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Abstract

A proper embedding of a graph G in a pseudosurface P is an embedding in which the regions of
the complement of G in P are homeomorphic to discs and a vertex of G appears at each pinch-
point in P ; we say that a proper embedding of G in P is self dual if there exists an isomorphism
from G to its dual graph. We give an explicit construction of a self-dual embedding of the com-
plete bipartite graph K4m,4n in an orientable pseudosurface for all m, n ≥ 1; we show that this
embedding maximizes the number of umbrellas of each vertex and has the property that for any
vertex v of K4m,4n, there are two faces of the constructed embedding that intersect all umbrellas
of v. Leveraging these properties and applying a lemma of Bruhn and Diestel, we apply a surgery
introduced here or a different known surgery of Edmonds to each of our constructed embeddings
for which at least one of m or n is at least 2. The result of these surgeries is that there exist dis-
tinct orientable and nonorientable pseudosurfaces with the same Euler characteristic that feature a
self-dual embedding of K4m,4n.
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1. Introduction

To us, a graph is a finite and connected multigraph, and a surface is a compact and connected 2-
manifold without boundary; we letG denote a graph and S denote a surface. A cellular embedding
of G in S is an embedding in which the complement of G in S is a disjoint union of regions (called
faces), each of which is homeomorphic to a disc. We will let G→ S denote a cellular embedding
of G in S. Following [11], given G → S, we define the dual graph G∗ and the dual embedding
(G → S)∗ as follows: the vertices of G∗ are the “centers” of the faces of G in S, and each edge
e∗ corresponds bijectively to an edge e of G and connects the vertice(s) of G∗ corresponding to
the face(s) on either side of e. We say that two embeddings of G in surfaces S and T , denoted
i : G → S and j : G → T , are equivalent if there is an orientation-preserving homeomorphism
f : S → T such that f ◦ i = j. Furthermore, G→ S is self dual if the cellular structure of vertices,
edges, and faces (commonly called 0-cells, 1-cells, and 2-cells, respectively) given by G in S is
isomorphic to the cellular structure given by G∗ in S; this implies that G and G∗ are isomorphic.
By [11, §1.4.8], this also implies that ((G → S)∗)∗ and G → S are equivalent embeddings. An
example of a self-dual graph embedding in a surface is given in Figure 1.

Figure 1. The self-dual embedding of the complete graph K5 in the torus. The dual graph is drawn with dashed edges
joining hollow vertices.

The purpose of this article is to begin an investigation of self-dual embeddings and embed-
dability of graphs in pseudosurfaces. To place this discussion in some context, we describe some
of the research concerning self-dual embeddings of graphs in surfaces, which is quite rich. Re-
cently, Abrams and Slilaty have merged the study of self-dual graph embeddings in surfaces with
the study of symmetries of cellular decompositions of surfaces [1]. Moreover, the self-dual graph
embeddings in various surfaces have been cataloged from different viewpoints: in the sphere by
Abrams and Slilaty [1], and by B. Servatius and H. Sevatius [16, 17]; in the projective plane by
Abrams and Slilaty [1], and by Archdeacon and Negami [7]; and in all other surfaces of Euler
characteristic at least −1 [1]. Archdeacon and Hartsfield in [6] gave results concerning the ori-
entable and nonorientable self-dual embeddability of complete bipartite graphs in surfaces; the
current work can be viewed as the first step in extending their results to pseudosurfaces. Of similar
interest is another article by Archdeacon [3] in which he shows that one can use ordinary voltage
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graph theory to create self-dual graph embeddings in surfaces, and other non self-dual embeddings
in surfaces for which the dual is predictable and has very specific properties.

Following [2] a closed, connected pseudosurface is a connected topological space obtained
from a disjoint union of surfaces via a finite number of point identifications, called pinches. A
surface is therefore a special case of a pseudosurface. The points that are identified with other
points are called pinchpoints. A small-enough neighborhood of a pinchpoint is homeomorphic to
the union of discs identified at a point; each identified disc is called an umbrella of the pinchpoint.
A proper embedding of a graph G in a pseudosurface P is an embedding in which each of the
regions of the complement of G in P is homeomorphic to a disc and a vertex of G appears at each
pinchpoint of P . We shall let G → P denote a proper embedding of G in P . We let F (G → P )
denote the set of faces of G → P . Given G → P , the definitions of the dual graph and the dual
embedding of G → P are immediate natural extensions of the definition of the dual graph and
dual embedding of G → S, respectively: (G → P )∗ captures the incidence of faces and edges of
G in P . However, as evidenced by Figure 2, ((G → P )∗)∗ is not necessarily well defined since
(G→ P )∗ is not a proper embedding if P has any pinchpoints. We therefore give a weaker notion
of graph self-duality for pseudosurfaces. For a pseudosurface P with at least one pinchpoint, we
say that G → P is self dual if G∗ is isomorphic to G, which still requires that the incidence of
faces and edges in G→ P is isomorphic to the incidence of vertices and edges in G.

