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Abstract

Let G be a non-abelian group. The non-commuting graph of group GG, shown by I'¢, is a graph
with the vertex set G \ Z(G), where Z(G) is the center of group G. Also two distinct vertices of
a and b are adjacent whenever ab # ba. A set S C V(I') of vertices in a graph I is a dominating
set if every vertex v € V/(I') is an element of S or adjacent to an element of S. The domination
number of a graph I" denoted by ~(I'), is the minimum size of a dominating set of I". Here, we
study some properties of the non-commuting graph of some finite groups. In this paper, we show
that v(I'¢) < m*gﬂ Also we charactrize all of groups G of order n with ¢t = |Z(G)|, in which

1(Te) +7(T) €{n—t+1n—t,n—t—1n—t—2}
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1. Introduction

Let GG be a non-abelian group and Z((G) be the center of G. Associate a graph I'¢ with G as
follows: Take G \ Z(G) as the vertices of I'. Two vertices a and b are adjacent if ab # ba. This
graph is called the non-commuting graph of G. Let I be a simple graph. A subset S C V(I') is
called a dominating set if each vertex v € V(I') \ S has at least one neighbor in S. The size of a
smallest dominating set of I is called domination number of " and is denoted by ~(I").
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Erdos considered the non-commuting graph in 1975 for the first time. In 2004, Abdollahi,
Akbari and Maimani studied some properties of the non-commuting graph of a group. For more
results, see [1],[2], [6], [5] and [12].

Before starting, let us introduce some necessary notation and definitions. For every graph I’
we denote the set of the vertices of I by V(I"). The minimum degree of a graph I" denoted by §(T").
The complete graph, path and cycle on n vertices are denoted by K,,, P, and C,,, respectively. The
open neighborhood of a vertex v in I is the set Nr(v) of vertices joined to v by an edge. The closed
neighborhood of v is the set Ny-[v] = Np(v) U {v}. The complement of I" denoted by I'. If v and v
are vertices in I, then d(u, v) denotes the length of the shortest path between u and v. A graph I is
connected if there is a path between each pair of the vertices of I'. The maximum value of d(u, v)
between all pair of the vertices of connected graph I is called the diameter of I' and denoted by
diam(T"). Let I'; and I'y be two graphs.The corona I' = I'10I'5 is the graph formed from one copy
of I'; and |V (I'1)| copies of I'y such that the ith vertex of I'y is adjacent to every vertex in the ith
copy of I's.

For each x € G, Cg(x) = {g € G | gr = xg}. We denote the symmetric group and the
alternating group on n letters by S, and A,,, respectively. Also Qs = (A, B | A =1,A? =
B? B 'AB = A" and Dy, = {a, b | a" = V* = (ab)? = 1) are the quaternion group with 8
elements and the dihedral group of order 2n, respectively.

In this paper, we study the domination number of the non-commuting graphs. In particular, we
charactrize all groups G of order n with |Z(G)| = t, in which v(T'¢) + v(Tg) € {n —t + 1,n —
t,n—t—1,n—t—2}.

2. Preliminaries
In this section, we provide some useful results which will be applied in the next section.

Theorem 2.1. (Ore) [10] Let I be a graph with no isolated vertices. Then (') < .

Theorem 2.2. [7] For a graph I with even order n and no isolated vertices, y(I') = % if and only
if the components of I are the cycle Cy or the Corona HoK for any connected graph H.

Theorem 2.3. [1], 2.1. For any non-abelian group G, diam(I'¢)=2. In particular, T is connected.
Also the girth of I equal 3.

Theorem 2.4. [11] Let I" be a graph of order n. Then the following holds.
i) yI)+~(T) <n+1
i) 7(0)y(T) < n.

Lemma 2.1. Let G be a finite non-abelian group. Then 6(I'¢) > 3.

Proof. Suppose that degr,(v) < 2, for some v € V(I'¢). Since degr,(v) > @, then |G| < 4.
So, G is an abelian group, which is a contradiction. 0

Remark 2.1. Here, we get figures of the non-commuting graph of some groups. These figures are
useful in proving some theorems in the third section. (See Figures 1, 2, 3 and 4.)
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Figure 1. The non-commuting graph of Ss.
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Figure 3. The non-commuting graph of Qs.

