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Abstract

The notation F' — (H,G) means that if all edges of F' are arbitrarily colored by red or blue,
then either the subgraph of F' induced by all red edges contains a graph H or the subgraph of F
induced by all blue edges contains a graph G. Let R(H, G) denote the set of all graphs F’ satisfying
F — (H,G)andforeverye € E(F), (F—e) /4 (H,G). In this paper, we propose some properties
of Ramsey (2K, G)-minimal graph of smallest order, where G is a graph containing a dominating
vertex. We also find all members of R(2K5, W,,) of smallest order for n € [5, §].
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1. Introduction

Ramsey theory, first introduced by Ramsey [14] in 1930, investigates the unavoidable emer-
gence of order in large or complex structures. While the classical formulation focused on complete
graphs and cliques, the theory was later extended in the 1950s by Erd6s and Rado [7] to a more
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general setting involving arbitrary graphs. All graphs considered in this paper are simple. The
notation F' — (H, ) means that each red-blue coloring of the edges of the graph F’ results in F
containing a red subgraph that is isomorphic to H or a blue subgraph that is isomorphic to G.

The smallest integer n for which K,, — (H,G) is called the Ramsey number for the graphs
H and G, denoted by R(H,G). Zhang et al. [20] established the best known general upper
bound for R(Cy, W,,) and determined several exact values of R(Cy, W,,) for specific values of n.
Furthermore, Sudarsana [15] proved that if n > f(¢), then the Ramsey number R(C,,, tW,) =
2n +t — 2 holds for all t > 1, where f(t) = 15t* — 4t + 2

Ramsey’s theory evolved to become the minimal Ramsey graph theory as defined by Burr
et al. [6] in 1976. A graph F is called a Ramsey (H,G)-minimal graph if F — (H,G) and
F —e —» (H,G) for any subgraph F' — e C F. R(H, G) is the set of all (H, G)-minimal graphs.
The pair (H, G) is called Ramsey-finite if R(H, G) is finite and Ramsey-infinite otherwise.

Fuczak [10] showed that the set R(H, ) is infinite for every forest H other than a matching
mK, and every graph GG containing a cycle. Nabila et al. [13] presented several finite and infinite
classes of Ramsey (Cy, K ,,)-minimal graphs for every n > 3. Furthermore, Assiyatun et al.
[1] introduced a new class of Ramsey (Cl4, K ,,)-minimal graphs. Burr et al. [5] proved that
R(mKs,,G) is Ramsey finite for any graph G and a positive integer m. In this paper, we focus on
the class R(mKs, G), where G is a graph containing a dominating vertex (a vertex that is adjacent
to any other vertices in the graph).

Mangersen and Oeckermann [11] proved that R(2K5, K, 2) = {2K 2, Cy, Cs}, and presented
the characterization of graphs belonging to R(2K5, K ,,) for n > 3. Furthermore, Muhshi and
Baskoro [12] proved that R(3K5, P3) = {3P3,C4U P53, C5U P3, C7, Cs }. Baskoro and Yulianti [4]
characterized all graphs in R(2K,, P,) for n € {3,4}, while Fajri et al. [9] determined all graphs
in R(2K5, F,,) with minimum order for n € [4, 8], where F,, = K; + P,_;. Moreover, Yulianti et
al. [19] gave the construction of some infinite class in R(K 2, P;). Wijaya et al. [16] determined
all graphs belonging to R (2K, K). Wijaya et al. [17] characterized all uncyclic graphs belonging
to R(mKs, P3), and subsequently Baskoro et al. [3] characterized all uncyclic graphs belonging
to R(ng, P4)

Baskoro and Wijaya [2] derived the necessary and sufficient conditions for the graphs to be in
R(2K;, G) for any connected graph G. They proved the following theorem.

Theorem 1.1. [2] Let G be any connected graph. F € R(2K5, G) if and only if the following
conditions are satisfied:

(i) foreveryv € V(F), F —v 2 G,
(ii) for every K3 in F, F — E(K3) D G,
(iii) for every e € E(F), there exists v € V(F) or K in F such that (F —e) —v 2 G or
(F—e)— E(K3) 2 G.

If a graph F satisfies Theorem 1.1 (7) and (i), then F' — (2K, G). Moreover, a graph F’ satisfying
Theorem 1.1 (7i7) means that F' satisfies the minimality property of F| that is for each e € F),
F — e » (2K, G). Furthermore, Wijaya and Baskoro [18] described the necessary and sufficient
conditions for graphs in R(mKs, G).
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In this paper, we propose some properties of Ramsey (2K, G)-minimal graph of smallest or-
der, where G is a graph containing a dominating vertex. We also find all members of R(2K5, W,,)
of smallest order for n € [5, 8].

