Electronic Journal of Graph Theory and Applications

Modular colorings of join of two special graphs

N. Paramaguru ${ }^{\text {a }}$, R. Sampathkumar ${ }^{\text {b }}$
${ }^{a}$ Mathematics Wing, Directorate of Distance Education, Annamalai University, Annamalainagar 608 002, India
${ }^{b}$ Mathematics Section, Faculty of Engineering and Technology, Annamalai University, Annamalainagar 608 002, India
npguru@gmail.com, sampathmath@gmail.com

Abstract

For $k \geq 2$, a modular k-coloring of a graph G without isolated vertices is a coloring of the vertices of G with the elements in \mathbb{Z}_{k} having the property that for every two adjacent vertices of G, the sums of the colors of their neighbors are different in \mathbb{Z}_{k}. The minimum k for which G has a modular k coloring is the modular chromatic number of G. In this paper, we determine the modular chromatic number of join of two special graphs.

Keywords: modular coloring; modular chromatic number; join of two graphs Mathematics Subject Classification : 05C15, 05C76

1. Introduction

For graph-theoretical terminology and notation, we in general follow [1]. For a vertex v of a graph G, let $N_{G}(v)$, the neighborhood of v, denote the set of vertices adjacent to v in G. For a graph G without isolated vertices, let $c: V(G) \rightarrow \mathbb{Z}_{k}, k \geq 2$, be a vertex coloring of G where adjacent vertices may be colored the same. The color sum $\sigma(v)=\sum_{u \in N_{G}(v)} c(u)$ of a vertex v of G is the sum of the colors of the vertices in $N_{G}(v)$. The coloring c is called a modular k-coloring of G if $\sigma(x) \neq \sigma(y)$ in \mathbb{Z}_{k} for all pairs x, y of adjacent vertices in G. The modular chromatic number $m c(G)$ of G is the minimum k for which G has a modular k coloring. This concept was introduced by Okamoto, Salehi and Zhang [2].

Received: 07 June 2013, Revised: 15 July 2014, Accepted: 03 August 2014.

Okamoto, Salehi and Zhang proved, in [2], that: every nontrivial connected graph G has a modular k-coloring for some integer $k \geq 2$ and $m c(G) \geq \chi(G)$, where $\chi(G)$ denotes the chromatic number of G; for the cycle C_{n} of length $n, \operatorname{mc}\left(C_{n}\right)$ is 2 if $n \equiv 0 \bmod 4$ and it is 3 otherwise; every nontrivial tree has modular chromatic number 2 or 3 ; for the complete multipartite graph G, $m c(G)=\chi(G)$; for the cartesian product $G=K_{r} \square K_{2}, m c(G)$ is r if $r \equiv 2 \bmod 4$ and it is $r+1$ otherwise; for the wheel $W_{n}=C_{n} \vee K_{1}, n \geq 3, m c\left(W_{n}\right)=\chi\left(W_{n}\right)$, where \vee denotes the join of two graphs; for $n \geq 3, m c\left(C_{n} \vee K_{2}^{c}\right)=\chi\left(C_{n} \vee K_{2}^{c}\right)$, where G^{c} denotes the complement of G; and for $n \geq 2, m c\left(P_{n} \vee K_{2}\right)=\chi\left(P_{n} \vee K_{2}\right)$, where P_{n} denotes the path of length $n-1$; and in [3] that: for $m, n \geq 2, m c\left(P_{m} \square P_{n}\right)=2$.

For graphs G_{1} and G_{2}, their union $G_{1} \cup G_{2}$ is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. For vertex-disjoint graphs G_{1} and G_{2}, their join $G_{1} \vee G_{2}$ is the supergraph of $G_{1} \cup G_{2}$ in which each vertex of G_{1} is adjacent to every vertex of G_{2} and both G_{1} and G_{2} are induced subgraphs.

In this paper, we compute the modular chromatic number of join of two special graphs.

2. Join of two bipartite graphs

2.1. Sufficient condition for $m c=4$

Let $i, j, k \in \mathbb{Z}_{4}$ with $i \neq j$. Set $M_{4}^{i, j ; k}=\{G: G$ is a bipartite graph such that G has a modular 4coloring c with the property that for every $v \in V(G), \sigma(v)(\bmod 4) \in\{i, j\}$ and $\left.\sum_{v \in V(G)} c(v) \equiv k \bmod 4\right\}$.
Lemma 2.1. Let G and H be two vertex-disjoint nonempty bipartite graphs. If any one of the following holds, then $m c(G \vee H)=4$.
(1) $G \in M_{4}^{0,1 ; 0}$ and $H \in M_{4}^{2,3 ; 0}$;
(2) $G \in M_{4}^{0,1 ; 1}$ and $H \in M_{4}^{2,3 ; 1}$;
(3) $G \in M_{4}^{0,1 ; 2}$ and $H \in M_{4}^{2,3 ; 2}$;
(4) $G \in M_{4}^{0,1 ; 3}$ and $H \in M_{4}^{2,3 ; 3 ;}$;
(5) $G \in M_{4}^{0,2 ; 0}$ and $H \in M_{4}^{1,3 ; 0}$;
(6) $G \in M_{4}^{0,2 ; 1}$ and $H \in M_{4}^{1,3 ; 1}$;
(7) $G \in M_{4}^{0,2 ; 2}$ and $H \in M_{4}^{1,3 ; 2}$;
(8) $G \in M_{4}^{0,2 ; 3}$ and $H \in M_{4}^{1,3 ; 3}$;
(9) $G \in M_{4}^{0,3 ; 0}$ and $H \in M_{4}^{1,2 ; 0}$;
(10) $G \in M_{4}^{0,3 ; 1}$ and $H \in M_{4}^{1,2 ; 1}$;
(11) $G \in M_{4}^{0,3 ; 2}$ and $H \in M_{4}^{1,2 ; 2}$;
(12) $G \in M_{4}^{0,3 ; 3}$ and $H \in M_{4}^{1,2 ; 3}$;
(13) $G \in M_{4}^{0,1 ; 0}$ and $H \in M_{4}^{0,1 ; 2}$;
(14) $G \in M_{4}^{0,1 ; 1}$ and $H \in M_{4}^{0,1 ; 3}$;
(15) $G \in M_{4}^{0,3 ; 0}$ and $H \in M_{4}^{0,3 ; 2}$;
(16) $G \in M_{4}^{0,3 ; 1}$ and $H \in M_{4}^{0,3 ; 3}$;
(17) $G \in M_{4}^{1,2 ; 0}$ and $H \in M_{4}^{1,2 ; 2}$;
(18) $G \in M_{4}^{1,2 ; 1}$ and $H \in M_{4}^{1,2 ; 3}$;
(19) $G \in M_{4}^{2,3 ; 0}$ and $H \in M_{4}^{2,3 ; 2}$;