We should note that there has been some attention given to the study of embeddings and em-
beddability of graphs in pseudosurfaces. Archdeacon’s survey article [4, §5.7] and the introduction
of [2] (which itself is about the embeddability of graphs in pseudosurfaces) contain some relevant
references. Among other relevant works is [5], in which Archdeacon and Bonnington give the list
of 21 graphs that form all obstructions of embeddability of cubic graphs in the pinched sphere.
Part of the study of graph embeddings in pseudosurfaces has been about proving theorems in de-
sign theory. Among these efforts are works by Garman [10] and White [18]. Finally, the current
authors and E. Rarity in [14] found the smallest simple graphs with a self-dual embedding in a
pseudosurface with at least one pinchpoint.

G→ P (G→ P )∗

Figure 2. An example of a self-dual embedding of a graph in the pinched sphere, and the corresponding dual embed-
ding.
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In Section 2, we construct self-dual embeddings of K4m,4n in orientable pseudosurfaces for
all m,n ≥ 1. In Section 3, we introduce our surgery and state that of Edmonds, including the
necessary background information. Finally, in Section 4, we apply the surgeries of Section 3 to
our embeddings from Section 2 to produce self-dual embeddings of K4m,4n in different orientable
and nonorientable pseudosurfaces with the same Euler characteristic.

2. Orientable self-dual embeddings of K4m,4n in pseudosurfaces

2.1. Background necessary for our embeddings of K4m,4n

Recall that G is a finite and connected multigraph. We orient the edges of G and let
→
E(G)

denote the set of directed edges of G; each directed edge we will call a dart on an edge of G. For
each edge e ofG, we will call one of the two corresponding darts the positive dart and the other the
negative dart; the positive dart on an edge is assumed to correspond to the given orientation on that
edge. For e ∈ E(G), we will let e also denote the positive dart on that edge and e− the negative
dart. If G is a simple graph, then for v1, v2 ∈ V (G), we let {v1, v2} denote an undirected edge

joining v1 and v2, and we let v1v2 denote the dart from v1 to v2. If e ∈
→
E(G) = v1v2, then we say

that the head of e and tail of e, denoted h(e) and t(e), are v2 and v1, respectively; e− = v2v1, and
(e−)− = e. A walk in a graph G is a sequence of darts e1e2 . . . en, which in general may include
negative darts, such that h(ei) = t(ei+1). If h(en) = t(e1), then we say that W is a closed walk.
We will use a sequence of vertices to denote a walk in a simple graph since a simple graph has at
most one edge joining two vertices; if a walkW = e1e2 . . . en satisfies h(ei) = vi and t(ei) = vi−1,
then we may let W be denoted by v0v1 . . . vn. If W1 = e1 . . . en and W2 = e′1 . . . e

′
m are walks

having the property that h(en) = t(e′1), then we let W1W2 = e1 . . . ene
′
1 . . . e

′
m.

A surface or pseudosurface is said to be orientable if it can be triangulated by a proper graph
embedding whose faces are compatibly oriented.

One way to encode a proper graph embedding in an orientable surface is with a description of
a cyclic permutation of the edges incident to each vertex, with a convention that all cyclic permu-
tations capture the edges in a counterclockwise or clockwise order; the same order must apply to
all vertices in order to combinatorially capture the embedding. This is called a rotation scheme or
rotation system. In order to describe a proper embedding in a pseudosurface with pinchpoints this
way, one must be sure to describe the cyclic ordering of edges incident to each vertex v in each
umbrella of v. In the case of proper embeddings in orientable pseudosurfaces with pinchpoints,
one must add additional information to the encoding; for our purposes, this additional information
will be captured in the collection of facial boundary walks. In the case of simple graphs, since
there are no parallel edges joining two vertices, we may characterize the cyclic permutations of
edges incident to a vertex by listing its neighboring vertices instead. We give here an example of
a rotation of a vertex v in a simple graph with the neighboring vertices of v representing the edges
appearing in each of three umbrellas represented by distinct parenthetical encapsulations.

v : (v5v0v11v6)(v1v2v9v10)(v3v4v7v8)

For a complete treatment of rotation schemes for graphs embedded in surfaces, including
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nonorientable surfaces, the reader is referred to [11]. Since we will not be representing nonori-
entable embeddings as rotation schemes, we do not introduce the corresponding notation.

Let A = {a0, ..., ar−1} and B = {b0, ..., bs−1} be the bipartition sets of Kr,s, where r ≤ s. We
say that the dart akb` has slope `− k (reduced modulo s).

2.2. The construction
Definition 1. Consider G→ P . We say that a facial boundary walk F covers a vertex v if F visits
every umbrella of v, and we say that G → P is doubly covered if every vertex of G is covered by
two different facial boundary walks.

Consider G → P . If an umbrella of a vertex v contains only one or two neighbors of v,
then the dual graph of that embedding will contain a loop or two parallel edges, respectively.
Moreover, if an umbrella of v contains precisely three neighbors of v, then the dual graph contains
a triangle. Thus, since K4m,4n is a simple triangle-free graph, every umbrella of a vertex in a
self-dual embedding of K4m,4n must include at least four ends of edges incident to four distinct
neighbors of that vertex, and it follows that the maximum number of umbrellas at any vertex of
degree d is bd/4c.