2. Main Result

We will introduce some definitions and notations. A complete graph and a cycle on the n
vertices are denoted by K, and C,,, respectively. A wheel W, is defined as the graph K; + C),_;.
A union of m disjoint copies of K, denoted by m K, is called a matching. A complete multipartite
graph consisting of j partite sets and £ vertices in each partite set is denoted by K. Given a
graph G, E; denotes the set of ¢ arbitrary edges of F/(G). The notation G — E; denotes the removal
of any i edges from the graph GG. The notation [, ] represents the set of all integers that lie between
¢ and ¢ (including ¢ and ¢ themselves).

The main results of this paper are presented through several theorems. The first theorem (Theo-
rem 2.1) provides a characterization of the graphs belonging to Ramsey (2K, G)-minimal graphs
of smallest order and maximum degree n — 1 for any graph GG with n vertices, where G = K| + H
for some i/ 2 K1,y — e. The second theorem (Theorem 2.2) establishes necessary conditions
for a graph contained in F’ to be a member of R(2K5, G) of smallest order and maximum degree
n, where G has a dominating vertex. In the final theorems (Theorems 2.3-2.6), we discover and
prove the complete list of Ramsey (2K, W,,)-minimal graphs of smallest order for n € [5, 8].

Let G(n) denote the set of finite simple graphs G that have exactly n vertices, none of which is
isolated, and let G(n, ¢) denote the subset of G(n) with the independence number c. Faudree et al.
[8] found the Ramsey number for matching and any graph G as follows.

Corollary 2.1. [8] Let G € G(n,c). Then R(sK>,G) =n+s—1ifs < |3¢| + 1.

As aresult of Corollary 2.1, when we set s = 2, it follows that R(2K5,G) =n + 1 forc > 2.
Define Gp(n, i) as the subset of G(n, c) where n > 2, ¢ > 2, and precisely ¢ vertices have degree
n — 1 for ¢+ > 1. Utilizing the relationship between the Ramsey number and Ramsey-minimal
graphs, the smallest order of F' € R(H,G) is R(H, G). It follows that for each G € Gp(n, 1), the
minimum order of F' € R(2K,, G) is n+ 1. Hereafter, we limit our discussion to the set of Ramsey
(H,G)-minimal graphs of the smallest order, denoted by R (H, G). The subsequent proposition is
established.

Proposition 2.1. Let G € Gp(n,i). If F € R(2K,, G), thenn —1 < A(F) < n.
Proof. Since |[V(F)|=n+1and A(G) =n —1,thenn — 1 < A(F) < n. O

Let deg,(v) denote the degree of the vertex v in the graph G, and let D(G, ) represent the
number of vertices of degree 7 in the graph G. Let G € Gp(n, i) and denote G = K + H for some
graph H. By Theorem 1.1 and Proposition 2.1, we obtain necessary and sufficient conditions for
graphs belonging to R(2K,, G) in following observation.

Observation 2.1. Let G € Gp(n,i). Let G = K1+ H, F € 7%(2[(2, G) if and only if the following
conditions are satisfied:
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(i) For every v € V(F), there exists v' € V(F — v) where degy_,(v') > n — 1 such that
(F—v)—v D H.
(ii) For every K3 in I, there exists v' € V(F — E(K3)) where degp_px,)(v') > n — 1 such
that (F — E(K3)) —v' 2 H.
(iii) For every e € E(F), there existsv € V(F — e) or K3 C F' — e such that
(a) A(F—e)—v)<n—1lorA((F —e)— E(K;)) <n—1,or
(b) foreveryv' € (F —e) —v wheredegx_.y ,(v') >n—1, ((F—e)—v)—v' 2 H,or
(c) foreveryv' € (F—e)—E(K3) where deg p_o)_px,) (V') =2 n—1, ((F—e)—E(K3))—
v' 2 H.
Characterizing all graphs in R(2K5, G) for a given graph G € Gp(n, 1) is difficult. Based on
the definition of Ramsey (H, G)-minimal, we also obtain some properties for the graph belonging
to R(2K5, G) in the following observation.

Observation 2.2. Let ' be any graph. If F € 7@(H , G), then the following conditions are satis-
fied:

(i) If F > F' or F' D F, then F' ¢ R(H,G).

(ii) If F' € R(H,G), then F D F' and F 2 F'.

2.1. Some Properties of Ramsey (2K, G)-Minimal Graph of Smallest Order

In this subsection, we discuss some properties of the graph F' that satisfy F' € 7%(2[(2, G) for
G € Gp(n,i). The following result gives the characterizations of the graph F' for odd n and i = 1,
with maximum degree n — 1.
Theorem 2.1. Let G € Gp(n, 1) for odd n > 3, where G = K, + H for some H C KanlX2 —e.

