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Abstract

A graph G of order p and size q is called super edge-magic if there exists a bijective function f
from V (G) ∪ E(G) to {1, 2, 3, · · · , p + q} such that f(x) + f(xy) + f(y) is a constant for every
edge xy ∈ E(G) and f(V (G)) = {1, 2, 3, · · · , p}. The super edge-magic deficiency of a graph
G is either the smallest nonnegative integer n such that G ∪ nK1 is super edge-magic or +∞ if
there exists no such integer n. In this paper, we study the super edge-magic deficiency of join
product graphs. We found a lower bound of the super edge-magic deficiency of join product of any
connected graph with isolated vertices and a better upper bound of the super edge-magic deficiency
of join product of super edge-magic graphs with isolated vertices. Also, we provide constructions
of some maximal graphs, ie. super edge-magic graphs with maximal number of edges.
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1. Introduction

Let G be a finite and simple graph of order |V (G)| and size |E(G)|. A graph G is edge-
magic if there exists a bijective function f : V (G) ∪ E(G) → {1, 2, 3, · · · , |V (G)| + |E(G)|}
such that f(x) + f(xy) + f(y) = k is a constant, called the magic constant of f , for every
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edge xy of G. In such a case f is called an edge-magic labeling of G. The concepts of edge-
magic graphs and edge-magic labelings introduced by Kotzig and Rosa in 1970 [11]. Motivated
by the concept of edge-magic labelings, Enomoto, Lladó, Nakamigawa, and Ringel [5] introduced
the concepts of super edge-magic labelings and super edge-magic graphs as follows: A super
edge-magic labeling of a graph G is an edge-magic labeling f of G with the extra condition that
f(V (G)) = {1, 2, 3, · · · , |V (G)|}. A graph having a super edge-magic labeling is a super edge-
magic graph. In [6], Figueroa-Centeno et al. provided a useful characterization of a super edge-
magic graph that we state in the following lemma.

Lemma 1.1. [6] A graph G is super edge-magic if and only if there exists a bijective function
f : V (G) → {1, 2, · · · , |V (G)|} such that the set S = {f(x) + f(y) : xy ∈ E(G)} is a set of
|E(G)| consecutive integers.

In light of above result, it suffices to exhibit the vertex labeling of a super edge-magic graph.
The next lemma proved by Enomoto et al. [5] gives sufficient condition for un-existence of super
edge-magic labeling of a graph.

Lemma 1.2. [5] If G is a super edge-magic graph, then |E(G)| ≤ 2|V (G)| − 3.

In [11], Kotzig and Rosa proved that for every graphG there exists a nonnegative integer n such
that G ∪ nK1 is edge-magic. This fact motivated them to introduced the concept of edge-magic
deficiency of a graph. The edge-magic deficiency of a graph G, µ(G), is the smallest nonnegative
integer n such that G ∪ nK1 is an edge-magic graph. Motivated by Kotzig and Rosa’s concept of
edge-magic deficiency, Figueroa-Centeno et al. [7] introduced the concept of super edge-magic
deficiency of a graph. The super edge-magic deficiency of a graph G, µs(G), is either the smallest
nonnegative integer n such that G ∪ nK1 is a super edge-magic graph or +∞ if there exists no
such n.

Some papers concerning on the super edge-magic deficiency of graphs have been published.
The super edge-magic deficiency of cycles, complete graphs, complete bipartite graphs K2,m, dis-
join union of cycles, and some forest with two components can be found in [7, 8]. The super
edge-magic deficiency of some classes of chain graphs, wheels, fans, double fans, and disjoint
union of complete bipartite graphs can be found in [13, 14]. The super edge-magic deficiency of
complete bipartite graphs Km,n and disjoin union of stars are investigated in [10]. The super edge-
magic deficiency of some classes of unicyclic graphs are studied in [1, 2] . The latest developments
in these and other types of graph labelings can be found in [9].

2. Super edge-magic deficiency of join product graphs

Join product of two graphs is their graph union with additional edges that connect all vertices
of the first graph to each vertex of the second graph. The join product of graphsG andH is denoted
by G+H . Hence,

V (G+H) = V (G) ∪ V (H)

and
E(G+H) = E(G) ∪ E(H) ∪ {xy : x ∈ V (G), y ∈ V (H)}.
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Ngurah and Simanjuntak [12] studied super edge-magic deficiency of the join product of a
path, a star, and a cycle, respectively, with isolated vertices. We gave the lower and upper bounds
of super edge-magic deficiency of Pn +mK1, K1,n +mK1, and Cn +mK1, respectively. We also
gave the following result.