Definition 2. Consider K4m,4n and V (K4m,4n) = A ∪ B, where A = {a0, ..., a4m−1} and B =
{b0, ..., b4n−1} are the bipartition sets of K4m,4n. We call an embedding K4m,4n → P full if every
vertex in A has n umbrellas and every vertex in B has m umbrellas.

It is immediate from Definition 2 and the preceding paragraph that if a proper embedding of
K4m,4n is full, then we may not add any more umbrellas to any more vertices and still expect to
have a proper embedding of K4m,4n featuring a simple dual graph without any cycles of length 3.

Theorem 2.1. There exists a doubly-covered, full, self-dual embedding of K4m,4n in an orientable
pseudosurface for all m,n ≥ 1.

Proof. We construct the boundary walk of each face in the embedding. LetA = {a0, a1, . . . , a4m−1}
and B = {b0, b1, . . . , b4n−1} be the bipartition sets of K4m,4n. For each i satisfying 0 ≤ i ≤ m− 1
define the closed walks Xi,0, Xi,1, Xi,2, Xi,3 as follows.

Xi,0 : (a4ib0a4i+1b1a4ib2a4i+1b3 · · · a4ib2n−2a4i+1b2n−1)
Xi,1 : (a4ib2na4i+1b2n+1a4ib2n+2a4i+1b2n+3 · · · a4ib4n−2a4i+1b4n−1)
Xi,2 : (a4i+2b0a4i+3b1a4i+2b2a4i+3b3 · · · a4i+2b2n−2a4i+3b2n−1)
Xi,3 : (a4i+2b2na4i+3b2n+1a4i+2b2n+2a4i+3b2n+3 · · · a4i+2b4n−2a4i+3b4n−1)

For each j satisfying 0 ≤ j ≤ n− 1 define the closed walks Yj,0, Yj,1, Yj,2, Yj,3 as follows.

Yj,0 : (b2ja0b4n−2j−1a3b2ja4b4n−2j−1a7 · · · b2ja4m−4b4n−2j−1a4m−1)
Yj,1 : (b2ja4m−2b4n−2j−1a4m−3b2ja4m−6b4n−2j−1a4m−7 · · · b2ja2b4n−2j−1a1)
Yj,2 : (b2j+1a4m−1b4n−2j−2a4m−4b2j+1a4m−5b4n−2j−2a4m−8 · · ·

b2j+1a3b4n−2j−2a0)
Yj,3 : (b2j+1a1b4n−2j−2a2b2j+1a5b4n−2j−2a6 · · · b2j+1a4m−3b4n−2j−2a4m−2)
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We show that the collection

F = {Xi,0, Xi,1, Xi,2, Xi,3 | 0 ≤ i ≤ m− 1} ∪ {Yj,0, Yj,1, Yj,2, Yj,3 | 0 ≤ j ≤ n− 1}

forms a family of facial boundary walks that yields a self-dual embedding of K4m,4n in an ori-
entable pseudosurface with the desired properties.

Note that each pair of X-walks is edge-disjoint and each pair of Y -walks is edge-disjoint. The
intersection of any X-walk with any Y -walk is given by the undirected edge below, where i and j
satisfy 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1, respectively.

Xi,0 ∩ Yj,0 = {a4i, b2j} Xi,0 ∩ Yj,1 = {a4i+1, b2j}
Xi,0 ∩ Yj,2 = {a4i, b2j+1} Xi,0 ∩ Yj,3 = {a4i+1, b2j+1}
Xi,1 ∩ Yj,0 = {a4i, b4n−2j−1} Xi,1 ∩ Yj,1 = {a4i+1, b4n−2j−1}
Xi,1 ∩ Yj,2 = {a4i, b4n−2j−2} Xi,1 ∩ Yj,3 = {a4i+1, b4n−2j−2}
Xi,2 ∩ Yj,0 = {a4i+3, b2j} Xi,2 ∩ Yj,1 = {a4i+2, b2j}
Xi,2 ∩ Yj,2 = {a4i+3, b2j+1} Xi,2 ∩ Yj,3 = {a4i+2, b2j+1}
Xi,3 ∩ Yj,0 = {a4i+3, b4n−2j−1} Xi,3 ∩ Yj,1 = {a4i+2, b4n−2j−1}
Xi,3 ∩ Yj,2 = {a4i+3, b4n−2j−2} Xi,3 ∩ Yj,3 = {a4i+2, b4n−2j−2}

From this it is clear that each undirected edge of the form {ak, b`} is contained in precisely one
X-walk and precisely one Y -walk, so when 2-cells are glued following the facial boundary walks,
what results is a 2-complex, homeomorphic to a pseudosurface, whose 1-skeleton is K4m,4n. Take
each walk to be oriented from left to right as written above; then every dart akb` of even slope
is oriented in the forward direction in an X-walk and in the reverse direction in a Y -walk. Sim-
ilarly, every dart akb` of odd slope is oriented in the reverse direction in an X-walk and in the
forward direction in a Y -walk. Thus, since the orientations are compatible, the embedding is in
an orientable pseudosurface. In the dual graph of this embedding, the vertices corresponding to
the faces bounded by X-walks form the independent set of size 4m in K4m,4n and the vertices
corresponding to the faces bounded by Y -walks form the independent set of size 4n. The intersec-
tions shown above verify that every vertex corresponding to an X-walk is adjacent to every vertex
corresponding to a Y -walk. Thus, the embedding is self dual.

