Electronic Journal of Graph Theory and Applications

Domination number of the non-commuting graph of finite groups

Ebrahim Vatandoost*, Masoumeh Khalili
Department of Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
vatandoost@sci.ikiu.ac.ir, ava_kh17@yahoo.com

Abstract

Let G be a non-abelian group. The non-commuting graph of group G, shown by Γ_{G}, is a graph with the vertex set $G \backslash Z(G)$, where $Z(G)$ is the center of group G. Also two distinct vertices of a and b are adjacent whenever $a b \neq b a$. A set $S \subseteq V(\Gamma)$ of vertices in a graph Γ is a dominating set if every vertex $v \in V(\Gamma)$ is an element of S or adjacent to an element of S. The domination number of a graph Γ denoted by $\gamma(\Gamma)$, is the minimum size of a dominating set of Γ. Here, we study some properties of the non-commuting graph of some finite groups. In this paper, we show that $\gamma\left(\Gamma_{G}\right)<\frac{|G|-|Z(G)|}{2}$. Also we charactrize all of groups G of order n with $t=|Z(G)|$, in which $\gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right) \in\{n-t+1, n-t, n-t-1, n-t-2\}$.

Keywords: non-commuting graph, dominating set, domination number Mathematics Subject Classification : 05C25, 05C75
DOI: 10.5614/ejgta.2018.6.2.3

1. Introduction

Let G be a non-abelian group and $Z(G)$ be the center of G. Associate a graph Γ_{G} with G as follows: Take $G \backslash Z(G)$ as the vertices of Γ_{G}. Two vertices a and b are adjacent if $a b \neq b a$. This graph is called the non-commuting graph of G. Let Γ be a simple graph. A subset $S \subseteq V(\Gamma)$ is called a dominating set if each vertex $v \in V(\Gamma) \backslash S$ has at least one neighbor in S. The size of a smallest dominating set of Γ is called domination number of Γ and is denoted by $\gamma(\Gamma)$.

Received: 24 September 2016, Revised: 11 March 2018, Accepted: 16 April 2018.
*Corresponding author.

Erdös considered the non-commuting graph in 1975 for the first time. In 2004, Abdollahi, Akbari and Maimani studied some properties of the non-commuting graph of a group. For more results, see [1],[2], [6], [5] and [12].

Before starting, let us introduce some necessary notation and definitions. For every graph Γ, we denote the set of the vertices of Γ by $V(\Gamma)$. The minimum degree of a graph Γ denoted by $\delta(\Gamma)$. The complete graph, path and cycle on n vertices are denoted by K_{n}, P_{n} and C_{n}, respectively. The open neighborhood of a vertex v in Γ is the set $N_{\Gamma}(v)$ of vertices joined to v by an edge. The closed neighborhood of v is the set $N_{\Gamma}[v]=N_{\Gamma}(v) \cup\{v\}$. The complement of Γ denoted by $\bar{\Gamma}$. If u and v are vertices in Γ, then $d(u, v)$ denotes the length of the shortest path between u and v. A graph Γ is connected if there is a path between each pair of the vertices of Γ. The maximum value of $d(u, v)$ between all pair of the vertices of connected graph Γ is called the diameter of Γ and denoted by $\operatorname{diam}(\Gamma)$. Let Γ_{1} and Γ_{2} be two graphs. The corona $\Gamma=\Gamma_{1} \rho \Gamma_{2}$ is the graph formed from one copy of Γ_{1} and $\left|V\left(\Gamma_{1}\right)\right|$ copies of Γ_{2} such that the i th vertex of Γ_{1} is adjacent to every vertex in the i th copy of Γ_{2}.

For each $x \in G, C_{G}(x)=\{g \in G \mid g x=x g\}$. We denote the symmetric group and the alternating group on n letters by S_{n} and A_{n}, respectively. Also $Q_{8}=\langle A, B| A^{4}=1, A^{2}=$ $\left.B^{2}, B^{-1} A B=A^{-1}\right\rangle$ and $D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=(a b)^{2}=1\right\rangle$ are the quaternion group with 8 elements and the dihedral group of order $2 n$, respectively.

In this paper, we study the domination number of the non-commuting graphs. In particular, we charactrize all groups G of order n with $|Z(G)|=t$, in which $\gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right) \in\{n-t+1, n-$ $t, n-t-1, n-t-2\}$.

2. Preliminaries

In this section, we provide some useful results which will be applied in the next section.
Theorem 2.1. (Ore) [10] Let Γ be a graph with no isolated vertices. Then $\gamma(\Gamma) \leqslant \frac{n}{2}$.
Theorem 2.2. [7] For a graph Γ with even order n and no isolated vertices, $\gamma(\Gamma)=\frac{n}{2}$ if and only if the components of Γ are the cycle C_{4} or the Corona $H o K_{1}$ for any connected graph H.