Proof. Clearly, $m c(G \vee H) \geq \chi(G \vee H)=\chi(G)+\chi(H)=4$. We prove (48) and the proofs of (1) to (47) are similar. $G \in M_{4}^{1,2 ; 3}$ implies that G has a modular 4 coloring c^{\prime} such that for every $v \in V(G), \sigma^{\prime}(v)(\bmod 4) \in\{1,2\}$ and $\sum_{v \in V(G)} c^{\prime}(v) \equiv 3 \bmod 4$ and $H \in M_{4}^{2,3 ; 2}$ implies that H has a modular 4 coloring $c^{\prime \prime}$ such that for every $v \in V(H), \sigma^{\prime \prime}(v)(\bmod 4) \in\{2,3\}$ and $\sum_{v \in V(H)} c^{\prime \prime}(v) \equiv 2 \bmod 4$. Define $c: V(G \vee H) \rightarrow \mathbb{Z}_{4}$ by $c(v)=c^{\prime}(v)$ for $v \in V(G)$ and $c(v)=c^{\prime \prime}(v)$ for $v \in V(H)$. Then, for every $v \in V(G), \sigma(v)(\bmod 4)=3 \Leftrightarrow \sigma^{\prime}(v)(\bmod 4)=$ 1 , and $\sigma(v)(\bmod 4)=0 \Leftrightarrow \sigma^{\prime}(v)(\bmod 4)=2$; and for every $v \in V(H), \sigma(v)(\bmod 4)=1$ $\Leftrightarrow \sigma^{\prime \prime}(v)(\bmod 4)=2$, and $\sigma(v)(\bmod 4)=2 \Leftrightarrow \sigma^{\prime \prime}(v)(\bmod 4)=3$. Hence, c is a modular 4 coloring of $G \vee H$. Consequently, $m c(G \vee H) \leq 4$.

Using Lemma 2.1, we compute $m c(G \vee H)$ for some special graphs G and H.

2.2. Join of two paths

Theorem 2.1. For $m \geq 2$ and $n \geq 2, m c\left(P_{m} \vee P_{n}\right)=4$.
Proof. Case 1. $n \not \equiv 1 \bmod 4$.
First, we claim that $P_{m} \in M_{4}^{0,2 ; 0} \cup M_{4}^{0,2 ; 2}$. To see this, for $m \equiv 0 \bmod 4$, label the vertices of P_{m} by $0,0,2,0,0,0,2,0, \ldots, 0,0,2,0$ in order; for $m \equiv 1 \bmod 4$, label the vertices of P_{m} by $0,0,2,0,0,0,2,0, \ldots, 0,0,2,0,0$ in order; for $m \equiv 2 \bmod 4$, label the vertices of P_{m} by $2,0,0,0,2,0,0,0, \ldots, 2,0,0,0,2,0$ in order; and for $m \equiv 3 \bmod 4$, label the vertices of P_{m} by $0,0,2,0,0,0,2,0, \ldots, 0,0,2,0,0,0,2$ in order.

Next, we claim that $P_{n} \in M_{4}^{1,3 ; 0}$. To see this, for $n \equiv 0 \bmod 4$, label the vertices of P_{n} by $0,1,3,0,0,1,3,0, \ldots, 0,1,3,0$ in order; for $n \equiv 2 \bmod 4$, label the vertices of P_{n} by $1,3,0,0,1,3,0,0, \ldots, 1,3,0,0,1,3$ in order; and for $n \equiv 3 \bmod 4$, label the vertices of P_{n} by $0,1,3,0,0,1,3,0, \ldots, 0,1,3,0,0,1,3$ in order.

Finally, apply Lemma 2.1 (5) and (39).
Now, by symmetry, assume that both m and n are $\equiv 1 \bmod 4$. Again, by symmetry, it is enough if we consider the following cases.
Case $2 . m \equiv 1 \bmod 16$ and $n \equiv 1 \bmod 16$.
First, we claim that $P_{m} \in M_{4}^{0,3 ; 0}$. To see this, label the vertices of P_{m} by $0,0,3,0,0,0,3,0$, $\ldots, 0,0,3,0,0$ in order. Next, we claim that $P_{n} \in M_{4}^{0,1 ; 3}$. To see this, label the vertices of P_{n} by $3,0,2,0,3,0,2,0, \ldots, 3,0,2,0,3$ in order. Finally, apply Lemma 2.1 (32).
Case 3. $m \equiv 1 \bmod 16$ and $n \equiv 9 \bmod 16$.
First, we claim that $P_{m} \in M_{4}^{0,3 ; 1}$. To see this, label the vertices of P_{m} by $1,0,2,0,1,0,2,0$, $\ldots, 1,0,2,0,1$ in order. Next, we claim that $P_{n} \in M_{4}^{0,3 ; 3}$. To see this, label the vertices of P_{n} by $1,0,2,0,1,0,2,0, \ldots, 1,0,2,0,1$ in order. Finally, apply Lemma 2.1 (16).
Case 4. $m \equiv 5 \bmod 16$ and $n \equiv 5 \bmod 16$.
First, we claim that $P_{m} \in M_{4}^{0,1 ; 1}$. To see this, label the vertices of P_{m} by $0,0,1,0,0,0,1,0$, $\ldots, 0,0,1,0,0$ in order. Next, we claim that $P_{n} \in M_{4}^{0,3 ; 2}$. To see this, label the vertices of P_{n} by $3,0,0,0,3,0,0,0, \ldots, 3,0,0,0,3$ in order. Finally, apply Lemma 2.1 (30).
Case 5. $m \equiv 5 \bmod 16$ and $n \equiv 13 \bmod 16$.
First, we claim that $P_{m} \in M_{4}^{0,1 ; 1}$. To see this, label the vertices of P_{m} by $0,0,1,0,0,0,1,0$, $\ldots, 0,0,1,0,0$ in order. Next, we claim that $P_{n} \in M_{4}^{0,3 ; 2}$. To see this, label the vertices of P_{n} by $1,0,2,0,1,0,2,0, \ldots, 1,0,2,0,1$ in order. Finally, apply Lemma 2.1 (30).
Case $6 . m \equiv 9 \bmod 16$ and $n \equiv 9 \bmod 16$.
First, we claim that $P_{m} \in M_{4}^{0,3 ; 2}$. To see this, label the vertices of P_{m} by $0,0,3,0,0,0,3,0$, $\ldots, 0,0,3,0,0$ in order. Next, we claim that $P_{n} \in M_{4}^{0,1 ; 1}$. To see this, label the vertices of P_{n} by $3,0,2,0,3,0,2,0, \ldots, 3,0,2,0,3$ in order. Finally, apply Lemma 2.1 (30).
Case 7. $m \equiv 13 \bmod 16$ and $n \equiv 13 \bmod 16$.
First, we claim that $P_{m} \in M_{4}^{0,1 ; 0}$. To see this, label the vertices of P_{m} by $1,0,0,0,1,0,0,0$, $\ldots, 1,0,0,0,1$ in order. Next, we claim that $P_{n} \in M_{4}^{0,3 ; 1}$. To see this, label the vertices of P_{n} by $0,0,3,0,0,0,3,0, \ldots, 0,0,3,0,0$ in order. Finally, apply Lemma 2.1 (29).
Cases $8.1 . m \equiv 1 \bmod 16$ and $n \equiv 5 \bmod 16$;
8.2. $m \equiv 13 \bmod 16$ and $n \equiv 1 \bmod 16$;
8.3. $m \equiv 5 \bmod 16$ and $n \equiv 9 \bmod 16$;
8.4. $m \equiv 9 \bmod 16$ and $n \equiv 13 \bmod 16$.