Lemma 2.1. [12] For any integer m ≥ 1, µs(P4+mK1) = m− 1 and µs(P6+mK1 = 2(m− 1).

In 2008, Ngurah et al. [14] studied super edge-magic deficiency of Pn + 2K1. They have the
following result and conjectured that for any odd integer n, µs(Pn + 2K1) =

n−1
2

.

Theorem 2.1. [14] For any even integer n ≥ 2, µs(Pn + 2K1) =
n−2
2

.

In this section, we study super edge-magic deficiency of join product of any connected graphs
with isolated vertices. Notice that the only connected graphs of order 1 and 2 are K1 and K2,
respectively. It is well known that K1 + mK1 and K2 + mK1 are super edge-magic for any
integers m ≥ 1. In other words, for any integers m ≥ 1, µs(K1 +mK1) = µs(K2 +mK1) = 0.
Here, we study super edge-magic deficiency of G + mK1 where G is any connected graph with
|V (G)| ≥ 3. Our first result provides a lower bound of its super edge-magic deficiency.

Lemma 2.2. If G is a connected graphs with |V (G)| ≥ 3 and m ≥ 2, then µs(G + mK1) ≥
b1
2
(|E(G)|+ (m− 2)|V (G)|)c − (m− 2) and this bound is tight .

Proof. It is clear that G + mK1 is a graph of order |V (G)| + m and size |E(G)| + m|V (G)| ≥
(m + 1)|V (G)| − 1. By Lemma 1.2, G +mK1 is not super edge-magic. Again, by Lemma 1.2,
the graph (G+mK1) ∪ tK1, where t = b1

2
(|E(G)|+ (m− 2)|V (G)|)c − (m− 1), is not a super

edge-magic graph. Hence, we have the desire result.
The bound provides µs(P4+mK1) ≥ m−1, µs(P6+mK1) ≥ 2(m−1), and µs(Pn+2K1) ≥

n−2
2

. Base on Lemma 2.1 and Theorem 2.1, the lower bound is tight.

In [12], Ngurah and Simanjuntak also showed the finiteness of the super edge-magic deficiency
of the join product of any super edge-magic graph with isolated vertices. We proved the following
result.

Theorem 2.2. [12] LetG be a super edge-magic graph of order p with a super edge-magic labeling
f . For any integer m ≥ 1, µs(G+mK1) ≤ max(S) + (m− 2)p−m, where S = {f(u) + f(v) :
uv ∈ E(G)}.

In the next theorem, we provide a better upper bound than the one in Theorem 2.2.

Theorem 2.3. Let G be a super edge-magic graph of order p and size q ≥ 1 with a super edge-
magic labeling f . For any integer m ≥ 1,

µs(G+mK1) ≤
{
p+ 1−min(S), if m = 1,
(m− 2)(p− 1) + (q − 1), if m ≥ 2,

where S = {f(x) + f(y) : xy ∈ E(G)}.
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Proof. By Lemma 1.1, S is a set of q consecutive integers. Define H = G +mK1, m ≥ 1, as a
graph with

V (H) = V (G) ∪ {v1, v2, . . . , vm}
and

E(H) = E(G) ∪ {xvi : x ∈ V (G), 1 ≤ i ≤ m}.
Next, define an injective function g of H as follows.

g(u) =


f(u) + α, if u = x, x ∈ V (G),
1, if u = v1,
α +max(S) + (i− 2)p, if u = vi, 2 ≤ i ≤ m,

where α = p+ 2−min(S).
Next, we consider two cases depending on the value of m.