Theorem 2.3. [1], 2.1. For any non-abelian group G, $\operatorname{diam}\left(\Gamma_{G}\right)=2$. In particular, Γ_{G} is connected. Also the girth of Γ_{G} equal 3.
Theorem 2.4. [11] Let Γ be a graph of order n. Then the following holds.
i) $\gamma(\Gamma)+\gamma(\bar{\Gamma}) \leqslant n+1$.
ii) $\gamma(\Gamma) \gamma(\bar{\Gamma}) \leqslant n$.

Lemma 2.1. Let G be a finite non-abelian group. Then $\delta\left(\Gamma_{G}\right) \geqslant 3$.
Proof. Suppose that $d e g_{\Gamma_{G}}(v) \leqslant 2$, for some $v \in V\left(\Gamma_{G}\right)$. Since $d e g_{\Gamma_{G}}(v) \geqslant \frac{|G|}{2}$, then $|G| \leqslant 4$. So, G is an abelian group, which is a contradiction.

Remark 2.1. Here, we get figures of the non-commuting graph of some groups. These figures are useful in proving some theorems in the third section. (See Figures 1, 2, 3 and 4.)

Figure 1. The non-commuting graph of S_{3}.

Figure 2. The non-commuting graph of D_{8}.

Figure 3. The non-commuting graph of Q_{8}.

Lemma 2.2. Let G be a non-abelian group of odd order. Then, the graph $\bar{\Gamma}_{G}$ contains no isolated vertex.

Proof. Assume to the contrary, a is an isolated vertex of $\bar{\Gamma}_{G}$. Then, for each $x \in G \backslash Z(G)$ we have $a x \neq x a$. Hence $o(a)=2$, which is a contradiction.

Lemma 2.3. Let G be a non-abelian group and $|Z(G)|=1$. Then, the vertices of degree one in $\bar{\Gamma}_{G}$ occure only at the edges. Furthermore, if $\operatorname{deg}_{\bar{\Gamma}_{G}} a=1$ then $o(a)=3$.

Proof. Let $a \in V\left(\bar{\Gamma}_{G}\right)$, deg $\overline{\bar{\Gamma}}_{G} a=1$ and a be adjacent to b. Then, $C_{G}(a)=\{1, a, b\}$ and so $b=a^{-1}$. Hence, $C_{G}(b)=\{1, b, a\}$. Thus, $d e g_{\bar{\Gamma}_{G}} b=1$. Furthermore, $o(a)=o(b)=3$.

Figure 4. The non-commuting graph of D_{10}.

Lemma 2.4. Let G be a non-abelian group. Then $\bar{\Gamma}_{G}$ does not have $C_{n},(n>3)$ as component.
Proof. Let C_{n} be a component of $\bar{\Gamma}_{G}$ and $\{a, b\} \subset V\left(C_{n}\right)$ such that $b \in N_{\bar{\Gamma}_{G}}(a)$. Then $N_{\bar{\Gamma}_{G}}[a]=$ $\{a, b, f\}$ and $N_{\bar{\Gamma}_{G}}[b]=\{a, b, c\}$. So $C_{G}(a)=\{a, b, f\} \cup Z(G)$ and $C_{G}(b)=\{a, b, c\} \cup Z(G)$. Since $\left|C_{G}(a) \cap C_{G}(b)\right|$ divides $\left|C_{G}(a)\right|$, then $2+|Z(G)|$ divides $3+|Z(G)|$, that is a contradiction.

Definition 2.1. Let G be a group. Write S and T for the set of elements of G of order two and three, respectively. Then G is a acceptable when neither S nor T is empty and $G=S^{*} \cup T$, where $S^{*}=S \cup\{e\}$.

Theorem 2.5. [3] If G is acceptable, then either $S^{*} \leq G$ or $T^{*} \leq G$.

3. Main results

In this section, we prove our main results.
Theorem 3.1. Let G be a non-abelian group. Then, the following holds.
i) $\delta\left(\Gamma_{G}\right)=3$ if and only if G is isomorphic to S_{3}.
ii) $\delta\left(\Gamma_{G}\right)=4$ if and only if G is isomorphic to D_{8} or Q_{8}.
iii) $\delta\left(\Gamma_{G}\right)=5$ if and only if G is isomorphic to D_{10}.

