarsi [5].
A sub-digraphH (not necessarily connected) of a directed graphD is called Eulerian if the

in-degreed−H(v) of every vertexv of H is equal to its out-degreed+H(v). An Eulerian sub-digraph
H is even if it has an even number of edges, otherwise, it is odd.LetEE(D) andEO(D) denote
the sets of even and odd Eulerian subgraphs ofD, respectively. The following result was proved
in [5].

Lemma 3.3. [5] Let D = (V,E) be an orientation of an undirected graphG, anddi is the out-
degree ofvi in D. Then the coefficient of

∏n
i=1 x

di
vi

in the graph polynomial ofG is ±(|EE(D)| −
|EO(D)|).

Lemma 3.4. LetG be a non-bipartite generalized Halin graph. ThenG has apermanent-non-
singular(0, 2)-matrix.

Proof. AssumeG is obtained from a tree planeT by adding edges connecting its leaves into a
cycleC. We choose non-leave vertex ofT as the root ofT . If T has an even number of leaves,
then we orient the edges ofG in such a way that the edges in the treeT are all oriented towards to
the root vertex, and orient the edges ofC so that it becomes a directed cycle. In such an orientation
D of G, by repeated deleting sink vertices (that must isolated vertices in any Eulerian subgraph),
the resulting graph is a directed even cycleC. AsD has no odd Eulerian sub-digraph, and has2
even Eulerian sub-digraph (the empty digraph andC). As each vertex has out-degree at most2.
The conlcusion follows from Lemmas 3.1, 3.3 and Observation2.

AssumeT has an odd number of leaves. HenceC is an odd cycle.
Assume first thatG is not a wheel. Letv be a non-leaf vertex ofT all its sons are leaves.

Assumev hask leaf sonsv1, v2, . . . , vk.
If k is even, then we orient the cycleC as a directed cycle, orient the treeT with all edges

towards the root, except that the edgevvk is oriented fromv to vk. Straightforward counting
shows that among Eulerian sub-digraphs ofD containing the directed edgevvk, k/2 are odd and
k/2 − 1 are even. The empty Eulerian subgraph is even, and the directed cycle is odd. Hence
|EE(D)| − |OE(D)| 6= 0 (mod 3). As each vertex has out-degree at most2, we are done.

If k is odd, then we oriented the edges ofT as in the case thatk is even, except that the edge
in C oriented towardsvk is reversed as an edge oriented away fromvk (so vk becomes a source
vertex in the cycleC). Straightforward counting shows that among Eulerian sub-digraphs ofD
containing the directed edgevvk, (k − 1)/2 are even and(k − 1)/2 are odd.

There is one even Eulerian sub-digraph not using the edgevvk (the empty sub-digraph) and no
odd Eulerian sub-digraph not using the edgevvk. Again each vertex has out-degree at most2, we
are done.

AssumeG is an odd wheel withV (G) = {w, v1, v2, . . . vn}, andw is the center of the wheel. If
n ≤ 5, then it can be checked directly thatG has a permanent-non-singular(0, 2)-matrix. Assume
n ≥ 7. Consider the graphG − vn. We order the vertices ofG − vn asv1, w, v2 . . . , vn−1. Then
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each vertex has back-degree at most2. As in the proof of Corollary 3.1, for the index functionη
with η(w) = 1, η(vi) = 2 for i = 2, 3, . . . , n − 1, per(AG(η)) 6= 0 (mod 3). It is easy to check
that each vertexw, v2, v3, . . . , vn−1 is the root of an odd balloon inG−vn that does not contain any
edge incident tov1, and does not contain the edgesvn−1w andv2w. By Observation 3 (cf. the proof
of Lemma 3.1), we know that there is an index functionη′ of G − vn with per(AG−vn(η

′)) 6= 0
(mod 3) such thatη′(v) = 0 for all v ∈ V (G − vn), η′(e) ≤ 2 for any edgee of G − vn, and
η′(e) = 0 for e ∈ E(vn) ∪ E(v1) ∪ {vn−1w, v2w}. Now the vertexvn is the root of two edge
disjoint odd balloonsB1 with V (B1) = {vn, w, vn−1} andB2 with V (B2) = {vn, v1, v2, w}. As
2 ≥ dG(vn)/2, by Lemma 3.2,G has a permanent-non-singular(0, 2)-matrix.