Next, we consider the rotation scheme for this embedding of K4m,4n. Note that if an oriented
facial walk contains the sequence (· · ·u v w · · · ), then the rotation of v contains a permutation with
the transition uw. The rotation at each vertex decomposes into a disjoint union of permutations
of length four, and each permutation corresponds to an umbrella in the embedding. The complete
rotation scheme is given below, where p and q satisfy 0 ≤ p ≤ 2m − 1 and 0 ≤ q ≤ n − 1,
respectively; the first transition listed in each permutation corresponds to a sequence from an X-
walk.

a2p : {(b2n−1b0b4n−1b2n)} ∪ {(b2j−1b2jb4n−2j−1b4n−2j) | 1 ≤ j ≤ n− 1}
a2p+1 : {(b2jb2j+1b4n−2j−2b4n−2j−1) | 0 ≤ j ≤ n− 1}
b2q : {(a4ia4i+1a4i−2a4i−1) | 0 ≤ i ≤ m− 1}

b2n+2q : {(a4ia4i+1a4i+2a4i+3) | 0 ≤ i ≤ m− 1}
b2q+1 : {(a4i+1a4ia4i−1a4i−2) | 0 ≤ i ≤ m− 1}

b2n+2q+1 : {(a4i+1a4ia4i+3a4i+2) | 0 ≤ i ≤ m− 1}
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For each vertex v, every umbrella of v contains 4 edges, each incident to a distinct neighbor of v.
Thus, each vertex in A has m umbrellas and each vertex in B has n umbrellas, so the embedding
is full.

Finally, note that a4i and a4i+1 are both covered by Xi,0 and Xi,1, a4i+2 and a4i+3 are both
covered by Xi,2 and Xi,3, b2j and b4n−2j−1 are both covered by Yj,0 and Yj,1, and b2j+1 and b4n−2j−2
are both covered by Yj,2 and Yj,3, so the embedding is doubly covered. This completes the proof.

Example 1. The following closed walks form the facial boundary walks of the orientable self-dual
embedding of K8,12 described in Theorem 2.1.

X0,0 : (a0b0a1b1a0b2a1b3a0b4a1b5) Y0,0 : (b0a0b11a3b0a4b11a7)
X0,1 : (a0b6a1b7a0b8a1b9a0b10a1b11) Y0,1 : (b0a6b11a5b0a2b11a1)
X0,2 : (a2b0a3b1a2b2a3b3a2b4a3b5) Y0,2 : (b1a7b10a4b1a3b10a0)
X0,3 : (a2b6a3b7a2b8a3b9a2b10a3b11) Y0,3 : (b1a1b10a2b1a5b10a6)
X1,0 : (a4b0a5b1a4b2a5b3a4b4a5b5) Y1,0 : (b2a0b9a3b2a4b9a7)
X1,1 : (a4b6a5b7a4b8a5b9a4b10a5b11) Y1,1 : (b2a6b9a5b2a2b9a1)
X1,2 : (a6b0a7b1a6b2a7b3a6b4a7b5) Y1,2 : (b3a7b8a4b3a3b8a0)
X1,3 : (a6b6a7b7a6b8a7b9a6b10a7b11) Y1,3 : (b3a1b8a2b3a5b8a6)

Y2,0 : (b4a0b7a3b4a4b7a7)
Y2,1 : (b4a6b7a5b4a2b7a1)
Y2,2 : (b5a7b6a4b5a3b6a0)
Y2,3 : (b5a1b6a2b5a5b6a6)

The rotation scheme for this embedding of K8,12 is given below. Figure 3 shows a neighborhood of
a0, and Figure 4 shows a neighborhood of b1. In Figures 3 and 4, we use the distinction of hollow
and solid vertices to highlight the bipartition of the vertices of K8,12.

v ∈ {a0, a2, a4, a6} : (b5b0b11b6)(b1b2b9b10)(b3b4b7b8)
v ∈ {a1, a3, a5, a7} : (b0b1b10b11)(b2b3b8b9)(b4b5b6b7)

v ∈ {b0, b2, b4} : (a0a1a6a7)(a4a5a2a3)
v ∈ {b6, b8, b10} : (a0a1a2a3)(a4a5a6a7)
v ∈ {b1, b3, b5} : (a1a0a7a6)(a5a4a3a2)
v ∈ {b7, b9, b11} : (a1a0a3a2)(a5a4a7a6)

3. The surgeries

3.1. Background necessary for Edmonds’ surgery and ours

The content of this subsection is adapted from [8, Section 2]. Recall that
→
E(G) denotes the

set of darts (directed edges) of G, and let E(G) denote the real vector space of all functions

φ :
→
E(G) → R satisfying φ(e−) = −φ(e). A cycle is a connected 2-regular graph. When