Proof. We prove as follows:
i) Let $\delta\left(\Gamma_{G}\right)=3$ and $d e g_{\Gamma_{G}}(v)=3$, for some $v \in V\left(\Gamma_{G}\right)$. Since $d e g_{\Gamma_{G}}(v) \geqslant \frac{|G|}{2}$, then $|G| \leqslant 6$. The only non-abelian group of order less than 7 is S_{3}.
Conversely, Suppose that G is isomorphic to S_{3}. By considering the figure of the noncommuting graph associated to symmetric group S_{3} (See Figure 1), we obtain $\delta\left(\Gamma_{G}\right)=3$.
ii) Let $\delta\left(\Gamma_{G}\right)=4$. Then $|G| \leqslant 8$ and so $G \in\left\{S_{3}, D_{8}, Q_{8}\right\}$. By $(i), G \nsubseteq S_{3}$. So $G \cong D_{8}$ or Q_{8}. Conversely, Suppose that G is isomorphic to D_{8} or Q_{8}. By considering the figure of the non-commuting graph associated to D_{8} and Q_{8} (See Figures 2 and 3), we obtain $\delta\left(\Gamma_{G}\right)=4$.
iii) Let $\delta\left(\Gamma_{G}\right)=5$. Then $|G| \leqslant 10$. By (i) and $(i i),|G|=10$. Since G is not an abelian group, then G is isomorphic to D_{10}. Conversely, Suppose that G is isomorphic to D_{10}. By considering the figure of the non-commuting graph associated to the dihedral group D_{10} (See Figure 4), we obtain $\delta\left(\Gamma_{G}\right)=5$.

Corollary 3.1. All of 3 -regular and 5 -regular graphs cannot be non-commuting graphs.
Theorem 3.2. Let Γ be a $(n-2)$-regular graph of order n. Then Γ is the non-commuting graph associated to a non-abelian group G if and only if $n=6$ and G is isomorphic to D_{8} or Q_{8}.

Proof. Let Γ be a $(n-2)$-regular graph of order n and G be a group such that $\Gamma_{G}=\Gamma$. Then n is even and $\bar{\Gamma}_{G}$ is a disjoint union of $\frac{n}{2}$ edges. If a and b are adjacent in $\bar{\Gamma}_{G}$, then $C_{G}(a)=$ $Z(G) \cup\{a, b\}$. It is clear that $|Z(G)| \leqslant 2$.

If $|Z(G)|=1$, then $C_{G}(a)=\left\{1, a, a^{-1}=b\right\}$ and $o(a)=3$. Since $\bar{\Gamma}_{G}$ is a disjoint union of some edges, then for each $x \in G$ we have $o(x)=3$. Thus, there is a positive integer s such that $|G|=3^{s}$. Hence $|Z(G)|>1$, which is a contradiction.

If $|Z(G)|=2$ and $Z(G)=\{1, x\}$, then for each $a \in G \backslash Z(G), C_{G}(a)=\{1, x, a, b\}$ and so we have $a^{2}=1$ or $a^{2}=x$. Therefore for each $a \in G \backslash Z(G)$ we have $a^{2} \in Z(G)$. Hence $\frac{G}{Z(G)}$ is an elementary abelian 2-group. So $G^{\prime} \leq Z(G)$, which implies $\left|G^{\prime}\right|=1$ or 2 . Since G is not an abelian group, then $G^{\prime} \neq\{1\}$. Thus $G^{\prime}=Z(G)$. Also we have $c l(a)=\left\{g^{-1} a g: g \in G\right\} \subseteq a G^{\prime}$ and so $|c l(a)| \leqslant 2$. Since $|c l(a)|=\frac{|G|}{\left|C_{G}(a)\right|}$, then $|G| \leqslant 8$. Hence $G \cong S_{3}, D_{8}$ or Q_{8}. Since $Z\left(S_{3}\right)=1$, then $G \cong D_{8}$ or $G \cong Q_{8}$.

Conversely, suppose that $G \cong D_{8}$ or $G \cong Q_{8}$. Then by considering the figures of the noncommuting graphs of these two groups (See Figures 2 and 3), we obtain Γ_{G} is a 4-regular graph of order 6.

Theorem 3.3. Every $(n-3)$-regular graph of order n is not the non-commuting graph.
Proof. Let Γ be a graph of order n and $(n-3)$-regular. Also, suppose that G is a group and $\Gamma_{G}=\Gamma$. Thus, $\bar{\Gamma}_{G}$ is a 2-regular graph. It means that $\bar{\Gamma}_{G}$ is a disjoint union of cycles.

By Lemma 2.4, $\bar{\Gamma}_{G}$ is a disjoint union of triangles. Hence for every $a \in G \backslash Z(G), C_{G}(a)=$ $Z(G) \cup\{a, b, c\}$ such that $b c=c b$. Thus, $|Z(G)| \leqslant 3$.

Case 1. If $|Z(G)|=1$, then $\left|C_{G}(a)\right|=4$. So there is a positive integer s such that $|G|=2^{s}$. Thus, $|Z(G)|>1$, which is a contradiction.

Case 2. If $|Z(G)|=2$, then $\left|C_{G}(a)\right|=5$. Since $|Z(G)|$ divides $\left|C_{G}(a)\right|$, then $2 \mid 5$, which is a contradiction.