Lemma 2.2. Let G be a non-abelian group of odd order. Then, the graph T contains no isolated
vertex.

Proof. Assume to the contrary, a is an isolated vertex of I'. Then, for each z € G\ Z(G) we
have ax # xa. Hence o(a) = 2, which is a contradiction. O

Lemma 2.3. Let G be a non-abelian group and |Z(G)| = 1. Then, the vertices of degree one in
L' occure only at the edges. Furthermore, if degr_a = 1 then o(a) = 3.

Proof. Let a € V(I'¢), degr,a = 1 and a be adjacent to b. Then, C¢(a) = {1,a,b} and so
b= a~". Hence, Cg(b) = {1,b,a}. Thus, degr b = 1. Furthermore, o(a) = o(b) = 3. O
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Figure 4. The non-commuting graph of D1.

Lemma 2.4. Let G be a non-abelian group. Then T does not have C,,, (n > 3) as component.

Proof. Let C,, be a component of I'¢; and {a,b} C V(C,,) such that b € Nr_(a). Then N_[a] =
{a,b, f}and Ng_[b] = {a,b,c}. So Cg(a) = {a,b, f}UZ(G) and Cg(b) = {a, b, c}UZ(G). Since
|Ce(a) N Ce(b)| divides |C(a)l, then 2 + | Z(G)| divides 3 + | Z(G)|, that is a contradiction. [

Definition 2.1. Let G be a group. Write S and T for the set of elements of G of order two and

three, respectively. Then G is a acceptable when neither S nor T is empty and G = S* U T, where
S* =S U{e}

Theorem 2.5. [3] If G is acceptable, then either S* < G or T™ < G.

3. Main results
In this section, we prove our main results.
Theorem 3.1. Let G be a non-abelian group. Then, the following holds.
i) 0(I'g) = 3 ifand only if G is isomorphic to Ss.
ii) 0(L'¢) = 4 if and only if G is isomorphic to Dg or Qs.
iii) 0(U'¢) = 5 if and only if G is isomorphic to Dyy.
Proof. We prove as follows:

i) Let 9(I'¢) = 3 and degr,, (v) = 3, forsome v € V(I'¢;). Since degr,, (v) > @, then |G| < 6.
The only non-abelian group of order less than 7 is S5.
Conversely, Suppose that GG is isomorphic to S3. By considering the figure of the non-
commuting graph associated to symmetric group S;3 (See Figure 1), we obtain §(I'¢) = 3.
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ii) Let (') = 4. Then |G| < 8 and so G € {Ss3, Dg, Qs}. By (i), G 2 S;5. So G = Dg or
(Ys. Conversely, Suppose that GG is isomorphic to Dg or ()s. By considering the figure of the
non-commuting graph associated to Dg and Qs (See Figures 2 and 3), we obtain §(I') = 4.

iii) Let §(I'¢) = 5. Then |G| < 10. By (4) and (¢7), |G| = 10. Since G is not an abelian
group, then G is isomorphic to Dy. Conversely, Suppose that G is isomorphic to Dyy. By
considering the figure of the non-commuting graph associated to the dihedral group D1 (See
Figure 4), we obtain 6(I'g) = 5.

[
Corollary 3.1. All of 3-regular and 5-regular graphs cannot be non-commuting graphs.

Theorem 3.2. Let I" be a (n — 2)-regular graph of order n. Then T is the non-commuting graph
associated to a non-abelian group G if and only if n = 6 and G is isomorphic to Dg or Q)s.

Proof. Let I be a (n — 2)-regular graph of order n and G be a group such that I'¢ = I". Then
n is even and I'¢; is a disjoint union of 2 5 edges. If a and b are adjacent in Tq, then Cg(a) =
Z(G)U{a,b} . Itis clear that | Z(G)| < 2.