First, label the vertices of P_{m} by $3,0,2,0,3,0,2,0, \ldots, 3,0,2,0,3$ in order. This shows that $P_{m} \in M_{4}^{0,1 ; 3}$ if $m \equiv 1 \bmod 16, P_{m} \in M_{4}^{0,1 ; 0}$ if $m \equiv 5 \bmod 16, P_{m} \in M_{4}^{0,1 ; 1}$ if $m \equiv 9 \bmod 16$, and $P_{m} \in M_{4}^{0,1 ; 2}$ if $m \equiv 13 \bmod 16$.

Next, label the vertices of P_{n} by $0,0,1,0,0,0,1,0, \ldots, 0,0,1,0,0$ in order. This implies that $P_{n} \in M_{4}^{0,1 ; 0}$ if $n \equiv 1 \bmod 16, P_{n} \in M_{4}^{0,1 ; 1}$ if $n \equiv 5 \bmod 16, P_{n} \in M_{4}^{0,1 ; 2}$ if $n \equiv 9 \bmod 16$, and $P_{n} \in M_{4}^{0,1 ; 3}$ if $n \equiv 13 \bmod 16$.

If $m \equiv 13 \bmod 16$ and $n \equiv 1 \bmod 16$ or if $m \equiv 5 \bmod 16$ and $n \equiv 9 \bmod 16$, then apply Lemma 2.1 (13). If $m \equiv 1 \bmod 16$ and $n \equiv 5 \bmod 16$, or if $m \equiv 9 \bmod 16$ and $n \equiv 13 \bmod 16$, then apply Lemma 2.1 (14).

2.3. Join of a path and an even cycle

Theorem 2.2. For $m \geq 2$ and $n \geq 2, m c\left(P_{m} \vee C_{2 n}\right)=4$.
Proof. First, label the vertices of $C_{2 n}, n \equiv 0 \bmod 2$, by $0,1,3,0,0,1,3,0, \ldots, 0,1,3,0$ in cyclic order. This shows that $C_{2 n} \in M_{4}^{1,3 ; 0}$ if $n \equiv 0 \bmod 2$.

Next, label the vertices of $C_{2 n}, n \equiv 1 \bmod 2$, by $1,0,1,0,1,0,1,0, \ldots, 1,0,1,0,1,0$ in cyclic order. This shows that $C_{2 n} \in M_{4}^{0,2 ; 1}$ if $n \equiv 1 \bmod 4$ and $C_{2 n} \in M_{4}^{0,2 ; 3}$ if $n \equiv 3 \bmod 4$.

Finally, for $m \equiv 0 \bmod 4$, label the vertices of P_{m} by $0,0,2,0,0,0,2,0, \ldots, 0,0,2,0$ in order; for $m \equiv 1 \bmod 4$, label the vertices of P_{m} by $0,0,2,0,0,0,2,0, \ldots, 0,0,2,0,0$ in order; for $m \equiv 2 \bmod 4$, label the vertices of P_{m} by $2,0,0,0,2,0,0,0, \ldots, 2,0,0,0,2,0$ in order; and for $m \equiv 3 \bmod 4$, label the vertices of P_{m} by $0,0,2,0,0,0,2,0, \ldots, 0,0,2,0,0,0,2$ in order. This shows that $P_{m} \in M_{4}^{0,2 ; 0} \cup M_{4}^{0,2 ; 2}$.

If $n \equiv 0 \bmod 2$, then apply Lemma $2.1(5)$ and (39). If $n \equiv 1 \bmod 4$, then apply Lemma 2.1 (21) and (22). If $n \equiv 3 \bmod 4$, then apply Lemma 2.1 (23) and (24).

2.4. Join of a path and a complete bipartite graph

Theorem 2.3. For integers $n \geq 2, r \geq 1$, and $s \geq 1, m c\left(P_{n} \vee K_{r, s}\right)=4$.
Proof. Let $P_{n}:=u_{1} u_{2} \ldots u_{n}, X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$, and the bipartition of $K_{r, s}$ be (X, Y). We consider four cases.
Case 1. $n \equiv i \bmod 16, i \in\{1,2,3,4,5\}$.
First, we claim that $K_{r, s} \in M_{4}^{2,3 ; 1}$. To see this, label the vertex x_{1} of $K_{r, s}$ by 2 , the vertex y_{1} of $K_{r, s}$ by 3 and all other vertices of $K_{r, s}$ by 0 . Next, we claim that $P_{n} \in M_{4}^{0,1 ; 1}$. To see this, for $n \equiv 1 \bmod 16$, label the vertices of P_{n} by $1,0,0,0,1,0,0,0, \ldots, 1,0,0,0,1$ in order; for $n \equiv 2 \bmod 16$, label the vertices of P_{n} by $1,0,0,0,1,0,0,0, \ldots, 1,0,0,0,1,0$ in order; for $n \equiv 3 \bmod 16$, label the vertices of P_{n} by $1,0,0,0,1,0,0,0, \ldots, 1,0,0,0,1,0,0$ in order; for $n \equiv 4 \bmod 16$, label the vertices of P_{n} by $0,0,1,0,0,0,1,0, \ldots, 0,0,1,0$ in order; for $n \equiv 5 \bmod 16$, label the vertices of P_{n} by $0,0,1,0,0,0,1,0, \ldots, 0,0,1,0,0$ in order. Finally, apply Lemma 2.1 (2).
Case 2. $n \equiv i \bmod 16, i \in\{6,7,8\}$.
First, we claim that $K_{r, s} \in M_{4}^{0,3 ; 3}$. To see this, label the vertex y_{1} of $K_{r, s}$ by 3 and all other vertices of $K_{r, s}$ by 0 . Next, we claim that $P_{n} \in M_{4}^{0,1 ; 2}$. To see this, for $n \equiv 6 \bmod 16$, label the vertices of P_{n} by $0,1,0,0,0,1,0,0, \ldots, 0,1,0,0,0,1$ in order; for $n \equiv 7 \bmod 16$, label the
vertices of P_{n} by $0,1,0,0,0,1,0,0, \ldots, 0,1,0,0,0,1,0$ in order; for $n \equiv 8 \bmod 16$, label the vertices of P_{n} by $0,1,0,0,0,1,0,0, \ldots, 0,1,0,0$ in order. Finally, apply Lemma 2.1 (31). Case 3. $n \equiv i \bmod 16, i \in\{9,10,11,12,13\}$.

