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Abstract

The Ramsey number R(m,n) is the smallest integer p such that any blue-red colouring of the
edges of the complete graph Kp forces the appearance of a blue Km or a red Kn. Bipartite Ramsey
problems deal with the same questions but the graph explored is the complete bipartite graph
instead of the complete graph. We investigate the appearance of simpler monochromatic graphs
such as stripes, stars and trees under a 2-colouring of the edges of a bipartite graph. We give the
Ramsey numbers Rb(mP2, nP2), Rb(Tm, Tn), Rb(Sm, nP2), Rb(Tm, nP2) and Rb(Sm, Tn).
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Introduction

Extremal graph theory problems usually ask for the max/ min order or size of a graph having
certain characteristics. Such questions are often quite natural in the construction of networks or
circuits. Ramsey theory explores the question of how big a structure must be to contain a certain
substructure or substructures (for a list of applications see [20]).

Ramsey [19] showed that in a blue-red colouring of the edges of a sufficiently large complete
graph there must exist either a blue or a red complete subgraph of a given order. The minimum
order of a complete graph that must achieve that is known as a Ramsey number. Since then large
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amount of research has been done trying to obtain exact values for Ramsey numbers, or to obtain
good lower and upper bounds[18].

There are many generalizations of Ramsey theory. Multicolour Ramsey theory deals with the
same problem involving more than two colours. Infinite Ramsey theory investigates similar prob-
lems on infinite graphs. Ramsey numbers also exist for monochromatic graphs other than complete
subgraphs, e.g. trees, stars, bipartite graphs, cycles, paths, etc. Bipartite Ramsey problems deal
with the same questions but the graph explored is the complete bipartite graph instead of the com-
plete graph. Additionally, there are many similar questions for directed graphs.

The bipartite case has been studied extensively. In particular, research has been done to obtain
exact values for small Ramsey numbers ([1, 8, 12, 17]). A first general upper bound was given by
Irving [15] by exploring the similarity of the problem with Zarankiewicz‘s problem. Subsequent
work on general bounds for the problem was given by Thomason et al[22], by Hattingh et al. [12],
by Goddard et al. [10], by Caro et al. [4], by Conlon [6] and Lin et al. [16]. Exact solutions
were given for simpler cases of the problem such as path-path bipartite Ramsey numbers [9, 11],
star-star bipartite Ramsey numbers [17], star-path bipartite Ramsey numbers [13], K2,2-K1,n and
K2,2-K2,n bipartite Ramsey numbers [2], C2m-K2,2 bipartite Ramsey numbers [21] and bipartite
Ramsey numbers for multiple copies of K2,2 [14]. Some variations of the bipartite case such as
multicolour problems [3, 5] and rainbow colouring problems [7] have been also studied.

In this paper we consider special cases of the bipartite Ramsey problem. More specifically
we investigate the appearance of simpler monochromatic graphs such as stripes, stars and trees
under a 2-colouring of the edges of a bipartite graph. We give the Ramsey numbers Rb(mP2, nP2),
Rb(Tm, Tn), Rb(Sm, nP2), Rb(Tm, nP2) and Rb(Sm, Tn).