If |Z(G)| = 1, then Cg(a) = {1,a,a™! = b} and o(a) = 3. Since I'; is a disjoint union of
some edges, then for each x € G we have o(x) = 3. Thus, there is a positive integer s such that
|G| = 3°. Hence | Z(G)| > 1, which is a contradiction.

If |Z(G)| = 2and Z(G) = {1, x}, then foreacha € G\ Z(G), Cs(a) = {1,z,a,b} and so we
have a® = 1 or a* = z. Therefore for each a € G'\ Z(G) we have a* € Z(G). Hence % is an
elementary abelian 2-group. So G’ < Z(G), which implies |G| = 1 or 2. Since G is not an abelian
group, then G’ # {1}. Thus G’ = Z(G). Also we have cl(a) = {g'ag : g € G} C aG’ and so
lcl(a)] < 2. Since |cl(a)| = |C|GE| 77> then |G| < 8. Hence G = S3, Dg or Q)s. Since Z(S3) = 1,
then G = Dg or G = Q)s.

Conversely, suppose that G = Dg or G = (Js. Then by considering the figures of the non-
commuting graphs of these two groups (See Figures 2 and 3), we obtain I'; is a 4-regular graph of
order 6. ]

Theorem 3.3. Every (n — 3)-regular graph of order n is not the non-commuting graph.

Proof. Let I be a graph of order n and (n — 3)-regular. Also, suppose that GG is a group and
I'c = T. Thus, I'¢ is a 2-regular graph. It means that I'; is a disjoint union of cycles.

By Lemma 2.4, T; is a disjoint union of triangles. Hence for every a € G \ Z(G), Cg(a) =
Z(G)U{a,b,c} such that bc = cb. Thus, |Z(G)| < 3.

Case 1. If | Z(G)| = 1, then |C(a)| = 4. So there is a positive integer s such that |G| = 2°.
Thus, |Z(G)| > 1, which is a contradiction.

Case 2. If | Z(G)| = 2, then |Ci(a)| = 5. Since | Z(G)| divides |Ci(a)|, then 2 | 5, which is a
contradiction.

Case 3. If |Z(G)| = 3, then |Cs(a)| = 6. Thus, Cu(a) = Zg and so for each = ¢ Z(G),
o(x) € {2,6}. Soforeacha € G\ Z(G), a®* € Z(G) which implies G/Z(G) is an elementary
abelian 2-group. Therefore, G’ < Z(G). Since G is not an abelian group, then G' = Z(G). We
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know that cl(a) C aG’. So |cl(a)] < 3 Hence 6 < |G| < 18. Since |Z(G)| = 3 and |Z(G)|
divides |G|, then |G| € {9, 12, 15, 18}. Furthermore, since G is not an abelian group, then we have
|G| € {12,18}.

If |G| = 12, then G = Ay, Disor{a,b | a® =1 ,a®> =0* ,b7'ab = a™!). Since G has
only 2 elements of order three, then G 2 A,. Also since |Z(D12)| = 2, then G 2 Dj,. Hence
G = {a,b |a=1,a>=05b",b""ab = a'). So G has an element of order 4, which is a
contradiction.

If |G| = 18, then T = 5K3. So G has exactly 5 elements of order 2. Let n,, be the number of
Sylow p—subgroup of G. By Sylow Theorem, n2(G) € {1, 3,9}. Hence G has 1, 3 or 9 elements
of order 2, which is a contradiction. O]

In [10], Ore proved that if I is a graph with no isolated vertices, then 7(I') < %. In Theorems
3.4 and 3.5, we show that if G is a non-abelian group with |Z(G)| = t, then v(I'¢) and v(T'¢) are

less than t,

Theorem 3.4. Let G be a non-abelian group of order n and |Z(G)| = t. Then v(I'¢) < 5%,

Proof. Weknow |V (I')| = n—t. Since I'; is a connected graph, it contains no isolated vertex. By
Theorem 2.1, v(T'¢) < %5*. Now, we show 7(I') < 5. Assume to the contrary, y(I'¢) = 25L.
By Theorem 2.2, each component of the graph I'(; is the cycle C or the Corona product K and a
connected graph H, that is HoK;. By Lemma 2.1, is a contradiction. Hence (') < "T’t [
Theorem 3.5. Let G be a non-abelian group of odd order n and |Z(G)| = t. Then v(T'¢) < “5.