W = e1e2 . . . en is a closed walk (which may include negative directed edges) traversing every
edge it traverses at most once, we call the function mapping the positive directed edges of W to
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b6

b11

b0

b5

b8 b7 b4
b3

b10

b9

b2

b1

X0,0

X0,0

X0,0

X0,1

X0,1

X0,1

Figure 3. A neighborhood of a0 (the hollow vertex) in the embedding of K8,12 from Example 1 (corresponding
neighborhoods of a2, a4, and a6 are similar). The orientation of each face is counterclockwise, so that the permutations
of neighbors in the rotation of a0 appear in clockwise order in each umbrella. The faces that cover a0 are labeled.

a7

a0

a1

a6 a3

a4

a5

a2

Y0,2

Y0,2Y0,3

Y0,3

Figure 4. A neighborhood of b1 (the solid vertex) in the embedding of K8,12 given in Example 1 (corresponding
neighborhoods of b3 and b5 are similar). The orientation of each face is counterclockwise, so that the permutations of
neighbors in the rotation at b1 appear in clockwise order in each umbrella. The faces that cover b1 are labeled.

1, the negative directed edges of W to −1, and all other directed edges of G to 0 an oriented cir-
cuit. The subspace of E(G) generated by the set of oriented circuits of G is called the oriented
cycle space. Recall that a surface S is orientable if it can be triangulated by a graph embedding
whose faces can be compatibly oriented. As pointed out in [8], equivalent conditions are that every
triangulation has this property, and that the surface does not contain a Möbius strip. We say that
a family of walksW double covers the edges of G if each edge is traversed twice in total by the
walks ofW .

For a walk W , we let
→
c (W ) denote the function that assigns to each directed edge of

→
E(G)

254



www.ejgta.org

Self-dual embeddings of K4m,4n in pseudosurfaces | S. Schluchter and J.Z. Schroeder

the number of times that W traverses its corresponding positive directed edge minus the number
of times that W traverses its corresponding negative directed edge, and assigns 0 to any edge

not appearing in W . The oriented dimension of a family of walks W , denoted
→

dim(W), is the
dimension of the subspace of E(G) spanned by the functions

→
c (W ) with W ∈ W .

Lemma 3.1 is an adaptation of [8, Lemma 9]. Since orientability of a pseudosurface is deter-
mined by the orientations of the directed edges of the facial boundary walks and not the incidence
of these directed edges and the vertices of the embedded graph, the proof of Lemma 3.1 is a
straightforward adaptation of the proof of [8, Lemma 9].

Lemma 3.1. If W is the family of facial-boundary walks of G → P , then P is nonorientable if

and only if
→

dim(W) < |W|.

Following [1] we say that a pseudosurface P is face connected if any proper embedding of a
connected graph in P induces a 2-complexK such that for any faces fa, fb ofK, there is a sequence
of faces fa = f1f2 . . . fn = fb such that for each i ∈ {1, 2 . . . n− 1}, fi and fi+1 share a common
boundary edge. Note that if G→ P is an embedding in a non-face-connected pseudosurface, then
the dual graph is not connected. For the remainder of this article, P shall denote a face-connected
pseudosurface.

We let χ(P ) denote the Euler characteristic of P , which, as an invariant of P , depends on
neither G nor any proper embedding of G in P . Given G→ P ,

χ(P ) = |V (G)| − |E(G)|+ |F (G→ P )|.

3.2. Edmonds’ surgery
For a walk W , let W be the walk consisting of the darts opposite the darts of W , and appearing

in reverse order relative to their counterparts in W . For example: if W = e−1 e2e
−
3 , then W =

e3e
−
2 e1. We give a somewhat revised proof of Theorem 3.1 for the sake of completeness since the

original statement of [9, Theorem 1] did not include all the conclusions that one could derive from
its proof.

Theorem 3.1. [9, Theorem 1] ConsiderG→ P having a pinchpoint vertex v with the property that
two umbrellas of v are intersected by the same face f of G→ P . There exists a proper embedding
of G in a different face-connected pseudosurface P ′ such that: the dual graphs of G → P and
G→ P ′ are identical, there is one fewer umbrella of v, and χ(P ) = χ(P ′).

Proof. For each face of G→ P , choose one of the two possible facial boundary walks, and letW
be the set of these chosen facial boundary walks. Choose two umbrellas U1, U2 of v intersected by
f , and choose one intersection of f with each chosen umbrella. Let U∗(v) denote the intersection
of an arbitrarily small open neighborhood of v with U1 ∪ U2, whose intersection with G consists
only of v and the ends of edges incident to v. We let fi denote the chosen intersection of f with
Ui ∩ U∗(v).

Let W denote the chosen facial boundary walk of f and let W = ω1ω2 for closed walks ω1

and ω2, as in Figure 5; ω1 begins by traversing edge end 4 and ends after traversing edge end
1, and ω2 begins by traversing edge end 2 and ends after traversing edge end 3. We surgically
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v

12

f

3 4

f

ω2 ω1

Figure 5. The applicaton of Edmonds’ surgery turning W into W ′ by reversing the subwalk ω2. The surgical modifi-
cations are drawn in gray.

modify W to produce another facial boundary walk; let W ′ = ω1ω2 (as in Figure 5), and let
W ′ = ({W ′} ∪W) \ {W}. LetW ′ be the set of facial boundary walks of G→ P ′.