1. Definitions and Problems

Throughout this paper we consider an undirected graph G(V, E), where V is the set of vertices,
also called nodes, and E is the set of edges. The complement graph G(V,E) of G has the same ver-
tices as G but edges that appear in G do not appear in G and edges that do not appear in G appear
in G. The order of a graph is the number of its vertices. The size of a graph is the number of its
edges. A path Pn(V,E) is a graph with V = {x1, x2, . . . , xn} and E = {x1x2, x2x3, . . . , xn−1xn}.
Its end vertices are x1, xn and its length ` is equal to n − 1. A cycle Cn(V,E), where n ≥ 3, is a
graph with V = {x1, x2, . . . , xn} and E = {x1x2, x2x3, . . . , xn−1xn, xnx1}. Its length ` is equal
to n. A cycle is called odd/even if its length is odd/even. The girth g of a graph G is the length
of its shortest cycle. A graph containing no cycles is called an acyclic graph. The degree of a
vertex v ∈ G is denoted by d(v) and is equal to the number of vertices to which v is connected. A
regular graph is a graph in which all its vertices have the same degree. A graph is planar if it can
be drawn in a plane without its edges crossing. A face is a region surrounded by a cycle in a planar
embedding of a graph without any path crossing the cycle. A tree Tn is a maximal acyclic graph
on n vertices. A forest is a disconnected acyclic graph. A rooted tree has a node which is called
the root. In such a tree, each of the nodes that is one graph edge further away from a given node
(parent) and its distance to the root is one more than its parent is called a child. Nodes having the
same parent node are called siblings. The height of a tree Tn, denoted by Height(Tn), is defined
as the maximum length of a path from the root of Tn to a leaf of Tn. A star Sn of order n, is a
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tree on n nodes with one node having degree n− 1 and the other n− 1 nodes having degree 1. A
complete graph on n vertices, denoted by Kn, is a graph in which all n vertices are connected to
each other. A bipartite graph is a graph in which all its vertices are decomposed into two disjoint
sets such that no two graph vertices within the same set are adjacent. A complete bipartite graph
on 2n vertices, denoted by Kn,n, is a bipartite graph in which every pair of vertices belonging in
a different partition are adjacent. A nP2 stripe graph is the graph consisting of 2n vertices and n
independent edges.

The Ramsey number R(m,n) is the smallest integer p such that any blue-red colouring of the edges
of the complete graph Kp forces the appearance of a blue Km or a red Kn.
The bipartite Ramsey number Rb(m,n) is the smallest integer p such that any blue-red colouring
of the edges of the complete bipartite graph Kp,p forces the appearance of a blue Km,m or a red
Kn,n.
More generally the bipartite Ramsey number Rb(H,G), where H and G are bipartite graphs, is
the smallest integer p such that any blue-red colouring of the edges of the complete bipartite graph
Kp,p forces the appearance of a blue H or a red G.

2. Bipartite Ramsey numbers involving stars, stripes and trees

In this section we will give solutions to the problems that we are considering. For the first four
problems we first give an upper bound and then we prove that it is tight. However the bipartite
Ramsey numbers for trees appear to be smaller in the case that both of the considered trees are of
even order. In the last case we first give an upper bound, then we show when it can be achieved
and we give the exact solutions for the rest of its cases.
The solution to the bipartite Ramsey stripe problem is an immediate consequence of the following
theorem.

Theorem 2.1. Rb(mP2, nP2) = m+ n− 1.

Proof. We will first prove that Rb(mP2, nP2) ≤ m + n − 1 by considering a 2-colouring of Kb,b,
where b = m + n − 1. We pick a maximal Kk,k containing a blue kP2. If k ≥ m we have a blue
mP2 otherwise maximality forces a red Kb−k,b−k made from the remaining vertices. That means a
red (b− k)P2. But k < m and so b− k > (n+m− 1)−m. Hence b− k ≥ n.

The following lower bound shows that Rb(mP2, nP2) > m+n−2. We consider the following
2-colouring of Km+n−2,m+n−2 (see also Figure 1):

• Let the independent sets of Km+n−2,m+n−2 be A and B.

• We colour the edges joining the first m− 1 vertices of A to the vertices of B.

• We colour the rest of the edges red.
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b b b

b b b

b b b

b b b

Figure 1: A 2 colouring of K6,6 without a blue (continuous line) 5P2 or a red (dashed line) 3P2

The solution for the bipartite Ramsey tree problem is broken into five lemmas as shown below,
depending on whether the considered trees are both of even order and whether the orders of the
considered trees are close enough.

Theorem 2.2.

Rb(Tm, Tn) =


m− 1, m = n = 2k,

k ∈ Z+

max(min(m,n),max(dm
2
e, dn

2
e)), otherwise.

Proof. W.l.o.g. we consider 2 ≤ m ≤ n. The general upper bound is given by Lemma 2.1. The
construction of Lemma 2.2 gives the lower bound for the case m < dn

2
e. The construction of

Lemma 2.3 gives the lower bound for the case m ≥ dn
2
e, with the restriction that m and n cannot

be equal if they are both even. A stricter upper bound in the case that m is even and m = n is given
by Lemma 2.4 and finally the construction of Lemma 2.5 gives the lower bound for this case.

The following lemma gives us the general upper bound for this problem.