Proof. Since n is odd, then t is odd. By Lemma 2.2, the graph I'¢; contains no isolated vertex.
By Theorem 2.1, 7(T'¢) < “5*%. Now, suppose that v(I'¢) = “5t. Then, by Theorem 2.2, I';
has connected components of kind of C, or HoK,. By Lemma 2.4, all components of I';; are the
corona product /| and a connected graph H. Let a be a vertex of degree 1 in I'; and b is adjacent
to a. Then Cg(a) = {a,b} U Z(G) and so |Z(G)| < 2. Since |G| is odd, then |Z(G)| = 1. By
Lemma 2.3, |G| = 3°. Hence |Z(G)| > 1, which is a contradiction. O

In the following theorem, we characterize all groups G of order n with |Z(G)| = ¢, in which
vTe)+vTe)e{n—t+1,n—t,n—t—1,n—1t—2}.

Theorem 3.6. Let G be a non-abelian group of order n and | Z(G)| = t. Then the following holds.

ag)<n—t+1

i) v(I'a

I'c)

I'¢) =n—tifand only if G = Ss.
)

I'c)

el

iii) v(I'q qg)=n—t—1ifandonly if G = Dg or G = Qg .

(Fe) +(
ii) v(T'a) +(
(Te) +(
)+7Te

) v(Ta n —t— 2 ifand only if G = D

Proof. Since |G| =nand |Z(G)| =t, then |V (I'¢)| = n — t. By Theorem 3.4, v(I'¢) < 22,
y Y
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i)

1i1)

By Theorem 2.4, v(I'g) + v(Tg) < n—t+ 1. Let v(T'g) + v(T'g) = n — t + 1. Then
v(Tg) > n—t+1— 2t = 2=142 By Theorem 2.1, ['; contains at least one isolated vertex.
Sot =1and y(I'¢) = 1. Thus v(T'¢) = n — 1. Therefore I'¢ = K,,_;. By Theorem 2.3, it
is impossible. Hence v(I'¢) +v(Tg) <n —t+ 1.

Letv(T'¢) + 7(I'¢) = n — t. Then 7(T';) > “*. By Theorem 2.1, T’ contains at least one
isolated vertex. Sot = 1, 7(I'¢) = 1 and v(T'¢) = n — 2. Thus, Iy is a disjoint union
of P, and isolated vertices {x1, zs, ..., x,_3}. All isolated vertices x; are of order 2. Let a
and b be the vertices of the path P,. By Lemma 2.3, b = ™! and o(a) = o(b) = 3. We
claim that if z; and x5 are two elements of order 2, then o(z125) = 3. To see this, suppose
o(x175) = 2. Then z1x97 175 = 1 and so 2179 = xx;. Thus x; is adjacent to x5 in ['g,
which is a contradiction. It is easy to see that o(x;b) = 2, fori =1,2,...,n — 3.

T = (x1,b | 23 =0>=1,(z10)> =1),then T = S3. We prove G = T. If z, € G\ T and
2129 = b, then z9 = 21b. Since 710 € T, x5 € T. Also if x129 = b~!, thenxo = 2,0~ € T..
However it is a contradiction. Hence G = T" =2 S3. Conversely, if G = Ss, then by Figure 1,
7¥(P'¢) = 1 and v(T'¢) = 4 and the proof is complete.

Let v(I'¢) + v(T¢) = n —t — 1. Then y(T'¢) > 2=1=2. We consider two cases:

Case 1. Let 7(I'¢) = “5%. Then y(I'¢) = %% — 1. If T;; has an isolated vertex, then ¢ = 1
and so n is odd. By Theorem 3.5, v(T'¢) < 5%, which is false. If ' does not have an
isolated vertex, then by Theorem 2.2 and Lemma 2.4, ' has a vertex of degree one. So
t=1ort=2.1Ift = 1, then n is odd. By Theorem 3.5, 7(I'¢) < "T_l, which is false.