Case 3. If $|Z(G)|=3$, then $\left|C_{G}(a)\right|=6$. Thus, $C_{G}(a) \cong Z_{6}$ and so for each $x \notin Z(G)$, $o(x) \in\{2,6\}$. So for each $a \in G \backslash Z(G), a^{2} \in Z(G)$ which implies $G / Z(G)$ is an elementary abelian 2-group. Therefore, $G^{\prime} \leq Z(G)$. Since G is not an abelian group, then $G^{\prime}=Z(G)$. We
know that $\operatorname{cl}(a) \subseteq a G^{\prime}$. So $|c l(a)| \leqslant 3$ Hence $6<|G| \leqslant 18$. Since $|Z(G)|=3$ and $|Z(G)|$ divides $|G|$, then $|G| \in\{9,12,15,18\}$. Furthermore, since G is not an abelian group, then we have $|G| \in\{12,18\}$.

If $|G|=12$, then $G \cong A_{4}, D_{12}$ or $\left\langle a, b \mid a^{6}=1, a^{3}=b^{2}, b^{-1} a b=a^{-1}\right\rangle$. Since G has only 2 elements of order three, then $G \not \equiv A_{4}$. Also since $\left|Z\left(D_{12}\right)\right|=2$, then $G \not \equiv D_{12}$. Hence $G \cong\left\langle a, b \mid a^{6}=1, a^{3}=b^{2}, b^{-1} a b=a^{-1}\right\rangle$. So G has an element of order 4, which is a contradiction.

If $|G|=18$, then $\bar{\Gamma}_{G} \cong 5 K_{3}$. So G has exactly 5 elements of order 2 . Let n_{p} be the number of Sylow p-subgroup of G. By Sylow Theorem, $n_{2}(G) \in\{1,3,9\}$. Hence G has 1,3 or 9 elements of order 2 , which is a contradiction.

In [10], Ore proved that if Γ is a graph with no isolated vertices, then $\gamma(\Gamma) \leq \frac{n}{2}$. In Theorems 3.4 and 3.5, we show that if G is a non-abelian group with $|Z(G)|=t$, then $\gamma\left(\Gamma_{G}\right)$ and $\gamma\left(\bar{\Gamma}_{G}\right)$ are less than $\frac{n-t}{2}$.

Theorem 3.4. Let G be a non-abelian group of order n and $|Z(G)|=t$. Then $\gamma\left(\Gamma_{G}\right)<\frac{n-t}{2}$.
Proof. We know $\left|V\left(\Gamma_{G}\right)\right|=n-t$. Since Γ_{G} is a connected graph, it contains no isolated vertex. By Theorem 2.1, $\gamma\left(\Gamma_{G}\right) \leqslant \frac{n-t}{2}$. Now, we show $\gamma\left(\Gamma_{G}\right)<\frac{n-t}{2}$. Assume to the contrary, $\gamma\left(\Gamma_{G}\right)=\frac{n-t}{2}$. By Theorem 2.2, each component of the graph Γ_{G} is the cycle C_{4} or the Corona product K_{1} and a connected graph H, that is $H o K_{1}$. By Lemma 2.1, is a contradiction. Hence $\gamma\left(\Gamma_{G}\right)<\frac{n-t}{2}$.

Theorem 3.5. Let G be a non-abelian group of odd order n and $|Z(G)|=t$. Then $\gamma\left(\bar{\Gamma}_{G}\right)<\frac{n-t}{2}$.
Proof. Since n is odd, then t is odd. By Lemma 2.2, the graph $\bar{\Gamma}_{G}$ contains no isolated vertex. By Theorem 2.1, $\gamma\left(\bar{\Gamma}_{G}\right) \leqslant \frac{n-t}{2}$. Now, suppose that $\gamma\left(\bar{\Gamma}_{G}\right)=\frac{n-t}{2}$. Then, by Theorem 2.2, $\bar{\Gamma}_{G}$ has connected components of kind of C_{4} or HoK_{1}. By Lemma 2.4, all components of $\bar{\Gamma}_{G}$ are the corona product K_{1} and a connected graph H. Let a be a vertex of degree 1 in $\bar{\Gamma}_{G}$ and b is adjacent to a. Then $C_{G}(a)=\{a, b\} \cup Z(G)$ and so $|Z(G)| \leqslant 2$. Since $|G|$ is odd, then $|Z(G)|=1$. By Lemma 2.3, $|G|=3^{s}$. Hence $|Z(G)|>1$, which is a contradiction.

In the following theorem, we characterize all groups G of order n with $|Z(G)|=t$, in which $\gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right) \in\{n-t+1, n-t, n-t-1, n-t-2\}$.

Theorem 3.6. Let G be a non-abelian group of order n and $|Z(G)|=t$. Then the following holds.
i) $\gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right)<n-t+1$.
ii) $\gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right)=n-t$ if and only if $G \cong S_{3}$.
iii) $\gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right)=n-t-1$ if and only if $G \cong D_{8}$ or $G \cong Q_{8}$.
iv) $\gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right)=n-t-2$ if and only if $G \cong D_{10}$.