Lemma 2.1. Rb(Tm, Tn) ≤ max(m, dn
2
e), where 2 ≤ m ≤ n.

Proof. Consider a 2-colouring of Kb,b, where b = max(m, dn
2
e). Let the independent sets of Kb,b

be A and B. Consider a maximal red Tk. W.l.o.g. say it is made by the first x vertices in A and the
first k − x vertices of B. If k = b we get a red T2b (i.e. at least a Tn), otherwise maximality forces
a blue Kb−x,k−x (composed by the last b − x vertices of A and the first k − x vertices of B) and a
blue Kx,b+x−k (composed by the first x vertices of A and the last b+ x− k vertices of B) and so a
blue Tb−2x+k and a blue Tb+2x−k.
Therefore, there is at least one blue Tb (even k) or at least one blue Tb+1 (odd k) and hence in either
case there exists at least a blue Tm.

The following lemma gives us a lower bound for this problem for the case where 2 ≤ m < dn
2
e.

Lemma 2.2. Rb(Tm, Tn) > dn2 e − 1, where 2 ≤ m < dn
2
e.

Proof. A red Kdn
2
e−1,dn

2
e−1 contains at most a red Tn−2 (even n) or at most a red Tn−1(odd n).

The following lemma gives us a lower bound for this problem for the case where 2 ≤ dn
2
e ≤ m < n

or 2 < n = m = 2k + 1 with k ∈ Z+.
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Lemma 2.3. Rb(Tm, Tn) > m − 1, where 2 ≤ dn
2
e ≤ m < n or 2 < n = m = 2k + 1 with

k ∈ Z+.

Proof. Consider the following 2-colouring of Km−1,m−1 (see also Figure 2a):

• Let the independent sets of Km−1,m−1 be A and B.

• Colour the edges joining the first bm−1
2
c vertices of A with the first dm−1

2
e vertices of B blue.

• Colour the edges joining the last dm−1
2
e vertices of A with the last bm−1

2
c vertices of B blue.

• Colour the rest of the edges red.

The following lemma gives us a lower upper bound for this problem for the case where m = n =
2k with k ∈ Z+.

Lemma 2.4. Rb(Tm, Tm) ≤ m− 1 if m is even.

Proof. Consider a 2-colouring of Km−1,m−1. Let the independent sets of Km−1,m−1 be A and B.
By previous lemma it contains either a blue Tm−1 or a red Tm−1. W.l.o.g. say a blue Tm−1 made by
the first x vertices in A and the first m−1−x vertices of B. Maximality forces a red Km−1−x,m−1−x
(composed by the last m− 1−x vertices of A and the first m− 1−x vertices of B) and a red Kx,x

(composed by the first x vertices of A and the last x vertices of B) and so a red T2(m−1−x) and a
red T2x. Therefore, there is at least one red T2dm−1

2
e = Tm (as m− 1 is odd).

The following lemma shows that the upper bound established in the previous lemma can be
achieved.

Lemma 2.5. Rb(Tm, Tm) > m− 2 if n = m = 2k.

Proof. Let b = min(m,n). Consider the following 2-colouring of Km−2,m−2 (see also Figure 2b):

• Let the independent sets of Km−2,m−2 be A and B.

• Colour the edges joining the first bm−1
2
c vertices of A with the first bm−1

2
c vertices of B blue.

• Colour the edges joining the last bm−1
2
c vertices of A with the last bm−1

2
c vertices of B blue.

• Colour the rest of the edges red.

The solution to the bipartite star vs stripes problem is an immediate consequence of the following
theorem.

Theorem 2.3. Rb(Sm, nP2) = m+ bn−1
2
c − 1.
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(a) A 2 colouring of K5,5

without a blue (contin-
uous line) T6 or a red
(dashed line) T8

b

b

b

b

b

b

b

b

b

b

b

b

(b) A 2 colouring of K6,6

without a blue (contin-
uous line) T8 or a red
(dashed line) T8

Figure 2: Lower bound constructions considered in Theorem 2.2

Proof. We will first prove that Rb(Sm, nP2) ≤ m + bn−1
2
c − 1. Let’s consider a 2-colouring of