First, we claim that $K_{r, s} \in M_{4}^{0,1 ; 1}$. To see this, label the vertex y_{1} of $K_{r, s}$ by 1 and all other vertices of $K_{r, s}$ by 0 . Next, we claim that $P_{n} \in M_{4}^{0,1 ; 3}$. To see this, for $n \equiv 9 \bmod 16$, label the vertices of P_{n} by $1,0,0,0,1,0,0,0, \ldots, 1,0,0,0,1$ in order; for $n \equiv 10 \bmod 16$, label the vertices of P_{n} by $1,0,0,0,1,0,0,0, \ldots, 1,0,0,0,1,0$ in order; for $n \equiv 11 \bmod 16$, label the vertices of P_{n} by $1,0,0,0,1,0,0,0, \ldots, 1,0,0,0,1,0,0$ in order; for $n \equiv 12 \bmod 16$, label the vertices of P_{n} by $0,0,1,0,0,0,1,0, \ldots, 0,0,1,0$ in order; for $n \equiv 13 \bmod 16$, label the vertices of P_{n} by $0,0,1,0,0,0,1,0, \ldots, 0,0,1,0,0$ in order. Finally, apply Lemma 2.1 (14).
Case 4. $n \equiv i \bmod 16, i \in\{0,14,15\}$.
First, we claim that $K_{r, s} \in M_{4}^{1,2 ; 3}$. To see this, label the vertex x_{1} of $K_{r, s}$ by 1 , the vertex y_{1} of $K_{r, s}$ by 2 and all other vertices of $K_{r, s}$ by 0 . Next, we claim that $P_{n} \in M_{4}^{0,1 ; 0}$. To see this, for $n \equiv 14 \bmod 16$, label the vertices of P_{n} by $0,1,0,0,0,1,0,0, \ldots, 0,1,0,0,0,1$ in order; for $n \equiv 15 \bmod 16$, label the vertices of P_{n} by $0,1,0,0,0,1,0,0, \ldots, 0,1,0,0,0,1,0$ in order; for $n \equiv 0 \bmod 16$, label the vertices of P_{n} by $0,1,0,0,0,1,0,0, \ldots, 0,1,0,0$ in order. Finally, apply Lemma 2.1 (33).

2.5. Join of an even cycle and a complete bipartite graph

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$, and the bipartition of $K_{r, s}$ be (X, Y).
Theorem 2.4. For integers $n \geq 1, r \geq 1$, and $s \geq 1, m c\left(C_{4 n} \vee K_{r, s}\right)=4$.
Proof. Let $C_{4 n}:=u_{1} u_{2} \ldots u_{4 n} u_{1}$. Label the vertices of $C_{4 n}$ by $1,0,0,0,1,0,0,0, \ldots, 1,0,0,0$ in cyclic order. We consider four cases.
Case 1. $n \equiv 1 \bmod 4$.
$C_{4 n} \in M_{4}^{0,1 ; 1}$ and by the proof of Theorem 2.3, $K_{r, s} \in M_{4}^{2,3 ; 1}$. Apply Lemma 2.1 (2).
Case 2. $n \equiv 2 \bmod 4$.
$C_{4 n} \in M_{4}^{0,1 ; 2}$ and by the proof of Theorem 2.3, $K_{r, s} \in M_{4}^{0,3 ; 3}$. Apply Lemma 2.1 (31).
Case 3. $n \equiv 3 \bmod 4$.
$C_{4 n} \in M_{4}^{0,1 ; 3}$ and by the proof of Theorem 2.3, $K_{r, s} \in M_{4}^{0,1 ; 1}$. Apply Lemma 2.1 (14).
Case 4. $n \equiv 0 \bmod 4$.
$C_{4 n} \in M_{4}^{0,1 ; 0}$ and by the proof of Theorem 2.3, $K_{r, s} \in M_{4}^{1,2 ; 3}$. Apply Lemma 2.1 (33).
Theorem 2.5. For integers $n \geq 1, r \geq 1$, and $s \geq 1, m c\left(C_{4 n+2} \vee K_{r, s}\right)=4$.
Proof. Label the vertex x_{1} of $K_{r, s}$ by 2 and all other vertices of $K_{r, s}$ by 0 . This shows that $K_{r, s} \in M_{4}^{0,2 ; 2}$. Let $C_{4 n+2}:=u_{1} u_{2} \ldots u_{4 n+2} u_{1}$. Label the vertices of $C_{4 n+2}$ by $1,0,1,0,1,0,1,0$, $\ldots, 1,0,1,0,1,0$ in cyclic order.

If $n \equiv 1 \bmod 2$, then $C_{4 n+2} \in M_{4}^{0,2 ; 3}$. Now apply Lemma 2.1 (23).
If $n \equiv 0 \bmod 2$, then $C_{4 n+2} \in M_{4}^{0,2 ; 1}$. Now apply Lemma 2.1 (22).

Modular colorings of join of two special graphs $\quad \mid \quad$ N. Paramaguru and R. Sampathkumar

2.6. Join of two regular bipartite graphs

Theorem 2.6. Let G be a k-regular bipartite graph with $k \equiv 1 \bmod 2$ and let H be an ℓ-regular bipartite graph with $\ell \equiv 1 \bmod 2$. We have $m c(G \vee H)=4$.