To see that the dual graphs of G → P and G → P ′ are identical, note that the darts of W and
the darts of W ′ are darts on identical edges of G. Therefore, the incidence of faces and edges of
G→ P is the same as that of G→ P ′. It follows that the dual graphs of G→ P and G→ P ′ are
identical and that P is also face connected.

To show that there is one fewer umbrella of v, we define an auxiliary graph that captures the
incidence of certain regions of G → P with G. Let R1 = U1 \ f1 and R2 = U2 \ f2. We define a
graph H whose vertex set is {f1, f2, R1, R2} and with four edges e1, e2, e3, e4. Consider Figure 6;
we define the edge ei to be incident to fj and Rk if the edge end i is common to the boundaries of
fj and Rk. The graph H is comprised of two disjoint 2-cycles, one corresponding to each umbrella
of v in U∗(v).

v

12

f1
R1

U1

3 4

f2
R2

U2

Figure 6. The subset U∗(v) of P . The graph H is drawn in gray. Each edge ei is drawn transversely crossing the edge
end i.
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Because of the reversal of ω2 to produce the facial walkW ′, W ′ traverses the following ordered
pairs of edge ends as W ′ enters and exits U∗(v): 1 and then 3, and 2 and then 4. Let f ′ be the face
of G→ P ′ bounded by W ′. We define f ′1 and f ′2 to be the regions of f ′ ∩ U∗(v) bounded by edge
ends 1 and 3 and 2 and 4, respectively. Note that the process of producing W ′ from W does not
affect the boundaries of R1 and R2. We define another analogous graph H ′ for G → P ′ whose
vertex set is {R1, R2, f

′
1, f

′
2}. It is easy to see that this graph is a single cycle, and so we conclude

that there is one less umbrella of v in G→ P ′.
Lastly, since |W| = |W ′|, andG is unaffected by the surgery that createdW ′, we may conclude

that χ(P ) = χ(P ′).

Corollary 3.1. The pseudosurface P ′ in Theorem 3.1 is nonorientable.

Proof. This is an application of [8, Lemma 7]. The reader is advised that the surgery appearing
in the proof of Theorem 3.1 is the same surgery that appears in the proof of [8, Lemma 7], which
Bruhn and Diestel show results in a nonorientable pseudosurface.

3.3. Our surgery
Our surgery, which is given in the proof of Theorem 3.2, is applicable to fewer embeddings than

the surgery of Edmonds described in Theorem 3.1 because it requires a face of G→ P to intersect
three umbrellas of a pinchpoint vertex v, whereas Edmonds’ surgery requires two. However, our
surgery does have the advantage that the orientability of the resulting pseudosurface is the same as
the orientability of P . By Corollary 3.1, Edmonds’ surgery necessarily produces a nonorientable
embedding, no matter the orientability of the embedding to which Edmonds’ surgery is applied.

Theorem 3.2. Consider G→ P having a pinchpoint vertex v with the property that three umbrel-
las of v are intersected by the same face f . There exists a proper embedding of G in a different
face-connected pseudosurface P ′ such that: the dual graphs of G → P and G → P ′ are iden-
tical, P ′ has the same orientability as P , there are two fewer umbrellas of v in G → P ′, and
χ(P ) = χ(P ′).

Proof. For each face of G → P , choose one of the two possible facial boundary walks, and
let W be the set of chosen facial boundary walks. Choose three umbrellas U1, U2, and U3 of v
intersected by f , and choose one intersection of f with each chosen umbrella. Let U∗(v) denote
the intersection of an arbitrarily small neighborhood with U1 ∪ U2 ∪ U3, whose intersection with
G consists of v and ends of edges incident to v. We let fi denote the chosen intersection of f with
Ui ∩ U∗(v).

Let W denote the chosen facial boundary walk of f and let W = ω1ω2ω3 for closed walks ω1,
ω2, and ω3, as in Figure 7: ω1 is a closed walk beginning by traversing edge end 6 as indicated, and
ending at v after traversing the edge end 1 as indicated; ω2 is a closed walk beginning by traversing
the edge end 2 as indicated, and ending at v after traversing the edge end 3 as indicated; ω3 is a
closed walk beginning by traversing the edge end 4 as indicated, and ending at v after traversing
the edge end 5 as indicated.
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v

1

2 f

3 4

f

5

6

f

ω2 ω3

ω1

Figure 7. The facial boundary walk W ′ passing through three umbrellas of v, with surgical modifications in gray.

We alter the order of ω1, ω2 and ω3 to produce a new facial boundary walk W ′. We let W ′ =
ω1ω3ω2, and let the set of facial boundary walks of G → P beW ′ = ({W ′} ∪ W) \ {W}. The
reordering of ω1, ω2, and ω3 to produce W ′ is described in Figure 7.