Kb,b, where b = m+ bn−1
2
c− 1. Let the independent sets of Kb,b be A and B. Consider a maximal

red kP2, k ≤ n − 1. W.l.o.g. say it is made by the first k vertices in A and the first k vertices of
B. Maximality forces a blue Kb−k,b−k (composed by the last b− k vertices of A and the last b− k
vertices of B) and so a blue Sb−k+1. Maximality of the red kP2 also forces at least one of the two
vertices of a P2 in the upper sets to be joined with only blue edges to the lower sets. Therefore
there exist a vertex in the lower sets with b− k + dk

2
e = b − bk

2
c blue edges attached on it, i.e. at

least a blue Sb−b k
2
c+1. As k ≤ n− 1 we get at least a blue Sb−bn−1

2
c+1 = Sm. We will now show an

upper bound revealing that:

Rb(Sm, nP2) > m+ bn− 1

2
c − 2.

Let c = m+ bn−1
2
c − 2. We consider the following 2-colouring of Kc,c (see also Figure 3):

• Let the independent sets of Kc,c be A and B.

• Colour the edges joining the first m− 2 vertices of A with the first m− 2 vertices of B blue.

• Colour the rest of the edges red.

b b b

b b b

b b b

b b b

Figure 3: A 2 colouring of K6,6 without a blue (continuous line) S6 or a red (dashed line) 5P2

The soution to the bipartite tree vs stripes problem is an immediate consequence of the following
theorem.

94



www.ejgta.org

Bipartite Ramsey numbers involving stars, stripes and trees | Michalis Christou et al.

Theorem 2.4. Rb(Tm, nP2) = max(n, dm+n−1
2
e).

Proof. We will first show that Rb(Tm, nP2) ≤ max(n, dm+n−1
2
e). We consider a 2-colouring of

Kb,b, where b = dm
2
e + n − 1. Let the independent sets of Kb,b be A and B. Consider a maximal

red kP2. W.l.o.g. say it is made by the first k vertices in A and the first k vertices of B. If k = b
then we get a red nP2 otherwise 0 < k < b and maximality forces a blue Kb−k,b−k (composed by
the last b − k vertices of A and the last b − k vertices of B) and so a blue T2b−2k. Therefore there
exists at least one blue T2b−2n+2 in our graph, i.e. at least one blue Tm. Maximality of the red kP2

also forces at least one of the two vertices of a P2 in the first sets of A and B to be joined with
only blue edges to the lower sets. This forces the appearance of at least a blue T2(b−k)+k = T2b−k
composed by the vertices of the last sets of A and B and at least k vertices from the upper sets of
A and B, i.e at least a blue T2dm+n−1

2
e−n+1 (which means a blue Tm if m+ n− 1 is even or a blue

Tm+1 if m+ n− 1 is odd).
We will now show that Rb(Tm, nP2) > dm+n−1

2
e − 1. Let c = dm+n−1

2
e − 1. Consider the

following 2-colouring of Kc,c (similar to the colouring given in Figure 3):

• Let the independent sets of Kc,c be A and B.

• Colour the edges joining the first bm−1
2
c vertices of A with the first dm−1

2
e vertices of B blue.

• Colour the rest of the edges red.

The lower bound construction for the case n > dm+n−1
2
e is a red Kn−1,n−1.

The solution for the bipartite Ramsey tree vs star problem is broken into several lemmas. We first
establish a general upper bound, which can be achieved in certain cases, and then we provide a
solution for the rest of the cases.
The following lemma gives us the general upper bound for this problem.

Lemma 2.6. Rb(Tm, Sn) ≤ n+ bm−1
2
c − 1.

Proof. Consider a 2-colouring of Kb,b, where b = n+ bm−1
2
c− 1. Let the independent sets of Kb,b

be A and B. Number the vertices in each set from 1 to b. Consider a maximal blue Tk, k ≤ m− 1.
W.l.o.g. say it is made by the first x vertices in A and the first k − x vertices of B. If k = 2b
we get a red T2b = T2(n+bm−1

2
c−1) (i.e. at least a Tm), otherwise maximality forces a red Kb−x,k−x

(composed by the last b − x vertices of A and the first k − x vertices of B) and a red Kx,b+x−k
(composed by the first x vertices of A and the last b + x − k vertices of B) and so a red Sb−x+1,
a red Sk−x+1, a red Sx+1 and a red Sb+x−k+1. The red Sb−x+1 and the red Sb+x−k+1 guarantee at
least a red Sb−bm−1

2
c+1 = Sn.