Proof. Since $|G|=n$ and $|Z(G)|=t$, then $\left|V\left(\Gamma_{G}\right)\right|=n-t$. By Theorem 3.4, $\gamma\left(\Gamma_{G}\right)<\frac{n-t}{2}$.
i) By Theorem 2.4, $\gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right) \leqslant n-t+1$. Let $\gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right)=n-t+1$. Then $\gamma\left(\bar{\Gamma}_{G}\right)>n-t+1-\frac{n-t}{2}=\frac{n-t+2}{2}$. By Theorem 2.1, $\bar{\Gamma}_{G}$ contains at least one isolated vertex. So $t=1$ and $\gamma\left(\Gamma_{G}\right)=1$. Thus $\gamma\left(\bar{\Gamma}_{G}\right)=n-1$. Therefore $\Gamma_{G}=K_{n-1}$. By Theorem 2.3, it is impossible. Hence $\gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right)<n-t+1$.
ii) Let $\gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right)=n-t$. Then $\gamma\left(\bar{\Gamma}_{G}\right)>\frac{n-t}{2}$. By Theorem 2.1, $\bar{\Gamma}_{G}$ contains at least one isolated vertex. So $t=1, \gamma\left(\Gamma_{G}\right)=1$ and $\gamma\left(\bar{\Gamma}_{G}\right)=n-2$. Thus, $\bar{\Gamma}_{G}$ is a disjoint union of P_{2} and isolated vertices $\left\{x_{1}, x_{2}, \ldots, x_{n-3}\right\}$. All isolated vertices x_{i} are of order 2. Let a and b be the vertices of the path P_{2}. By Lemma 2.3, $b=a^{-1}$ and $o(a)=o(b)=3$. We claim that if x_{1} and x_{2} are two elements of order 2, then $o\left(x_{1} x_{2}\right)=3$. To see this, suppose $o\left(x_{1} x_{2}\right)=2$. Then $x_{1} x_{2} x_{1} x_{2}=1$ and so $x_{1} x_{2}=x_{2} x_{1}$. Thus x_{1} is adjacent to x_{2} in $\bar{\Gamma}_{G}$, which is a contradiction. It is easy to see that $o\left(x_{i} b\right)=2$, for $i=1,2, \ldots, n-3$.
If $T=\left\langle x_{1}, b \mid x_{1}^{2}=b^{3}=1,\left(x_{1} b\right)^{2}=1\right\rangle$, then $T \cong S_{3}$. We prove $G \cong T$. If $x_{2} \in G \backslash T$ and $x_{1} x_{2}=b$, then $x_{2}=x_{1} b$. Since $x_{1} b \in T, x_{2} \in T$. Also if $x_{1} x_{2}=b^{-1}$, then $x_{2}=x_{1} b^{-1} \in T$. However it is a contradiction. Hence $G \cong T \cong S_{3}$. Conversely, if $G \cong S_{3}$, then by Figure 1, $\gamma\left(\Gamma_{G}\right)=1$ and $\gamma\left(\bar{\Gamma}_{G}\right)=4$ and the proof is complete.
iii) Let $\gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right)=n-t-1$. Then $\gamma\left(\bar{\Gamma}_{G}\right)>\frac{n-t-2}{2}$. We consider two cases:

Case 1. Let $\gamma\left(\bar{\Gamma}_{G}\right)=\frac{n-t}{2}$. Then $\gamma\left(\Gamma_{G}\right)=\frac{n-t}{2}-1$. If $\bar{\Gamma}_{G}$ has an isolated vertex, then $t=1$ and so n is odd. By Theorem 3.5, $\gamma\left(\bar{\Gamma}_{G}\right)<\frac{n-1}{2}$, which is false. If $\bar{\Gamma}_{G}$ does not have an isolated vertex, then by Theorem 2.2 and Lemma 2.4, $\bar{\Gamma}_{G}$ has a vertex of degree one. So $t=1$ or $t=2$. If $t=1$, then n is odd. By Theorem 3.5, $\gamma\left(\bar{\Gamma}_{G}\right)<\frac{n-1}{2}$, which is false. If $t=2$, then $\gamma\left(\bar{\Gamma}_{G}\right)=\frac{n-2}{2}$ and $\gamma\left(\Gamma_{G}\right)=\frac{n-4}{2}$. By Theorem 2.4, $\frac{n-2}{2} \cdot \frac{n-4}{2} \leqslant n-2$. Since $n \neq 2$, then $n \leqslant 8$. So G is isomorphic to S_{3}, D_{8} or Q_{8}. But $Z\left(S_{3}\right)=1$. Hence G is isomorphic to D_{8} or Q_{8}.