Proof. Let (X, Y) be the bipartition of G with $|X|=|Y|=m$, and let (U, V) be the bipartition of H with $|U|=|V|=n$. Define $c: V(G \vee H) \rightarrow \mathbb{Z}_{4}$ by $c(x)=0$ for $x \in X, c(y)=2$ for $y \in Y, c(u)=1$ for $u \in U, c(v)=3$ for $v \in V$. Then, $\sigma(x)=(n+3 n+2 k)(\bmod 4)=2$ for $x \in X$ and $\sigma(y)=(n+3 n)(\bmod 4)=0$ for $y \in Y$. We consider 2 cases.
Case 1 . Either $m \equiv 0 \bmod 2$ and $\ell \equiv 1 \bmod 4$ or $m \equiv 1 \bmod 2$ and $\ell \equiv 3 \bmod 4$.
In this case, $\sigma(u)=(2 m+3 \ell)(\bmod 4)=3$ for $u \in U$ and $\sigma(v)=(2 m+\ell)(\bmod 4)=1$ for $v \in V$.
Case 2. Either $m \equiv 0 \bmod 2$ and $\ell \equiv 3 \bmod 4$ or $m \equiv 1 \bmod 2$ and $\ell \equiv 1 \bmod 4$.
In this case, $\sigma(u)=(2 m+3 \ell)(\bmod 4)=1$ for $u \in U$ and $\sigma(v)=(2 m+\ell)(\bmod 4)=3$ for $v \in V$.

Theorem 2.7. Let G be a k-regular bipartite graph with $k \equiv 2 \bmod 4$ and let H be an ℓ-regular bipartite graph with $\ell \equiv 1 \bmod 2$. We have $m c(G \vee H)=4$.

Proof. Let (X, Y) be the bipartition of G with $|X|=|Y|=m$, and let (U, V) be the bipartition of H with $|U|=|V|=n$. We consider two cases.
Case $1 . m \equiv 1 \bmod 2$.
Define $c: V(G \vee H) \rightarrow \mathbb{Z}_{4}$ by $c(x)=0$ for $x \in X, c(y)=1$ for $y \in Y, c(u)=0$ for $u \in U, c(v)=2$ for $v \in V$. Then, $\sigma(x)=(2 n+k)(\bmod 4)=(2 n+2)(\bmod 4)$ for $x \in X, \sigma(y)=$ $2 n \bmod 4$ for $y \in Y, \sigma(u)=(m+2 \ell)(\bmod 4)=(m+2)(\bmod 4)$ for $u \in U$ and $\sigma(v)=m \bmod 4$ for $v \in V$. Note that $\{2 n, 2 n+2\}(\bmod 4)=\{0,2\}$ and as $m \equiv 1 \bmod 2,\{m, m+2\}(\bmod 4)=$ $\{1,3\}$.
Case 2. $m \equiv 0 \bmod 2$.
Define $c: V(G \vee H) \rightarrow \mathbb{Z}_{4}$ by $c(x)=0$ for $x \in X, c(y)=1$ for $y \in Y, c(u)=1$ for $u \in U, c(v)=3$ for $v \in V$. Then, $\sigma(x)=(4 n+k)(\bmod 4)=2$ for $x \in X, \sigma(y)=4 n \bmod 4=$ 0 for $y \in Y, \sigma(u)=(m+3 \ell)(\bmod 4)$ for $u \in U$ and $\sigma(v)=(m+\ell)(\bmod 4)$ for $v \in V$.

Note that (i) if either $m \equiv 0 \bmod 4$ and $\ell \equiv 1 \bmod 4$ or $m \equiv 2 \bmod 4$ and $\ell \equiv 3 \bmod 4$, then $\sigma(u)=3$ for $u \in U$ and $\sigma(v)=1$ for $v \in V$, (ii) if either $m \equiv 2 \bmod 4$ and $\ell \equiv 1 \bmod 4$ or $m \equiv 0 \bmod 4$ and $\ell \equiv 3 \bmod 4$, then $\sigma(u)=1$ for $u \in U$ and $\sigma(v)=3$ for $v \in V$.

We propose:
Problem 1. Let G be a k-regular bipartite graph with $k \equiv 0 \bmod 4$ and let H be an ℓ-regular bipartite graph with $\ell \equiv 1 \bmod 2$. Find $m c(G \vee H)$.

Problem 2. Let G be a k-regular bipartite graph with $k \equiv 0 \bmod 2$ and let H be an ℓ-regular bipartite graph with $\ell \equiv 0 \bmod 2$. Find $m c(G \vee H)$.

Modular colorings of join of two special graphs | N. Paramaguru and R. Sampathkumar

2.7. Join of two even cycles

Theorem 2.8. For $m \geq 1$ and $n \geq 1, m c\left(C_{4 m} \vee C_{4 n}\right)=4$.
Proof. First, label the vertices of $C_{4 m}$ by $0,0,2,0,0,0,2,0, \ldots, 0,0,2,0$ in cyclic order. This shows that $C_{4 m} \in M_{4}^{0,2 ; 0} \cup M_{4}^{0,2 ; 2}$. Next, label the vertices of $C_{4 n}$ by $1,3,0,0,1,3,0,0, \ldots$, $1,3,0,0$ in cyclic order. This implies that $C_{4 n} \in M_{4}^{1,3 ; 0}$. Finally, apply Lemma 2.1 (5) and (39).

Theorem 2.9. For $m \geq 1$ and $n \geq 1, m c\left(C_{4 m} \vee C_{4 n+2}\right)=4$.
Proof. By the proof of Theorem 2.3, $C_{4 m} \in M_{4}^{0,2 ; 0} \cup M_{4}^{0,2 ; 2}$. Labelling the vertices of $C_{4 n+2}$ by $1,0,1,0,1,0,1,0, \ldots, 1,0,1,0,1,0$ in cyclic order shows that $C_{4 n+2} \in M_{4}^{0,2 ; 1} \cup M_{4}^{0,2 ; 3}$. Application of Lemma 2.3 (21), (22), (23) and (24) completes the proof.

Lemma 2.2. Let $\ell \geq 1$. If $C_{4 \ell+2} \in M_{4}^{i, j ; k}$, then $\{i, j\}=\{0,2\}$ and $k \in\{1,3\}$.
Proof. Let $C_{4 \ell+2}=z_{1} z_{2} \ldots z_{4 \ell+2} z_{1} . C_{4 \ell+2} \in M_{4}^{i, j ; k}$ implies $C_{4 \ell+2}$ has a modular 4coloring c such that $\sigma\left(z_{2 p-1}\right)=i$ and $\sigma\left(z_{2 p}\right)=j$ for $p \in\{1,2, \ldots, 2 \ell+1\}$, and $\sum_{q=1}^{4 \ell+2} c\left(z_{q}\right) \equiv k \bmod 4$. We consider four cases.
Case 1. $i=0$ and $j=1$.
The σ-value 1 for the vertices $z_{2}, z_{4}, z_{6}, \ldots, z_{4 \ell}$ in order implies $\left(c\left(z_{1}\right), c\left(z_{3}\right), c\left(z_{5}\right), c\left(z_{7}\right)\right.$, $\left.\ldots, c\left(z_{4 \ell+1}\right)\right)$ is one of the following: $(0,1,0,1, \ldots, 0),(1,0,1,0, \ldots, 1),(2,3,2,3, \ldots, 2),(3,2,3$, $2, \ldots, 3)$. But then $\sigma\left(z_{4 \ell+2}\right) \neq 1$, a contradiction. Case 2. $i \in\{0,2\}$ and $j=3$.