To see that the dual graphs of G → P and G → P ′ are identical, note that the darts of W and
the darts of W ′ are darts corresponding to the same edges of G. Therefore, the incidence of faces
and edges of G→ P is the same as that of G→ P ′. It follows that the dual graphs of G→ P and
G→ P ′ are identical, and that P ′ is also face connected.

To see that P ′ has the same orientability as P , note that c(W ′) = c(W ), and so
→

dim(W ′) =
→

dim(W). Lemma 3.1 allows us to conclude that P ′ is orientable if and only if P is orientable.
To see that the three chosen umbrellas of the vertex v have been merged into one, we will

define an auxiliary graph that captures the incidence of certain regions of G → P with G. Let
R1 = U1 \ f1, R2 = U2 \ f2, and R3 = U3 \ f3. We define a graph H whose vertex set is
{f1, f2, f3, R1, R2, R3}, and with six edges {e1, e2, e3, e4, e5, e6}. Consider Figure 8; we define the
edge ei to be incident to fj and Rk if the edge end i is common to the boundaries of fj and Rk.
Note that H consists of three disjoint 2-cycles.

Because of the reordering of ω1, ω2, ω3 to produce W ′ = ω1ω3ω2, the new facial boundary
walk W ′ traverses the following ordered pairs of edge ends as as W ′ enters and exits U∗(v): 1 and
then 4, 5 and then 2, 3 and then 6, and in this order. Let f ′ be the face of G→ P ′ bounded by the
facial boundary walk W ′. We define f ′1, f

′
2, f

′
3 to be the regions of f ′ ∩ U∗(v) bounded by edge

ends 1 and 4, 5 and 2, 3 and 6, respectively.
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v

1

2 f1

U1 R1

3 4

f2

U2

R2

5

6

f3

U3

R3

Figure 8. The subset U∗(v) of P . The graph H is drawn in gray. Each edge ei is drawn transversely crossing the edge
end i.

Note that the process of producing W ′ does not affect the boundaries of R1, R2 and R3. We
define another, analogous graph H ′ for G → P ′ whose vertex set is {R1, R2, R3, f

′
1, f

′
2, f

′
3}. It is

easy to verify that this graph is a single cycle. We conclude that there are two fewer umbrellas of
v in G→ P ′.

Lastly, since |W| = |W ′|, andG is unaffected by the surgery that createdW ′, we may conclude
that χ(P ) = χ(P ′).

4. Applications of the surgeries to our embeddings

It is not difficult to show (see the proof of [15, Theorem 1.2]) that for a closed face-connected
pseudosurface P with h handles, c crosscaps, and p pinches the Euler characteristic of P is

χ(P ) = 2− 2h− c− p. (1)

Since, in a self-dual proper embedding G → P it must be true that |V (G)| = |F (G → P )|, it
follows that

χ(P ) = 2|V (G)| − |E(G)| = 2− 2h− c− p. (2)

For K4m,4n to have a self-dual embedding K4m,4n → P in some pseudosurface P , it follows from
Equations 1 and 2 that

χ(P ) = 2− 2h− c− p = 8m+ 8n− 16mn. (3)

We now apply the surgeries described in Theorems 3.1 and 3.2 to embeddings of K4m,4n given
in Section 2.2. Depending on m and n, there are many different face-connected pseudosurfaces
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whose Euler characteristic is 8m+ 8n− 16mn, and our surgeries and construction can be used to
find self-dual embeddings in many, but not all of them. Recall our choice of A = {a0, . . . , a4m−1}
and B = {b0, . . . , b4n−1} denoting the bipartition sets of vertices of K4m,4n. We first treat the case
for which the surgically-produced pseudosurface is orientable.

Theorem 4.1. For each integer i such that 0 ≤ i ≤ 4m−1, let xi be an integer having the property
that n − 2xi ≥ 1. For each integer j such that 0 ≤ j ≤ 4n − 1, let yj be an integer having the
property hat m − 2yj ≥ 1. There exists a self-dual proper embedding of K4m,4n in an orientable
face-connected pseudosurface P with h handles and p pinches such that:

1. 8m+ 8n− 16mn = 2− 2h− p,
2. the vertex ai has n− 2xi umbrellas and the vertex bj has m− 2yj umbrellas, and
3. p =

∑
i(n− 2xi − 1) +

∑
j(m− 2yj − 1).

Proof. Let K4m,4n → P denote the orientable self-dual embedding given in Theorem 2.1. Recall
that by Theorem 2.1, K4m,4n → P , as a doubly covered embedding, has the property that each
vertex is covered by a facial boundary walk. The result now follows by applying Theorem 3.2 xi
times to the vertex ai and yj times to the vertex bj . Each application of the surgery reduces the
number of pinches by two while producing a pseudosurface with the same Euler characteristic as
the pseudosurface to which the surgery was applied. It follows from Equation 2 that the number of
handles must increase by one each time the surgery is applied.

We now turn to finding all nonorientable pseudosurfaces for which we may produce a self-
dual embedding of K4m,4n using the construction given in Theorem 2.1 and the surgery given in
Theorem 3.1. For this, we will need a few more definitions and lemmas.

For surfaces S1 and S2, we let the connected sum of S1 and S2 be the surface formed by
removing a disc from S1, another disc from S2, and identifying the two remaining spaces along
their boundaries.