Case 2. If $\gamma\left(\bar{\Gamma}_{G}\right)>\frac{n-t}{2}$, then $\bar{\Gamma}_{G}$ contains at least one isolated vertex. So $t=1$ and so $\gamma\left(\Gamma_{G}\right)=1$. Therefore $\gamma\left(\bar{\Gamma}_{G}\right)=n-3$. By Lemmas 2.3, 2.4 and $\gamma\left(\bar{\Gamma}_{G}\right)=n-3$, we have the following subcases.

Subcase 1. Let $\bar{\Gamma}_{G}$ be a union of the isolated vertices $\left\{x_{1}, x_{2}, \ldots, x_{n-4}\right\}$ and K_{3} with vertices a, b, c. Then $C_{G}(a)=C_{G}(b)=C_{G}(c)=\{1, a, b, c\}$. So orders of a, b and c are 2 or 4. If $o(a)=o(b)=o(c)=2$, then order of each element of G is 2 and so G is an abelian group, which is a contradiction. If $o(a)=2$ and $o(b)=4$, then $a=b^{2}$ and for each i $(i=1,2, \ldots, n-4), x_{i} b x_{i}=b$ or $x_{i} b x_{i}=b^{-1}$. If $x_{i} b x_{i}=b$, then $b x_{i}=x_{i} b$. So b is adjacent to x_{i}, which is a contradiction. If $x_{i} b x_{i}=b^{-1}$, then $\left\langle b, x_{i}\right\rangle \cong D_{8}$. We claim that $G \cong\left\langle b, x_{1}\right\rangle$. Suppose that $x \in G \backslash\left\langle b, x_{1}\right\rangle$. Since $x b x=b^{-1}$ and $x_{1} b x_{1}=b^{-1}$, then $x b x=x_{1} b x_{1}$ and so $x_{1} x \in C_{G}(b)$. We know that $C_{G}(b)=\langle b\rangle$. So $x \in\left\{x_{1} b, x_{1} b^{2}, x_{1} b^{3}\right\}$, Hence $x \in\left\langle b, x_{1}\right\rangle$. Therefore $G \cong D_{8}$. Since in this case $Z(G)=\{1\}$, then we have $Z\left(D_{8}\right)=\{1\}$, which is a contradiction.

Subcase 2. Let $\bar{\Gamma}_{G}$ be a union of the isolated vertices $\left\{x_{1}, x_{2}, \ldots, x_{n-5}\right\}$ and two edges with vertices $a \sim b$ and $c \sim d$. By Lemma 2.3, $o(a)=o(b)=o(c)=o(d)=3$. Since $\{1, a, b, c, d\}$ is not a subgroup of G, by Theorem $2.5,\left\{1, x_{1}, x_{2}, \ldots, x_{n-5}\right\}$ is a subgroup of G. So $o\left(x_{1} x_{2}\right)=2$. Hence $x_{1} x_{2}=x_{2} x_{1}$ and so x_{1} is adjacent to x_{2} in $\bar{\Gamma}_{G}$, which is a contradiction. Conversely, by using the figures 2 and 3 we can obtain the proof.
iv) Let $\gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right)=n-t-2$. By Theorem 3.4, $\gamma\left(\Gamma_{G}\right)<\frac{n-t}{2}$. We have the following cases.

Case 1. If $\gamma\left(\Gamma_{G}\right)=\frac{n-t-2}{2}$, then $\gamma\left(\bar{\Gamma}_{G}\right)=\frac{n-t-2}{2}$. By Theorem 2.4, $\gamma\left(\Gamma_{G}\right) \cdot \gamma\left(\bar{\Gamma}_{G}\right) \leqslant n-t$. Hence, $1 \leqslant n-t \leqslant 7$. Since $n-t$ is even and $t \mid n$, then $n-t \in\{4,6\}$. If $n-t=4$, then $(n, t)=(6,2)$ and so $G \cong S_{3}$. Which is a contradiction to the fact that $Z\left(S_{3}\right)=1$. If $n-t=6$, then $(n, t) \in\{(10,4),(8,2)\}$. Since $t \mid n$, we have $(n, t)=(8,2)$. So $G \cong D_{8}$ or $G \cong Q_{8}$. By Figures 2 and 3, we have a contradiction.

Case 2. Let $\gamma\left(\Gamma_{G}\right)=\frac{n-t-4}{2}$ and $\gamma\left(\bar{\Gamma}_{G}\right)=\frac{n-t}{2}$. If $\bar{\Gamma}_{G}$ has an isolated vertex, then $t=1$ and so n is odd. By Theorem 3.5, $\gamma\left(\bar{\Gamma}_{G}\right)<\frac{n-1}{2}$, which is false.
If $\bar{\Gamma}_{G}$ does not have an isolated vertex, then by Theorem 2.2 and Lemma $2.4, \bar{\Gamma}_{G}$ has a vertex of degree 1. So $t=1$ or $t=2$. If $t=1$, then n is odd, which is false. If $t=2$, then $\gamma\left(\bar{\Gamma}_{G}\right)=\frac{n-2}{2}$ and $\gamma\left(\Gamma_{G}\right)=\frac{n-6}{2}$. Thus $n \leqslant 10$. By Figures 2,3 and 4 , we have a contradiction.