4. Bipartite generalized Halin graphs

Lemma 4.1. If p is a prime,G is a connected bipartite(p− 1)-degenerate graph,v is a vertex of
degree1, thenG has apermanent-non-singularmatrix in which each edge column occurs at most
p− 1 times, the vertex column indexed byv occurs once and there are no other vertex column.

Proof. Order the verticesv1, v2, . . . , vn in such a way that each vertexvi has back-degreedi ≤
p−1, i.e.,vi has at mostp−1 neighboursvj with j < i, andvn = v. LetA be the matrix consisting
di copies of the column ofAG indexed byvi for i = 1, 2, . . . , n. Similarly,|per(A)| =

∏n

i=1 di! 6= 0
(mod p).

AssumeAG(vi) is a column inA indexed byvi andi 6= n. LetA′ be the matrix obtained from
A by replacingAG(vi) by AG(v). SinceA′ has two copies of the columnAG(v), which has only
one nonzero entry, we know thatper(A′) = 0. Therefore, if we replaceAG(vi) byAG(vi)±AG(v),
the resulting matrix has the same permanent asA.

For each vertex column inA of the formAG(vi) for i 6= n, we replace it byAG(vi) ± AG(v),
where the± sign is determined by the parity of the distance between the two verticesvi andv: if
the distance is odd, then choose+, and otherwise choose−. Denote the resulting matrix byA∗.
Thenper(A∗) = per(A′) 6= 0 (mod p).

Similarly as in the proof of Corollary 3.1, each column ofA∗ other than the column indexed
by v can be written as an integral linear combination of edge columns ofAG. As in the proof of
Lemma 3.1, there is a matrixA# consisting of edges columns ofA′

G′ plus one column indexed by
v, such thatper(A#) 6= 0 (mod p), where each edge column occurs at mostp− 1 in A#.

AssumeG is a graph andX, Y are subsets ofV (G). We denote byE[X, Y ] the set of edges
with one end vertex inX and one end vertex withY . LetE[X ] = E[X,X ].

Lemma 4.2. AssumeG is a connected graph, andV (G) = X ∪ Y is a partition ofG. If the
subgraphH induced by edges inE[X ] ∪ E[X, Y ] has apermanent-non-singular(0, 2) matrixA
which contains no columns indexed by edges inE[X, Y ] andG[Y ] is 2-degenerate, thenG has a
permanent-non-singular(0, 2)-matrix.

Proof. AssumeG[Y ] has connected componentsG[Y1], G[Y2], . . . , G[Yq]. For each1 ≤ i ≤ q, let
ei = xiyi be an edge connectingxi ∈ X to yi ∈ Yi. LetGi = G[Yi] + ei. By Lemma 4.1,Gi has
a permanent-non-singular matrixAi in which each edge column occurs at most twice, the vertex
column index byxi occurs once and there are no other vertex column.
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Let ηi be the index function ofGi so thatAi = AGi
(ηi).

LetA′

i be the matrix obtained fromAi by deleting the column indexed byxi and the row index
by ei. Since the column indexed byxi has only one nonzero entry, we conclude thatper(A′

i) 6= 0.
LetA be a permanent-non-singular(0, 2) matrix ofH which contains no columns indexed by

edges inE[X, Y ]. Let η be the index function ofH so thatA = AH(η).
For each edgee of G, let

η′(e) =











η(e), if e ∈ E[X ],

ηi(e), if e ∈ E(Gi),

0, if e ∈ E[X, Y ]− {e1, e2, . . . , eq}.

LetA′ = AG(η
′). Note thatη′(e) ≤ 2 for each edgee of G. NowA′ is of the form

A′ =



















A
A′

1

*

...
A′

q0



















Thereforeper(A′) = per(A)per(A′

1) . . .per(A
′

q) 6= 0, and henceA′ is a permanent-non-
singular(0, 2)-matrix ofG.

Observe that any proper subgraph of a generalized Halin graphG is 2-degenerate. Therefore to
prove that a generalized Halin graphG has a permanent-non-singular(0, 2)-matrix, by Lemma 4.2,
it suffices to find a partitionV (G) = X ∪Y so thatG[X ]∪E[X, Y ] has a permanent-non-singular
(0, 2) matrix which contains no columns indexed by edges inE[X, Y ].