The σ-value 3 for the vertices $z_{2}, z_{4}, z_{6}, \ldots, z_{4 \ell}$ in order implies $\left(c\left(z_{1}\right), c\left(z_{3}\right), c\left(z_{5}\right), c\left(z_{7}\right)\right.$, $\left.\ldots, c\left(z_{4 \ell+1}\right)\right)$ is one of the following: $(0,3,0,3, \ldots, 0),(3,0,3,0, \ldots, 3),(1,2,1,2, \ldots, 1),(2,1,2$, $1, \ldots, 2)$. But then $\sigma\left(z_{4 \ell+2}\right) \neq 3$, a contradiction.
Case 3. $i=1$ and $j \in\{2,3\}$.
The σ-value 1 for the vertices $z_{3}, z_{5}, z_{7}, \ldots, z_{4 \ell+1}$ in order implies $\left(c\left(z_{2}\right), c\left(z_{4}\right), c\left(z_{6}\right), c\left(z_{8}\right)\right.$, $\left.\ldots, c\left(z_{4 \ell+2}\right)\right)$ is one of the following: $(0,1,0,1, \ldots, 0),(1,0,1,0, \ldots, 1),(2,3,2,3, \ldots, 2),(3,2,3$, $2, \ldots, 3)$. But then $\sigma\left(z_{1}\right) \neq 1$, a contradiction. Case 4. $i=0$ and $j=2$.

The σ-value 0 for the vertices $z_{3}, z_{5}, z_{7}, \ldots, z_{4 \ell+1}$ in order implies $\left(c\left(z_{2}\right), c\left(z_{4}\right), c\left(z_{6}\right), c\left(z_{8}\right)\right.$, $\left.\ldots, c\left(z_{4 \ell+2}\right)\right)$ is one of the following: $(0,0,0,0, \ldots, 0),(2,2,2,2, \ldots, 2),(1,3,1,3, \ldots, 1),(3,1,3$, $1, \ldots, 3) \cdot \sigma\left(z_{1}\right)=0$ implies that $\left(c\left(z_{2}\right), c\left(z_{4}\right), c\left(z_{6}\right), c\left(z_{8}\right), \ldots, c\left(z_{4 \ell+2}\right)\right)=(0,0,0,0, \ldots, 0)$ or $(2,2,2,2, \ldots, 2)$.

The σ-value 2 for the vertices $z_{2}, z_{4}, z_{6}, \ldots, z_{4 \ell}$ in order implies $\left(c\left(z_{1}\right), c\left(z_{3}\right), c\left(z_{5}\right), c\left(z_{7}\right)\right.$, $\left.\ldots, c\left(z_{4 \ell+1}\right)\right)$ is one of the following: $(0,2,0,2, \ldots, 0),(2,0,2,0, \ldots, 2),(1,1,1,1, \ldots, 1),(3,3,3$, $3, \ldots, 3) \cdot \sigma\left(z_{4 \ell+2}\right)=2$ implies that $\left(c\left(z_{1}\right), c\left(z_{3}\right), c\left(z_{5}\right), c\left(z_{7}\right), \ldots, c\left(z_{4 \ell+1}\right)\right)=(1,1,1,1, \ldots, 1)$ or $(3,3,3,3, \ldots, 3)$.

Hence the c-values for the vertices $z_{1}, z_{2}, \ldots z_{4 \ell+2}$ in cyclic order are: $0,1,0,1, \ldots, 0,1 ; 0,3,0$, $3, \ldots, 0,3 ; 2,1,2,1, \ldots, 2,1 ; 2,3,2,3, \ldots, 2,3$.

Theorem 2.10. For $m \geq 1$ and $n \geq 1, m c\left(C_{4 m+2} \vee C_{4 n+2}\right)=5$.

Proof. Let $C_{4 m+2}=x_{1} x_{2} \ldots x_{4 m+2} x_{1}$ and $C_{4 n+2}=y_{1} y_{2} \ldots y_{4 n+2} y_{1}$. Define $c: V\left(C_{4 m+2} \vee\right.$ $\left.C_{4 n+2}\right) \rightarrow \mathbb{Z}_{5}$ by $c\left(x_{2 p}\right)=1$ and $c\left(x_{2 p-1}\right)=4$ for $p \in\{1,2, \ldots, 2 m+1\}$ and $c\left(y_{2 q}\right)=2$ and $c\left(y_{2 q-1}\right)=3$ for $q \in\{1,2, \ldots, 2 n+1\}$. Then, $\sigma\left(x_{2 p}\right)=3$ and $\sigma\left(x_{2 p-1}\right)=2$ for $p \in\{1,2, \ldots, 2 m+1\}$ and $\sigma\left(y_{2 q}\right)=1$ and $\sigma\left(y_{2 q-1}\right)=4$ for $q \in\{1,2, \ldots, 2 n+1\}$. Hence c is a modular 5 -coloring and therefore $m c\left(C_{4 m+2} \vee C_{4 n+2}\right) \leq 5$.

Suppose there exists a modular 4 coloring c for $C_{4 m+2} \vee C_{4 n+2}$. This induces a modular 4 coloring $c^{\prime}=\left.c\right|_{\left\{x_{1}, x_{2}, \ldots, x_{4 m+2}\right\}}$ such that $\sigma^{\prime}\left(x_{2 p-1}\right)=i^{\prime}$ and $\sigma^{\prime}\left(x_{2 p}\right)=j^{\prime}$ for $p \in\{1,2, \ldots, 2 m+$ $1\}$, and $\sum_{q=1}^{4 m+2} c^{\prime}\left(x_{q}\right) \equiv k^{\prime}(\bmod 4)$ for some $i^{\prime}, j^{\prime}, k^{\prime}$; and a modular 4coloring $c^{\prime \prime}=\left.c\right|_{\left\{y_{1}, y_{2}, \ldots, y_{4 n+2}\right\}}$ such that $\sigma^{\prime \prime}\left(y_{2 p-1}\right)=i^{\prime \prime}$ and $\sigma^{\prime \prime}\left(y_{2 p}\right)=j^{\prime \prime}$ for $p \in\{1,2, \ldots, 2 n+1\}$, and $\sum_{q=1}^{4 n+2} c^{\prime \prime}\left(y_{q}\right) \equiv$ $k^{\prime \prime}(\bmod 4)$ for some $i^{\prime \prime}, j^{\prime \prime}, k^{\prime \prime}$.