Case 3. Let $\gamma\left(\Gamma_{G}\right)<\frac{n-t-4}{2}$. Then $\gamma\left(\bar{\Gamma}_{G}\right)>\frac{n-t}{2}$ and so $\bar{\Gamma}_{G}$ has at least one isolated vertex. Thus $t=1, \gamma\left(\Gamma_{G}\right)=1$ and $\gamma\left(\bar{\Gamma}_{G}\right)=n-4$. Let $u \in V\left(\bar{\Gamma}_{G}\right)$. If $d e g_{\bar{\Gamma}_{G}}(u)>3$, then $\gamma\left(\bar{\Gamma}_{G}\right)<n-4$, which is not true. Hence for every $u \in V\left(\bar{\Gamma}_{G}\right)$, deg $g_{\bar{\Gamma}_{G}}(u) \leqslant 3$ and $o(u) \leqslant 5$. We have the following subcases.

Subcase 1. Let $d e g_{\bar{\Gamma}_{G}}(u) \leqslant 1$, where $u \in V\left(\bar{\Gamma}_{G}\right)$. Then $\bar{\Gamma}_{G}$ is isomorphic to union of 3 copies of P_{2} and $n-7$ isolated vertices. It is clear that isolated vertices are of order 2. By Lemma 2.3, G is an abelian acceptable group. By Theorem 2.5, $T \cup\{1\} \leq G$ or $S \cup\{1\} \leq G$. Since 3 does not divide $|T \cup\{1\}|$, then $T \cup\{1\}$ is not a subgroup of G. Hence $S^{*}=S \cup\{1\}$ is a subgroup of G. Since $\left|S^{*}\right| \leqslant \frac{|G|}{2}$, then $|G| \leqslant 12$. We know that there is no group of order less than 12 with exactly 6 elements of order 3 , which implies that $|G|=12$. Hence $G \cong A_{4}, D_{12}$ or $L=\left\langle a, b \mid a^{6}=1, a^{3}=b^{2}, b^{-1} a b=a^{-1}\right\rangle$. Since G has exactly 6 elements of order 3, we have $G \notin\left\{A_{4}, D_{12}\right\}$. Also in L we have $o(b)=4$. So $G \not \equiv L$.

Subcase 2. For each $u \in V\left(\bar{\Gamma}_{G}\right)$, $\operatorname{deg}_{\bar{\Gamma}_{G}}(u) \leqslant 2$. Let $u, v \in V\left(\bar{\Gamma}_{G}\right)$ and $\operatorname{deg}_{\bar{\Gamma}_{G}}(u)=$ $d e g_{\bar{\Gamma}_{G}}(v)=2$. If u and v are not adjacent in $\bar{\Gamma}_{G}$, then by Lemmas 2.3 and 2.4, $\gamma\left(\bar{\Gamma}_{G}\right)<n-4$, which is not true. If u and v are adjacent in $\bar{\Gamma}_{G}$, then by Lemmas 2.3 and 2.4, u and v are vertices of a K_{3}. Since $\gamma\left(\bar{\Gamma}_{G}\right)=n-4$, then $\bar{\Gamma}_{G}$ is isomorphic to union of exactly one copy of K_{3}, one copy of P_{2} and some isolated vertices. Suppose $V\left(K_{3}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$, $V\left(P_{2}\right)=\left\{v_{1}, v_{2}\right\}$ and isolated vertices are denoted by x_{i}, where $1 \leqslant i \leqslant n-6$. We have
$C_{G}\left(u_{i}\right)=\left\{1, u_{1}, u_{2}, u_{3}\right\}$. So $o\left(u_{i}\right) \in\{2,4\}$. By Lemma 2.3, $o\left(v_{1}\right)=o\left(v_{2}\right)=3$. Also we have $o\left(x_{i}\right)=2$. So $|G|=2^{\ell} 3$, where ℓ is natural. By Sylow Theorem, there are two subgroup H and K of G such that $|H|=2^{\ell}$ and $K=\left\{e, v_{1}, v_{1}^{-1}=v_{2}\right\}$.
If $h \in H$ and $o(h)=2$, then $o\left(h v_{1} h\right)=o\left(v_{1}\right)=3$. So $h v_{1} h=v_{1}$ or v_{1}^{-1}. If $h v_{1} h=v_{1}$, then $v_{1} h=h v_{1}$ and so $o\left(v_{1} h\right)=6$, which is false. If $h v_{1} h=v_{1}^{-1}$, then $v_{1} h=h v_{1}^{-1}$ or $h v_{1}=v_{1}^{-1} h$. It is well known that $|Z(H)|>1$.
Let $z \in Z(H)$ and $o(z)=2$. Then for every $h \in H \backslash\{z\}$, we have
$(z h) v_{1}=(h z) v_{1}=h\left(z v_{1}\right)=h\left(v_{1}^{-1} z\right)=\left(h v_{1}^{-1}\right) z=\left(v_{1} h\right) z=v_{1}(h z)=v_{1}(z h)$ Hence $z h \in C_{G}\left(v_{1}\right)$. So $z h \in\left\{v_{1}, v_{1}^{-1}\right\}$.
If $|H|>4$, then $|H| \geqslant 8$. Thus there are $h_{1}, h_{2} \in H, h_{1} \neq h_{2}$ such that $z h_{1}=z h_{2}$. Hence $h_{1}=h_{2}$, which is a contradiction. Thus $|H|=4$ and so $|G|=12$. Since G has exactly two elements of order 3, then $\left|c l\left(v_{1}\right)\right|=1$ or 2 . Since $\left|C_{G}\left(v_{1}\right)\right|=3$ and $\left[G: C_{G}\left(v_{1}\right)\right]=\left|c l\left(v_{1}\right)\right|$, we have $4=1$ or $4=2$, which is not true.