Ift = 2, then v(T¢) = %52 and v(I'¢) = “5*. By Theorem 2.4, “>2.2-4 < n — 2. Since
n # 2, then n < 8. So G is isomorphic to S5, Dg or Qg. But Z(S3) = 1. Hence G is isomor-

phic to Dg or Q)s.

Case 2. If v(Tg) > ”T_t, then [’ contains at least one isolated vertex. So ¢ = 1 and so
v(I'¢) = 1. Therefore v(T'g) = n — 3. By Lemmas 2.3, 2.4 and v(T'¢) = n — 3, we have
the following subcases.

Subcase 1. Let I'¢; be a union of the isolated vertices {x1, s, ..., 2, 4} and K3 with ver-
tices a, b, c. Then Cg(a) = Cu(b) = Ca(c) = {1,a,b,c}. So orders of a, b and ¢ are 2 or
4. If o(a) = o(b) = o(c) = 2, then order of each element of G is 2 and so G is an abelian
group, which is a contradiction. If o(a) = 2 and o(b) = 4, then a = b* and for each ¢
(1=1,2,....,n—4), x;bx; = bor z;br; = b1 If z;bx; = b, then bx; = ;b. So b is adjacent
to x;, which is a contradiction. If x;bz; = b}, then (b, z;) = Dg. We claim that G = (b, z).
Suppose that z € G \ (b, z;). Since zbx = b~! and z,bx; = b}, then zbx = z,bx; and
so 112 € Cg(b). We know that C(b) = (b). So z € {x1b, z1b* 10’ }, Hence = € (b, 11).
Therefore G = Dg. Since in this case Z(G) = {1}, then we have Z(Ds) = {1}, which is a
contradiction.
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Subcase 2. Let I'; be a union of the isolated vertices {x1,29,..., 2, 5} and two edges
with vertices a ~ b and ¢ ~ d. By Lemma 2.3, o(a) = o(b) = o(c) = o(d) = 3. Since
{1,a,b,c,d} is not a subgroup of G, by Theorem 2.5, {1, 1, xs,...,2,_5} is a subgroup
of G. So o(x175) = 2. Hence 2125 = 757, and so x; is adjacent to x5 in I'g, which is a
contradiction. Conversely, by using the figures 2 and 3 we can obtain the proof.

Let y(I'c)+7(T¢) = n—t—2. By Theorem 3.4, 7(I'c) < “. We have the following cases.

Case 1. If (I'c) = %=, then v(I'¢) = “=.=2. By Theorem 2.4, v(I'c).7(T¢) < n —¢.
Hence, 1l <n—t < 7. Sincen —tisevenandt | n,thenn —t € {4,6}. If n — t = 4,
then (n,t) = (6,2) and so G = S3. Which is a contradiction to the fact that Z(S3) = 1. If
n —t = 6, then (n,t) € {(10,4), (8,2)}. Since ¢ | n, we have (n,t) = (8,2). So G = Dg or

G = (Yg. By Figures 2 and 3, we have a contradiction.

Case 2. Let 7(I'¢) = 2=t~ and (T'¢) = %%. If T has an isolated vertex, then ¢ = 1 and
so n is odd. By Theorem 3.5, v(I'¢) < "%, which is false.

If fg does not have an isolated vertex, then by Theorem 2.2 and Lemma 2.4, fG has a vertex
of degree 1. Sot = 1lort = 2. If t = 1, then n is odd, which is false. If ¢ = 2, then
v(Te) = 252 and y(T'¢) = %5°. Thus n < 10. By Figures 2, 3 and 4, we have a contradic-
tion.

Case 3. Let 7(I'g) < 2=2=2. Then 7(I'¢) > “5* and so I'; has at least one isolated vertex.
Thus t = 1, 7(T'g) = 1 and y(I'g) = n — 4. Letu € V(I'g). If degr_ (u) > 3, then
v(I'g) < n — 4, which is not true. Hence for every u € V(I'g), degr,, (u) < 3 and o(u) < 5.
We have the following subcases.