LetG be an oriented graph ande be an edge inG. We calle asink edgeif all edgese′ adjacent
to e are oriented towardse (i.e, towards the common end vertex ofe ande′) and asource edgeif
all edgese′ adjacent toe are oriented away frome.

Lemma 4.3. AssumeG is a connected graph andX ∪ Y is a partition ofV (G). If there is an
orientation of edges inE[X ] ∪ E[X, Y ] and a mappingφ : E[X ] ∪ E[X, Y ] → E[X ] such that
for eache ∈ E[X ] ∪ E[X, Y ], φ(e) 6= e is a source or a sink edge incident toe, and for each
e ∈ E[X ], |φ−1(e)| ≤ 2, then the subgraphH = G[X ] ∪ E[X, Y ] has apermanent-non-singular
(0, 2) matrix which contains no columns indexed by edges inE[X, Y ].

Proof. LetH be the subgraph ofG induced by edges inE[X ] ∪E[X, Y ]. LetD be an orientation
of edges inH, andφ be a mapping fromE[X ] ∪ E[X, Y ] → E[X ] such that for eache ∈
E[X ]∪E[X, Y ], φ(e) is a source or a sink edge incident toe, and for eache ∈ E[X ], |φ−1(e)| ≤ 2.

Let η(e) = |φ−1(e)| for each edgee ∈ E[X ]. We shall show thatAH(η) has non-zero per-
manant. Note that the column vectorAH(e) is non-negative ife is a sink edge and non-positive
if e is a source edge. Thus to prove thatAH(η) has non-zero permanant, it suffices to find a one-
to-one mappingπ between the rows and columns ofAH(η) such that for each rowe, the entry
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AH(η)[e, π(e)] 6= 0. The rows ofAH(η) are indexed by edges inG[X ]∪E[X, Y ] and columns are
indexed by a multiset of edges inE[X ], with eache ∈ E[X ] occursη(e) = |φ−1(e)| times. Since
edges inφ−1(e) are incident toe, the mappingφ is such a one-to-one mapping.

Lemma 4.4. LetG be a bipartite generalized Halin graph. ThenG has apermanent-non-singular
(0, 2)-matrix.

Proof. By Lemma 4.2, it suffices to choose a setX such that the subgraphH = G[X ] ∪ E[X, Y ]
has a a permanent-non-singular(0, 2) matrix which contains no columns indexed by edges in
E[X, Y ]. In all the figures below, vertices ofX are indicated by open dots, and vertices ofY are
indicated by solid dots.

Recall thatG is obtained from a plane treeT by adding a cycle connecting its leaves in order.
If T is a path, by choosingX with three consecutive vertices and using twice of edges inE[X ] as
column vectors, then it can easily be verified that this is a permanent-non-singular(0, 2)-matrix of
H. AssumeT is not a path. We choose a vertexr ∈ V (T ) of degree at least3 as the root ofT . Let
v1 be a leaf with maximum depth. SinceG is bipartite, the fatherv2 of v1 has only one son (i.e.
d(v2) = 2). Let v3 be the father ofv2.

Case 1: v3 has two or three sons.

Let w be a leaf son ofv3 and chooseX = {v3, v2, v1, w}. We orient the edges inH so thatv3
is a sink vertex andv1 is a source vertex.

Figure 1.X andH

If v3 has two sons, as depicted in Figure 1, then letA be the matrix consisting two copies of
columns ofAH indexed byv1v2, v2v3, v3w and one copy of the column ofAH indexed byv1w. I.e.,
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A =

v1v2, v1v2, v2v3, v2v3, v3w, v3w, v1w




















−1 −1 0 0 0 0 −1
0 0 1 1 0 0 −1
−1 −1 0 0 1 1 0
−1 −1 0 0 1 1 0
0 0 1 1 1 1 0
0 0 1 1 0 0 −1
0 0 0 0 1 1 1





















Thenper(A) = −24, and we are done.

If v3 has three sons, as depicted in Figure 2, we choose twice the columns ofAH indexed by
v1v2, v2v3, v3w, v1w.