Subcase 3. Let $u \in V\left(\bar{\Gamma}_{G}\right), \operatorname{deg}_{\bar{\Gamma}_{G}}(u)=3$ and $N_{\bar{\Gamma}_{G}}(u)=\{x, y, z\}$. Then $C_{G}(u)=$ $\{1, u, x, y, z\}$ and so $o(u)=5$. Hence induced subgraph on $N_{\bar{\Gamma}_{G}}[u]$ is isomorphic to K_{4}. Since $\gamma\left(\bar{\Gamma}_{G}\right)=n-4$, then $\bar{\Gamma}_{G} \cong K_{4} \cup(n-5) K_{1}$. On the other hand if x is a isolated vertex in $\bar{\Gamma}_{G}$, then $o(x)=2$. Since $x u \notin\left\{1, u, u^{2}, u^{3}, u^{4}\right\}$, we have $o(x u)=2$. Thus $x u x=u^{-1}$ and so $\langle x, u\rangle \cong D_{10}$. Now let $y \in G \backslash\langle x, u\rangle$ and y be an isolated vertex in $\bar{\Gamma}_{G}$. Then $o(y u)=2$. Hence $y u y=x u x$. This implies that $x y \in C_{G}(u)=\left\{1, u, u^{2}, u^{3}, u^{4}\right\}$. Therefore $y \in\left\{x, x u, x u^{2}, x u^{3}, x u^{4}\right\}$ and so $y \in\langle x, u\rangle$, which is a contradiction. Hence $G \cong\langle x, u\rangle \cong D_{10}$.
Conversely, if $G \cong D_{10}$, then $t=1$ and by Figure $4, \gamma\left(\Gamma_{G}\right)+\gamma\left(\bar{\Gamma}_{G}\right)=7$ and the proof is complete.

Acknowledgments

The authors are very grateful to the referee for his/her useful comments. This research was partially supported by the Imam Khomeini International University.

References

[1] A. Abdollahi, S. Akbari and H.R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2006), 468-492.
[2] N. Ahanjideh and A. Iranmanesh, On the relation between the non-commuting graph and the prime graph, Int. J. Group Theory 1 (2012), 25-28.
[3] E.D. Bolker, Bryn Mawr College, Groups whose elements are ordered two or three, Amer. Math. Monthly 79 (9) (1972), 1007-1010).
[4] J.A. Bondy, J.S.R. Murty, Graph theory with applications, Elsevier, (1977).
[5] M.R. Darafsheh, H. Bigdely, A. Bahrami, Some results on non-commuting graph of a finite group, Ital. J. Pure Appl. Math. 27 (2010), 107-118.
[6] M.R. Darafsheh, P. Yousefzadeh, A characterization of the group A_{p+3} by its non-commuting graph, Int. Electron. J. Algebra 11 (2012), 160-164.
[7] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Robert, On graph having domination number half their order, Period. Math. Hangar. 16 (1985), 287-293.
[8] J.C. Lennox, J. Wiegold, Extensions of a problem of Paul Erdös on groups, J. Aust. Math. Soc. Ser. A 31 (1981), 459-463.
[9] B.H. Neumann, A problem of Paul Erdös on groups, J. Aust. Math. Soc. Ser. A 21 (1976), 467-472.
[10] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ. 38 (Amer. Math. Soc, Providence, RI), 1962.
[11] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982), 23-32.
[12] B. Tolue, A. Erfania, A. Jafarzadeh, A kind of non-commuting graph of finite groups, J. Sci. Islam. Repub. Iran 25 (2014), 379-384.
[13] D.B. West, Introduction to graph theory, Prentice Hall, (1998).