Subcase 1. Let degr (u) < 1, where u € V(T¢). Then I'g is isomorphic to union of 3
copies of P» and n — 7 isolated vertices. It is clear that isolated vertices are of order 2. By
Lemma 2.3, G is an abelian acceptable group. By Theorem 2.5, TU{1} < G or SU{1} < G.
Since 3 does not divide | TU{1} |, then TU{1} is not a subgroup of G. Hence S* = SU{1}
is a subgroup of G. Since |S*| < @ then |G| < 12. We know that there is no group of
order less than 12 with exactly 6 elements of order 3, which implies that |G| = 12. Hence
G Ay, DporL =(a,b |a®=1,a®=0b*,b"tab = a!). Since G has exactly 6
elements of order 3, we have G ¢ { Ay, D12}. Also in L we have o(b) = 4. So G 2 L.

Subcase 2. For each u € V(I'g), degp,(u) < 2. Let u,v € V(I'¢) and degr, (u) =
degr,, (v) = 2. If uw and v are not adjacent in ¢y, then by Lemmas 2.3 and 2.4, 7(T) < n—4,
which is not true. If u and v are adjacent in I'i;, then by Lemmas 2.3 and 2.4, v and v are
vertices of a K3. Since ’}/(fg) = n — 4, then ['¢ is isomorphic to union of exactly one
copy of K3, one copy of P, and some isolated vertices. Suppose V(K3) = {ug,us,us},
V(Py) = {v1,v2} and isolated vertices are denoted by z;, where 1 < ¢ < n — 6. We have
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Co(u;) = {1,u1,uz,us}. Soo(u;) € {2,4}. By Lemma 2.3, o(v;) = o(vy) = 3. Also
we have o(z;) = 2. So |G| = 23, where ( is natural. By Sylow Theorem, there are two
subgroup H and K of G such that |[H| = 2¢ and K = {e, vy, v;! = vy},

If h € H and o(h) = 2, then o(hv,h) = o(vy) = 3. So hvih = vy or v ', If hvth = vy,
then v;h = hv; and so o(v1h) = 6, which is false. If huih = vfl, then v h = hvfl or
hvy = vy *h. It is well known that |Z(H)| > 1.

Let z € Z(H) and o(z) = 2. Then for every h € H \ {z}, we have

(zh)vy = (h2)vy = h(zv1) = h(vyi'z) = (hvy')z = (v1h)z = v1(hz) = vi(zh) Hence
zh € Cg(v1). So zh € {vy, v '}

If |H| > 4, then |H| > 8. Thus there are hy, hy € H, hy # hy such that zh; = zh,. Hence
hy = hgy, which is a contradiction. Thus |H| = 4 and so |G| = 12. Since G has exactly two
elements of order 3, then |cl(v;)| = 1 or 2. Since |C(v1)| = 3 and [G : Cg(vy)] = |cl(vy)],
we have 4 = 1 or 4 = 2, which is not true.

Subcase 3. Let u € V(I¢), degr,(u) = 3 and Ny (u) = {z,y,2z}. Then Cg(u) =
{1,u,7,y,2} and so o(u) = 5. Hence induced subgraph on Ng_[u] is isomorphic to K.
Since v(T¢) = n — 4, then T¢ = K, U (n — 5)K;. On the other hand if z is a isolated
vertex in ', then o(z) = 2. Since zu ¢ {1,u,u? u® u'}, we have o(xu) = 2. Thus
ruz = vt and so (z,u) = Dyo. Now let y € G\ (z,u) and y be an isolated vertex in ['s.
Then o(yu) = 2. Hence yuy = xux. This implies that 2y € Cg(u) = {1,u,u? u?, u'}.
Therefore y € {x, zu, vu?, zu?, zu*} and so y € (x,u), which is a contradiction. Hence
G = (x,u) = Dip.

Conversely, if G = Dy, then t = 1 and by Figure 4, 7(I'c) + v(T'¢) = 7 and the proof is
complete.

]
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