Case 1: m = 1.
It is easy to verify that S0 = {g(x)+g(y) : xy ∈ E(G)} = 2α+S = {2α+min(S), 2α+min(S)+
1, . . . , 2α+max(S)} and S1 = {g(v1)+g(x) : x ∈ V (G)} = {α+2, α+3, . . . , α+p+1}. Also,
it can be checked that max(S1)+ 1 = min(S0). Thus, {g(u)+ g(v) : uv ∈ E(H)} = S1 ∪S0 is a
set of p+ q consecutive integers. We can also check that the largest vertex label used is p+ α. So,
there exist p+α−(p+1) = p+1−min(S) labels are not utilized. For each number between 1 and
p+α that has not been used as a label, we introduce a new isolated vertex labeled with that number.
Hence, by Lemma 1.1, g can be extended to a super edge magic labeling ofH∪(p+1−min(S))K1

with magic constant 3α + p+ 1 +max(S). Thus, µs(G+K1) ≤ p+ 1−min(S).

Case 2: m ≥ 2.
It can be checked that under the labeling g, Si = {g(vi) + g(x) : x ∈ V (G)} = {2α +max(S) +
(i − 2)p + 1, 2α +max(S) + (i − 2)p + 2, . . . , 2α +max(S) + (i − 1)p}, 2 ≤ i ≤ m. Also, it
can be checked that max(S0)+1 = min(S2), and for 2 ≤ i ≤ m− 1, max(Si)+1 = min(Si+1).
Hence, {g(u)+ g(v) : uv ∈ E(H)} = S1 ∪S0 ∪mi=2 Si is a set of mp+ q consecutive integers. The
largest vertex label used is α+max(S) + (m− 2)p. By a similar argument as in Case 1, g can be
extended to a super edge-magic labeling of H ∪ ((m−2)(p−1)+(q−1))K1 with magic constant
3α+2max(S)+ (m− 1)p+(m− 2)p+1. Thus, µs(G+mK1) ≤ (m− 2)(p− 1)+ (q− 1).

By combining Lemma 2.2 and Theorem 2.3, the super edge-magic deficiency of join product
of a path, a star, or a cycle with isolated vertices can be stated as follows (also see [12]).

Corollary 2.1. Let m ≥ 2 be an integer.

• For any integers n ≥ 3, the super edge-magic deficiency of Pn +mK1 satisfies b1
2
(n(m −

1)− 1)c − (m− 2) ≤ µs(Pn +mK1) ≤ (m− 1)(n− 1)− 1.

• For any integers n ≥ 2, the super edge-magic deficiency of K1,n +mK1 satisfies b1
2
((n +

1)(m− 1)− 1)c − (m− 2) ≤ µs(K1,n +mK1) ≤ n(m− 1)− 1.

• For any odd integers n ≥ 3, the super edge-magic deficiency of Cn+mK1 satisfies b1
2
n(m−

1)c − (m− 2) ≤ µs(Cn +mK1) ≤ (n− 1)(m− 1).
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3. Constructions of maximal graphs

As a consequence of Lemma 1.2, maximal number of edges of a super edge-magic graph G
is 2|V (G)| − 3. A super edge-magic graph G which satisfy |E(G)| = 2|V (G)| − 3 is called
maximal. In this section, we seek for some maximal graphs. First, we study the maximality of
graphs obtained from chain graphs by adding or deleting an edge of the chain graphs. A chain
graph with blocks B1, B2, B3, · · · , Bk, denoted by C[B1, B2, · · · , Bk], is defined as a graph such
that for every i, Bi andBi+1 have a common vertex in such a way that the block-cut-vertex graph is
a path. The concept of a chain graph was firstly introduced by Barrientos in 2002 [3]. If Bi = H ,
for every i, then C[B1, B2, · · · , Bk] denoted by kH-path. Hence, kK4-path is a chain graph with k
blocks where each block is identical and isomorphic to the complete graph K4. If c1, c2, . . . , ck−1

are the consecutive cut vertices of C[B1, B2, · · · , Bk], then (k − 2)-tuple (d1, d2, . . . , dk−2) where
di is the distance between ci and ci+1, 1 ≤ i ≤ k − 2 is called the string of C[B1, B2, · · · , Bk].

For every integer k ≥ 3, let H = kK4-path be a graph with vertex set and edge set as follows.

V (H) = {xi, yi : 1 ≤ i ≤ k} ∪ {ci : 1 ≤ i ≤ k + 1}

and
E(H) = {cici+1, cixi, ciyi, xiyi, xici+1, yici+1 : 1 ≤ i ≤ k}.