The above upper bound can be achieved in certain cases, as the next lemma shows.

Lemma 2.7. Rb(Tm, Sn) > n + bm−1
2
c − 2, if (n + bm−1

2
c − 2) = xbm−1

2
c + y(m − 1) where

{x, y} ∈ Z∗.

Proof. Let b = n+ bm−1
2
c − 2. Consider the following 2-colouring of Kb,b (see also Figure 4):
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• Let the independent sets of Kb,b be A and B.

• Number the vertices in each set from 1 to b.

• Colour the edges joining the first bm−1
2
c vertices of A with the first dm−1

2
e vertices of B blue.

• Colour the edges joining the next dm−1
2
e vertices of A with the next bm−1

2
c vertices of B

blue.

• Repeat colouring in this manner until we colour 2y sets.

• Colour the edges joining the next bm−1
2
c vertices of A with the next bm−1

2
c vertices of B

blue.

• Repeat colouring in this manner until we reach the end of set A.

• Colour the rest of the edges red.

b b b

b b b

b b b

b b b

Figure 4: A 2 colouring of K6,6 without a blue (continuous line) T4 or a red (dashed line) S7

The following theorem summarizes the above lemmas and provides us with the solution for the
rest of the cases.

Theorem 2.5. Rb(Tm, Sn) = n+ bm−1
2
c− 1− i, where i ∈ Z∗ and {y, x0, . . . , xi} ∈ Z∗ such that

i is minimum and (n+ bm−1
2
c − 2− i) = y(m− 1) +

∑i
j=0 xj(bm−12

c − j).

Proof. If i = 0 the theorem is an immediate consequence of Lemmas 2.6 and 2.7. The case of
i = 1 implies that n+bm−1

2
c−2 is not a sum of bm−1

2
c and m−1 terms and we cannot use the same

colouring as in Lemma 2.7. Any other colouring will lead to the creation of either a blue Tm or a red
Sn and so Rb(Tm, Sn) ≤ n+bm−1

2
c−2−1. Let n+bm−1

2
c−2−i = y(m−1)+

∑1
j=0 xj(bm−12

c−j).
The following colouring proves that Rb(Tm, Sn) > n+ bm−1

2
c − 3.

Consider the following 2-colouring of Kb,b, where b = n+ bm−1
2
c − 3:

• Let the independent sets of Kb,b be A and B.

• Number the vertices in each set from 1 to b.

• Colour the edges joining the first bm−1
2
c vertices of A with the first dm−1

2
e vertices of B blue.
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• Colour the edges joining the next dm−1
2
e vertices of A with the next bm−1

2
c vertices of B

blue.

• Repeat colouring in this manner until we colour 2y sets.

• Colour the edges joining the next bm−1
2
c vertices of A with the next bm−1

2
c vertices of B

blue.

• Repeat colouring in this manner until we colour x0 sets.

• Colour the edges joining the next bm−1
2
c − 1 vertices of A with the next bm−1

2
c − 1 vertices

of B blue.

• Repeat colouring in this manner until we colour x1 sets.

• Colour the rest of the edges red.

Following similar arguments we can prove the statement for all possible values of i.

3. Conclusion

The bipartite Ramsey number Rb(H,G), where H and G are bipartite graphs, is the small-
est integer p such that any blue-red colouring of the edges of the complete bipartite graph Kp,p

forces the existence of a blue H or a red G. In this paper we have considered special cases of the
bipartite Ramsey problem. More specifically, we investigated the existence of simpler monochro-
matic graphs such as stripes, stars and trees under a 2-colouring of the edges of a bipartite graph
and we gave the Ramsey numbers for Rb(mP2, nP2), Rb(Tm, Tn), Rb(Sm, nP2), Rb(Tm, nP2) and
Rb(Sm, Tn). Further research can be carried out to obtain better bounds for the general problem,
to derive solutions for special cases or even to investigate the behaviour of small bipartite Ramsey
numbers.
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