By the proof of Lemma 2.2, both the sequences $\left\{c^{\prime}\left(x_{p}\right)\right\}_{p=1}^{4 m+2}$ and $\left\{c^{\prime \prime}\left(y_{p}\right)\right\}_{p=1}^{4 n+2}$ are in $\{(0,1,0$, $1, \ldots, 0,1),(0,3,0,3, \ldots, 0,3),(2,1,2,1, \ldots, 2,1),(2,3,2,3, \ldots, 2,3)\}$.

If $\left\{c^{\prime}\left(x_{p}\right)\right\}_{p=1}^{4 m+2}=\left\{c^{\prime \prime}\left(y_{p}\right)\right\}_{p=1}^{4 n+2}$ is one of: $(0,1,0,1, \ldots, 0,1),(0,3,0,3, \ldots, 0,3)$, $(2,1,2,1, \ldots, 2,1),(2,3,2,3, \ldots, 2,3)$, then $\left\{\sigma\left(x_{p}\right)\right\}_{p=1}^{4 m+2}=\left\{\sigma\left(y_{p}\right)\right\}_{p=1}^{4 n+2}=(1,3,1,3, \ldots, 1,3)$, a contradiction.

If $\left\{\left\{c^{\prime}\left(x_{p}\right)\right\}_{p=1}^{4 m+2},\left\{c^{\prime \prime}\left(y_{p}\right)\right\}_{p=1}^{4 n+2}\right\} \in\{\{(0,1,0,1, \ldots, 0,1),(0,3,0,3, \ldots, 0,3)\}$, $\{(0,1,0,1, \ldots, 0,1),(2,1,2,1, \ldots, 2,1)\},\{(0,1,0,1, \ldots, 0,1),(2,3,2,3, \ldots, 2,3)\}$, $\{(0,3,0,3, \ldots, 0,3),(2,1,2,1, \ldots, 2,1)\},\{(0,3,0,3, \ldots, 0,3),(2,3,2,3, \ldots, 2,3)\}$, $\{(2,1,2,1, \ldots, 2,1),(2,3,2,3, \ldots, 2,3)\}$, then $\left\{\sigma\left(x_{p}\right)\right\}_{p=1}^{4 m+2}=\left\{\sigma\left(y_{p}\right)\right\}_{p=1}^{4 n+2}=(1,3,1,3, \ldots, 1,3)$, again a contradiction.

From these two contradictions, we have $m c\left(C_{4 m+2} \vee C_{4 n+2}\right) \geq 5$.

2.8. Join of a regular bipartite graph and an empty graph

Okamoto, Salehi and Zhang [2] have shown that for any integer $n \geq 3, m c\left(C_{n} \vee K_{1}\right)=$ $\chi\left(C_{n} \vee K_{1}\right)$. Using the proof technique of this result, we prove Theorem 2.11.

Theorem 2.11. Let G be an r-regular bipartite graph with $r \equiv 1$ or $2(\bmod 3)$. Then, for any positive integer $s, m c\left(G \vee s K_{1}\right)=3$.

Proof. Let (X, Y) be the bipartition of G. Construct $G \vee s K_{1}$ from G by joining new vertices $w_{1}, w_{2}, \ldots, w_{s}$ to every vertex of G. Define $c: V\left(G \vee s K_{1}\right) \rightarrow \mathbb{Z}_{3}$ by $c\left(w_{i}\right)=0$ for $i \in$ $\{1,2, \ldots, s\}, c(x)=1$ if $x \in X$ and $c(y)=2$ if $y \in Y$. Then, for $i \in\{1,2, \ldots, s\}, \sigma\left(w_{i}\right)=$ $|X|+2|Y|=|X|+2|X| \equiv 0 \bmod 3$; for $x \in X, \sigma(x)=2 r$ is 2 if $r \equiv 1 \bmod 3$ and it is 1 if $r \equiv$ $2 \bmod 3$; for $y \in Y, \sigma(y)=r$ is 1 if $r \equiv 1 \bmod 3$ and it is 2 if $r \equiv 2 \bmod 3$. Hence, c is a modular 3-coloring of G, and therefore $m c\left(G \vee s K_{1}\right) \leq 3$. But, $m c\left(G \vee s K_{1}\right) \geq \chi\left(G \vee s K_{1}\right)=3$. Thus, $m c\left(G \vee s K_{1}\right)=3$.

Remark 2.1. Let G be an r-regular bipartite graph with $r \equiv 0 \bmod 3$ and let (X, Y) be the bipartition of G. Suppose there exist partitions $\left\{X_{1}, X_{2}\right\}$ of X and $\left\{Y_{1}, Y_{2}\right\}$ of Y and integers t^{\prime} and $t^{\prime \prime}$ both not congruent to $0 \bmod 3$ such that t^{\prime} is not congruent to $t^{\prime \prime}(\bmod 3)$, the subgraph induced by $X_{1} \cup Y_{1}$ is t^{\prime}-regular and the subgraph induced by $X_{2} \cup Y_{2}$ is $t^{\prime \prime}$-regular, then $m c\left(G \vee s K_{1}\right)=3$.

To see this, define $c: V\left(G \vee s K_{1}\right) \rightarrow \mathbb{Z}_{3}$ by $c\left(w_{i}\right)=0$ for $i \in\{1,2, \ldots, s\}, c(x)=1$ if $x \in X_{1}$, $c(x)=2$ if $x \in X_{2}, c(y)=2$ if $y \in Y_{1}$, and $c(y)=1$ if $y \in Y_{2}$. Then, for $i \in\{1,2, \ldots, s\}, \sigma\left(w_{i}\right)$ $=\left|X_{1}\right|+2\left|X_{2}\right|+2\left|Y_{1}\right|+\left|Y_{2}\right|=3|X|=0 \bmod 3$; for $x \in X_{1}, \sigma(x)=2 t^{\prime}+\left(r-t^{\prime}\right)=r+t^{\prime}$; for $x \in X_{2}, \sigma(x)=t^{\prime \prime}+2\left(r-t^{\prime \prime}\right)=2 r-t^{\prime \prime} ;$ for $y \in Y_{1}, \sigma(y)=t^{\prime}+2\left(r-t^{\prime}\right)=2 r-t^{\prime}$; and for $y \in$ $Y_{2}, \sigma(y)=2 t^{\prime \prime}+\left(r-t^{\prime \prime}\right)=r+t^{\prime \prime}$. By hypothesis, in $\mathbb{Z}_{3}, 0 \notin\left\{r+t^{\prime}, r+t^{\prime \prime}, 2 r-t^{\prime}, 2 r-t^{\prime \prime}\right\}$ and $\left\{r+t^{\prime}, 2 r-t^{\prime \prime}\right\} \cap\left\{r+t^{\prime \prime}, 2 r-t^{\prime}\right\}=\phi$.