As we can see, H is a graph of order 3k+1 and size 6k. Ngurah et al. [13] proved that µs(H) = 1.
The following vertex labeling f is an alternative vertex labeling that extends to a super edge-magic
labeling of H ∪K1.

f(u) =


3i− 2, if u = xi, 1 ≤ i ≤ k,
3i− 1, if u = ci, 1 ≤ i ≤ k + 1,
3i, if u = yi, 1 ≤ i ≤ k,
3k + 1, if u = K1.

From now on f refers to this vertex labeling.
It is clear that by removing one edge fromH , the resulting graph has number of edges satisfying

the maximal condition. We shall study two of such graphs. Let j be an integer where 1 ≤ j ≤ k
and let H[j] = H − {xjyj} and H [j] = H − {cjcj+1}. It is clear that for every 1 ≤ j ≤ k, H[j] and
H[k+1−j] (resp. H [j] and H [k+1−j]) are isomorphic,. So, it is suffices to study maximality of H[j]

(resp. H [j]) for 1 ≤ j ≤ dk
2
e.

Theorem 3.1. For every integers k ≥ 3 and 1 ≤ j ≤ dk
2
e, H[j] and H [j] are maximal.

Proof. Define a labeling g as follows.

For case j = 1,

g(u) =



f(u), if u = c1, x1,
f(xi+1), if u = xi, 2 ≤ i ≤ k − 1,
f(K1), if u = xk,
f(x2), if u = y1,
f(yi−1), if u = ci, 2 ≤ i ≤ k,
f(ci), if u = yi, 2 ≤ i ≤ k.
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For case j = 2, 3, . . . , dk
2
e,

g(u) =



f(u), if u = ci, xi, 1 ≤ i ≤ j,
f(u), if u = yi, 1 ≤ i ≤ j − 1,
f(xi+1), if u = xi, j ≤ i ≤ k − 1,
f(K1), if u = xk,
f(xj+1), if u = yj,
f(yi−1), if u = ci, j + 1 ≤ i ≤ k + 1,
f(ci), if u = yi, j + 1 ≤ i ≤ k.

It can be checked that g is a bijection from V (H[j]) to {1, 2, 3, . . . , 3k+1} and for 1 ≤ j ≤ dk
2
e,

{g(u)+g(v) : uv ∈ E(H[j])} = {3, 4, 5, . . . , 6k+1}. By Lemma 1.1, g can be extended to a super
edge-magic labeling of H[j]. Also, it is easy to verify that for 1 ≤ j ≤ dk

2
e, g(xj) + g(yj) =

g(cj) + g(cj+1). Hence, g can be extended to a super edge-magic labeling of H [j].

Now, we consider H − {c1x1} and H − {x1c2}.

Theorem 3.2. For every integer k ≥ 3, H − {c1x1} and H − {x1c2} are maximal.

Proof. Define a labeling of H − {x1c2} and H − {c1x1} as follows.

h(u) =



f(x1), if u = c1,
f(c1), if u = x1, x1 ∈ V (H − {x1c2}),
f(x2), if u = y1, y1 ∈ V (H − {x1c2}),
f(c1), if u = y1, y1 ∈ V (H − {c1x1}),
f(x2), if u = x1, x1 ∈ V (H − {c1x1}),
f(K1), if u = xk,
f(xi+1), if u = xi, 2 ≤ i ≤ k − 1,
f(K1), if u = xk,
f(yi), if u = ci+1, 1 ≤ i ≤ k,
f(ci), if u = yi, 2 ≤ i ≤ k.

It is a routine procedure to verify that h can be extended to a super edge-magic labeling of H −
{x1c1} and H − {x1c2}.

Notice that for every 1 ≤ i ≤ k, H −{cixi} and H −{xk+1−ick+2−i} (resp. H −{xici+1} and
H−{xk+1−ick+1−1}) are isomorphic. Also, it can be checked thatH−{cixi} andH−{ciyi} (resp.
H −{xici+1} and H −{yici+1}) are isomerphic. Referring to these facts and the afore-mentioned
results, we propose the following problems.

Problem 1. For every integers k ≥ 3 and 2 ≤ j ≤ dk
2
e, study the super edge-magicness of

H − {cjxj} and H − {xjcj+1}.