Figure 2.X andH

Then

A =

v1v2, v1v2, v3w, v3w, v2v3, v2v3, v1w, v1w
























−1 −1 0 0 0 0 −1 −1
0 0 0 0 1 1 −1 −1
−1 −1 1 1 0 0 0 0
−1 −1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 −1 −1
0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0

























Thenper(A) = −48 and we are done.

Case 2: v3 has at least four sons orv3.
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Let X be the set consistingv3 and all its descendants. LetY = V − X. Again, orient the
edges ofH so thatv3 is a sink vertex, and all vertices at distance2 from v3 are source vertices as
in Figure 3.

Figure 3.X andH

Then all the edges inE[X ] ∩ E(T ) are source or sink edges.
As v3 has at least four sons, there is at least one son, sayw 6= v2, such thatw is not a leaf of

T . Letw′ be the son ofw (note that sinceG is bipartite, if a son ofv3 is not a leaf ofT , then it has
exactly one son), andv4 be the father ofv3. Let e1 = v3v4, e2 = v3v2, e3 = v2v1, e4 = v3w and
e5 = ww′.

Each edgee in E[X ] ∩ E(T ) is either incident tov3 or is of the formuu′, whereu is a son of
v3 andu′ is the son ofu. Let φ : E[X ] ∪ E[X, Y ] → E[X ] be the mapping defined as follows:
Cyclically order the edges ofE[X ] − {e4} incident tov3 as e′1, e

′

2, . . . , e
′

q, ande′1 = e2. Let
φ(e′i) = e′i+1, where the indices are moduloq. Letφ(e4) = e5. For each sonu of v3 which is not a
leaf ofT , letu′ be the son ofu, and letφ(uu′) = uv3. In particular,φ(e3) = e2 andφ(e5) = e4.

Assumee ∈ (E[X ]− E(T )) ∪ E[X, Y ]. If e = e1, thenφ(e1) = e4. Otherwisee ∈ E(C), if
e is to the left ofv1, thenφ(e) is the tree edge incident toe and to the right ofe; if e is to the right
of v1, thenφ(e) is the tree edge incident toe and to the left ofe. (In particular, both cycle edges
incident tov1 are mapped toe3 = v1v2).

It is easy to verify that for eache ∈ E[X ]∪E[X, Y ], φ(e) is a source or a sink edge incident to
e ∈ E[X ], and for eache ∈ E[X ], |φ−1(e)| ≤ 2. So it follows from Lemma 4.3 that the subgraph
H = G[X ]∪E[X, Y ] has a(0, 2) matrix which contains no columns indexed by edges inE[X, Y ].

Case 3: v3 has only one son.

Let v4 be the father ofv3. If there is a sonw of v4 with dT (w) ≥ 3, then the depth ofw is
the same asv3. We choosew to play the role ofv3, and we are in Cases 1 and 2. Hence, we may
assume that each son ofv4 has degree at most two inT . LetX be the set consisting ofv4 and all
the descendants ofv4 that have distance at most2 to v4. Let Y = V − X. Orient the edges in
E[X ]∪E[X, Y ] so thatv4 is a sink vertex, and all vertices at distance2 from v4 are source vertices
as in Figure 4.
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Figure 4.X andH

In this orientation, all the edges inE[X ] ∩ E(T ) are source or sink edges. Similarly as in
the previous case, it is easy to find a mappingφ : E[X ] ∪ E[X, Y ] → E[X ] such that for each
e ∈ E[X ] ∪ E[X, Y ], φ(e) is a source or a sink edge incident toe, and for eache ∈ E[X ],
|φ−1(e)| ≤ 2. By Lemma 4.3, the subgraphH = G[X ] ∪ E[X, Y ] has a(0, 2) matrix which
contains no columns indexed by edges inE[X, Y ].

This completes the proof of Lemma 4.4.

It was proved in [22] that every graphG has a permanent-non-singular(1, 2)-matrix. However,
the following two conjectures which are weaker than Conjectures 1 and 2, respectively, remain
open.

Conjecture 3. There is a constantk such that every graphG has apermanent-non-singular(k, 1)-
matrix.

Conjecture 4. There is a constantk such that every graphGwithout isolated edges has apermanent-
non-singular(0, k)-matrix.
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