To fully appreciate the proof of Lemma 4.1, one must be familiar with the presentation of a
surfaces as a polygon with its edges pasted together. The reader will find a full treatment of this
topic in [12, Chapter 1] or [13, Chapter 12].

Lemma 4.1. A nonorientable surface S with h > 1 handles and c > 0 crosscaps is homeomorphic
to a nonorientable surface with h− 1 handles and c+ 2 crosscaps.

Proof. By [13, Theorem 77.5], S is homeomorphic to a connected sum of d = 2h + c projective
planes. By invoking [13, Lemma 77.4] h − 1 times (exchanging two projective projective planes
for one handle each time) one may form a presentation of S as the connected sum of h− 1 tori and
c+ 2 projective planes; equivalently a surface with h− 1 handles and c+ 2 crosscaps.

Lemma 4.2. Let P be a nonorientable face-connected pseudosurface with h handles, c crosscaps,
and n pinchpoints p1, p2, . . ., pn such that pi has ui umbrellas. There is a homeomorphism φ : P →
P ′ such that P ′ is a face-connected pseudosurface P ′ with c + 2 crosscaps, h − 1 handles, and n
pinchpoints p′1, p

′
2, . . . p

′
n such that p′i has ui umbrellas.
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Proof. We know P is obtained from a surface S with h handles and c crosscaps by identifying ui
unique points to form each pinchpoint pi. For each pi, we letXi = {xk : 1 ≤ k ≤ ui} be the set of
points thus identified. It follows that no two Xi have any points in common. Let Q : S → P be the
quotient map that for each i identifies the points of Xi. Let S ′ be a surface with c+2 crosscaps and
h − 1 handles, and let f : S → S ′ be the homeomorphism whose existence is implied in 4.1. Let
Q′ : S ′ → P ′ be the quotient map that identifies the points of f(Xi) to p′i for all i. Let φ : P → P ′

be defined by φ = Q′◦f ◦Q−1. It is easy to see that φ is a homeomorphism mapping the pinchpoint
pi to the pinchpoint p′i.

Corollary 4.1. IfG is properly embedded in P , then the homeomorphism φ : P → P ′ from Lemma
4.2 induces a proper embedding of G in P ′ such that the dual graphs of G → P and G → P ′ are
isomorphic.

Proof. Since the complement of G in P is homeomorphic to a disjoint union of regions, each
homeomorphic to a disc, it follows that since φ is a homeomorphism, the intersections of the
boundaries of any faces are preserved. Since the vertices and edges of G form the boundaries of
the faces of G → P , it follows that the incidence of faces and edges is preserved by φ. It follows
that the dual graphs of G→ P and G→ P ′ are isomorphic.

Theorem 4.2. For each integer i such that 0 ≤ i ≤ 4m − 1, let xi be an integer having the
property that n − xi ≥ 1. For each integer j such that 0 ≤ j ≤ 4n − 1, let yj be an integer
satisfying m − yj ≥ 1. Suppose further that at least one of the xi or yj is nonzero. There is a
self-dual embedding of K4m,4n in the nonorientable face connected pseudosurface P ′ having h
handles, c crosscaps, and p pinches such that:

1. 8m+ 8n− 16mn = 2− 2h− c− p,
2. the vertex ai has n− xi umbrellas and the vertex bj has m− yj umbrellas, and
3. p =

∑
i(n− xi − 1) +

∑
j(m− yj − 1).

Proof. Consider the orientable self-dual embedding of K4m,4n → P given in Theorem 2.1. As-
sume without loss of generality that xi∗ is nonzero. Applying the surgery given in Theorem 3.1
xi times at the vertex ai and yj times at the vertex bj , we see in light of Corollary 3.1, since the
surgery was applied at least once at ai∗ , that we have produced a nonorientable self-dual embed-
ding in a pseudosurface with the pinchpoint vertices having the desired number of umbrellas. Each
application of the surgery reduces the number pinches by 1 while producing a pseudosurface with
the same Euler characteristic as the one to which the surgery was applied. Invoking Lemma 4.2
and Corollary 4.1 enough times, we can find a self-dual embedding of K4m,4n in a nonorientable
pseudosurface with the desired number of handles and crosscaps; we exchange two crosscaps for
a handle (or vice versa) each time.

In light of Lemma 4.2 we may conclude that there is only one nonorientable face-connected
pseudosurface of a given Euler characteristic with a specific number of umbrellas at each pinch-
point. Theorem 4.2 helps us classify exactly which of these pseudosurfaces admits a self-dual
embedding of K4m,4n: every pseudosurface P that satisfies χ(P ) = 8m + 8n− 16mn and has an
admissible number of pinchpoints and umbrellas admits a self-dual embedding of K4m,4n except
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for the unique pseudosurface of Euler characteristic 8m+ 8n− 16mn that has exactly 4m pinch-
points with n umbrellas and exactly 4n pinchpoints with m umbrellas. In other words, Theorem
4.2 does not guarantee the existence of a full self-dual embedding of K4m,4n in a nonorientable
pseudosurface.
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