Next, consider the graph F [k], where F [k] is a graph obtained from the graph H = kK4-path
by attaching a pendant vertex z to the vertex ck+1 of H . Hence, F [k] is chain graph with k + 1
blocks where the first k blocks areK4 and the last block is aK2. It can be checked that the labeling
h(x) = f(x) for every vertex x ∈ V (H) and h(z) = 3k+1 can be extended to a super edge-magic
labeling of F [k]. Thus F [k] is a maximal graph. Hence, we have the following result.
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Theorem 3.3. For every integer k ≥ 3, F [k] is maximal.

Next, we investigate the maximality of chain graphs G(k) = C[B1, B2, · · · , Bk] which satisfy
the following conditions. i). If k ≥ 3 is an odd integer, thenB1, B3, . . . , Bk are one of the graphs in
Figure 1 (a) andB2, B4, . . . , Bk−1 are the graph in Figure 1 (b). ii). If k ≥ 4 is an even integer, then
B1, B3, . . . , Bk−1 are one of the graphs in Figure 1 (a), B2, B4, . . . , Bk−2 are the graph in Figure 1
(b), and Bk is one of the graphs in Figure 1 (c). The chain graphs G(k) = C[B1, B2, · · · , Bk] are
constructed from blocksB1, B2, . . . , Bk by identifying vertex x3,j and vertex y1,j+1, 1 ≤ j ≤ k−1,
and we denote these new vertices by c1, c2, . . . , ck−1. Thus, G(k) is a graph of order 5k + 1 and
size 10k − 1. The string of G(k) is (d1, d2, . . . , dk−2) where di = 2 when i is odd and di = 2 or 3
when i is even. We shall prove that G(k) is maximal.

Figure 1. The blocks of the graphs G(k) = C[B1, B2, B3, . . . , Bk].

Theorem 3.4. For every integer k ≥ 3, G(k) is maximal.

Proof. It is not hard to verify that the following labeling is a super edge-magic labeling of G(k).

h(u) =



(1, 3, 2, 4, 6), if u = (x1,1, x2,1, y1,1, y2,1, y3,1),
(7, 9, 8, 10), if u = (x1,2, x2,2, y2,2, y3,2),
5, if u = c1,
12, if u = c2,
5 + 10j, if u = c2j+1, 1 ≤ j ≤ bk−2

2
c,

12 + 10j, if u = c2j+2, 1 ≤ j ≤ bk−3
2
c,

h(xi,1) + 10j, if u = xi,2j+1, 1 ≤ i ≤ 2, 1 ≤ j ≤ bk−1
2
c,

h(yi,1) + 10j, if u = yi,2j+1, 2 ≤ i ≤ 3, 1 ≤ j ≤ bk−1
2
c,

h(xi,2) + 10j, if u = xi,2j+1, 1 ≤ i ≤ 2, 1 ≤ j ≤ bk−2
2
c,

h(yi,2) + 10j, if u = yi,2j+1, 2 ≤ i ≤ 3, 1 ≤ j ≤ bk−2
2
c,

5k, if u = y3,k, k is odd,
5k + 1, if u = y3,k, k is even.
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Next, we consider graphs obtaining from ladders Lm = Pm×P2, m ≥ 2, by adding a diagonal
in each rectangle of Lm. We denote such a graph by G[m]. Hence, G[m] can be defined as a graph
with the vertex and edge sets as follows.

V (G[m]) = {uj, vj|1 ≤ j ≤ m}

E(G[m]) = {ujvj|1 ≤ j ≤ m} ∪ {ujuj+1, vjvj+1|1 ≤ j ≤ m− 1} ∪ S,

where S = {ei : ei is either ujvj+1 or vjuj+1, 1 ≤ i ≤ m−1}. It can be checked that |E(G[m])| =
2|V (G[m])| − 3.

Theorem 3.5. For any integer m ≥ 2, G[m] is maximal.

Proof. It is easy to verify that the bijection h : V (G[m])→ {1, 2, . . . , 2m} defined by

h(x) =

{
2i, if x = uj, 1 ≤ j ≤ m,
2i− 1, if x = vj, 1 ≤ j ≤ m,

can be extended to a super edge-magic labeling of G[m] with magic constant 6m.

Our results presented in Theorems 3.1, 3.2, 3.3, 3.4, and 3.5, give impression that graphs satisfy
the maximal condition are super edge-magic. However, it is not the case. As an example Pn +K1,
which satisfies the maximal condition, is super edge-magic if and only if 1 ≤ n ≤ 6 (see [7]).
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