3. Join of a path and a complete graph

Theorem 3.1. For integers $n \geq 3$ and $p \geq 3, m c\left(P_{n} \vee K_{p}\right)=p+2$.
Proof. Let $P_{n}:=u_{1} u_{2} \ldots u_{n}$ and $V\left(K_{p}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Define $c: V\left(P_{n} \vee K_{p}\right) \rightarrow \mathbb{Z}_{p+2}$ as follows: Label the vertices of P_{n}, in order, by $0,1,0,0,0,1,0,0, \ldots, 0,1,0,0$ for $n \equiv 0 \bmod 4$; by $1,0,0,0,1,0,0,0, \ldots, 1,0,0,0,1$ for $n \equiv 1 \bmod 4$; by $1,0,0,0,1,0,0,0, \ldots, 1,0,0,0,1,0$ for $n \equiv 2 \bmod 4$; and by $1,0,0,0,1,0,0,0, \ldots, 1,0,0,0,1,0,0$ for $n \equiv 3 \bmod 4$. Label the p vertices of K_{p} by the p numbers in

$$
\{0,1,2, \ldots, p+1\} \backslash\left\{\left(\left\lceil\frac{n}{4}\right\rceil-1\right)(\bmod (p+2)),\left\lceil\frac{n}{4}\right\rceil(\bmod (p+2))\right\}
$$

The σ - values of the vertices of P_{n} in $P_{n} \vee K_{p}$ are, alternately, $\left(\frac{(p+1)(p+2)}{2}-2\left\lceil\frac{n}{4}\right\rceil+1\right)(\bmod (p+2))$ and $\left(\frac{(p+1)(p+2)}{2}-2\left\lceil\frac{n}{4}\right\rceil+2\right)(\bmod (p+2))$. The σ-values of the p vertices of K_{p} in $P_{n} \vee K_{p}$ are the p numbers in $\left\{\left(\frac{(p+1)(p+2)}{2}-\left\lceil\frac{n}{4}\right\rceil+1-i\right)(\bmod (p+2)): i \in\{0,1,2, \ldots, p+1\} \backslash\left\{\left(\left\lceil\frac{n}{4}\right\rceil-\right.\right.\right.$ $\left.\left.1)(\bmod (p+2)),\left\lceil\frac{n}{4}\right\rceil(\bmod (p+2))\right\}\right\}$. Note that the σ-value of any vertex of P_{n} in $P_{n} \vee K_{p}$ is different from that of any vertex of K_{p} in $P_{n} \vee K_{p}$. This completes the proof.

4. Join of an even cycle and a complete graph

Theorem 4.1. For integers $n \geq 2$ and $p \geq 3, m c\left(C_{2 n} \vee K_{p}\right)=p+2$.
Proof. Let $C_{2 n}:=u_{1} u_{2} \ldots u_{2 n} u_{1}$ and $V\left(K_{p}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Define $c: V\left(C_{2 n} \vee K_{p}\right) \rightarrow$ \mathbb{Z}_{p+2} as follows: We consider two cases:
Case 1. $n \equiv 0 \bmod 2$.
Label the vertices of $C_{2 n}$, in cyclic order, by $1,0,0,0,1,0,0,0, \ldots, 1,0,0,0$. Label the p vertices of K_{p} by the p numbers in

$$
\{0,1,2, \ldots, p+1\} \backslash\left\{\left(\frac{n}{2}-1\right)(\bmod (p+2)), \frac{n}{2}(\bmod (p+2))\right\}
$$

The σ - values of the vertices of $C_{2 n}$ in $C_{2 n} \vee K_{p}$ are, alternately, $\left(\frac{(p+1)(p+2)}{2}-n+1\right)(\bmod (p+2))$ and $\left(\frac{(p+1)(p+2)}{2}-n+2\right)(\bmod (p+2))$. The σ-values of the p vertices of K_{p} in $C_{2 n} \vee K_{p}$ are the p numbers in $\left\{\left(\frac{(p+1)(p+2)}{2}-\frac{n}{2}+1-i\right)(\bmod (p+2)): i \in\{0,1,2, \ldots, p+1\} \backslash\left\{\left(\frac{n}{2}-1\right)(\bmod (p+\right.\right.$ 2)), $\left.\frac{n}{2}(\bmod (p+2))\right\}$. Observe that the σ - value of any vertex of $C_{2 n}$ in $C_{2 n} \vee K_{p}$ is different from that of any vertex of K_{p} in $C_{2 n} \vee K_{p}$.
Case 2. $n \equiv 1 \bmod 2$.

Label the vertices of $C_{2 n}$, in cyclic order, by $1,0,1,0,1,0,1,0, \ldots, 1,0,1,0$. Label the p vertices of K_{p} by the p numbers in $\{0,1,2, \ldots, p+1\} \backslash\{(n-2)(\bmod (p+2)), n \bmod (p+2)\}$. The σ - values of the vertices of $C_{2 n}$ in $C_{2 n} \vee K_{p}$ are, alternately, $\left(\frac{(p+1)(p+2)}{2}-2 n+2\right)(\bmod (p+2))$ and $\left(\frac{(p+1)(p+2)}{2}-2 n+4\right)(\bmod (p+2))$. The σ - values of the p vertices of K_{p} in $C_{2 n} \vee K_{p}$ are the p numbers in $\left\{\left(\frac{(p+1)(p+2)}{2}-n+2-i\right)(\bmod (p+2)): i \in\{0,1,2, \ldots, p+1\} \backslash\{(n-2)(\bmod (p+\right.$ 2)), $n \bmod (p+2)\}$. Clearly, the σ-value of any vertex of $C_{2 n}$ in $C_{2 n} \vee K_{p}$ is different from that of any vertex of K_{p} in $C_{2 n} \vee K_{p}$.

This completes the proof.

5. Conclusion

We have seen that $m c(G \vee H)=\chi(G)+\chi(H)$ for every join graph $G \vee H$, except for the join graph $C_{4 m+2} \vee C_{4 n+2}$, that we have encountered in this paper.

References

[1] R. Balakrishnan and K. Ranganathan, A textbook of graph theory, Second Edition, SpringerVerlag, New York, 2012.
[2] F. Okamoto, E. Salehi and P. Zhang, A checkerboard problem and modular colorings of graphs, Bull. Inst. Combin. Appl. 58 (2010), 29-47.
[3] F. Okamoto, E. Salehi and P. Zhang, A solution to the checkerboard problem, J. Comput. Appl. Math. 5 (2010), 447-458.