Then KnT—O—lXZ is the unique graph in 7%(2[(2, G) with maximum degree n — 1.

Proof. Letv; € V(K,4+1) fori € [1,n+1]. Forevenn > 3, define the graph Koy = Knp1 = E,
where E = {vy;_1v9; | j € [1,254]}. Let G = K + H, for some H C K1y, — e First, we will
show that Kuns1,, € R(2K>, G). Observe the following cases

(7) Without loss of generality, consider v; and choose v, which is in the same partite with v;.
Note that Kng1,5 —v1 —v2 = Knz1 .

(77) Without loss of generality, consider a K3 with V(K3) = {v1,vs,v5}. Choose vy as the
dominating vertex in G. Since v; is not adjacent to vy, we can disregard v;. Observe that
K%XQ — E(Kg) — Vg — V1 = KnT—IXQ — €.

Based on both cases above, since H C K nolyy — € C K -1y by Observation 2.1 (i) and
(17), Knt1,5, — (2K3,G). Next, we will show that Kuni1,, — e /4 (2K3,G). Without loss of
generalito, let e = v;v3. Note that A(KnTHXQ —e—1) = n — 2, thus G € KnTJrlXQ —e — ;. By
Observation 2.1 (iii), Kup,p—es (2K5, G). Therefore, we obtain Knp,, € R(2K,, Q).

Afterward, we will show that Kn:1,, is the unique graph in R(2K,, G) with the maximum
degree n — 1. Let F be any graph with n + 1 vertices and maximum degree n — 1, where F' #
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Kni1y, . Weknow F' C K,y € R(2K,,G). By Observation 2.2 (i), F ¢ R(2K,, G).

Therefore, K i) is the unique graph in 7@(2[(2, (G) with maximum degree n — 1 for odd n >
3. ]

For other conditions on n and 7, the following proposition proves that no other graphs belong
to R(2K5, G) with maximum degree n — 1.

Proposition 2.2. Let G € Gp(n,i). If n is even and i > 1 or n is odd and i > 2, there are no
graphs belonging to R(2Ks, G) with maximum degree n — 1.

Proof. Letv, € V(K,41) forl € [1,n+ 1]. We will show that for both following conditions, there
are no graphs belonging to R(2K5, G) with maximum degree n — 1.

(1) Forevenn andi > 1.
Define a graph K1 — E, where E' = {vy_1vax|k € [1, 5]} U {v1v,41}. Let F be any
graph with order n 4+ 1 and maximum degree n — 1, we know that K,,,; — E O F. Since
A(Kyi1—E—v,.1) =n—2,then K,,, 1 — E—v,,1 2 G. By Theorem 1.1 (¢), K,,,1 — E ¢
R(2K,,G). Since K, ;1 — E D F, by Observation 2.2 (i), F ¢ R(2K,,G). Therefore,
there are no graphs belonging to 7@(2[( 2, G) with maximum degree n — 1 for even n > 2.
(74) Forodd n and i > 2.
Define a graph K ni1),o = Kys1 — E, where E = {vgj_1v9; | j € [1,n + 1]}. Let F be
any graph with n + 1 vertices and maximum degree n — 1, we know that /' C K ni1),,.

2
Consider the graph K1), — vy, since G € Gp(n,i) and deg, (vj) =n — 2 for

(7L<2F1)><27'U1

i>2andj € [3,n+ 1], then G £ K(ng1y,5 —v1. Since F' — vy © Kngay, 5 — 01, then

G € F—wv;. By Theorem 1.1 (i), F' ¢ R(2K,, G). Therefore, there are no graphs belonging
to R(2K5, G) with maximum degree n — 1 for odd n > 3.

Based on both conditions above, we obtain there are no graphs belonging to 7@(2]{2, G) with
maximum degree n — 1. ]

Based on Theorem 2.1 and Proposition 2.2 above, we conclude that for every G € Gp(n, i),
only odd n and ¢+ = 1 produce graphs belonging to 7@(2[( 2, G) with maximum degree n — 1, where
G:K1+Hf0rsomeH§Kn%1

The notation D(F,n) denotes the number of vertices with degree n in the graph F'. For the
remaining of this subsection, assume that deg(v;) > deg(v;), for i < j. Next, we will discuss
some necessary conditions for F' € R(2K,, G) with maximum degree n for G € Gp(n,i). The
following result provides the properties of degrees in such graphs F'.

—ex2°

Lemma 2.1. Let G € Gp(n,i). If F € R(2K>, G) with A(F) = n, then

(i) D(F,n) > i+ 1.
(i) D(F,n)+ D(F,;n—1)>i+3

Proof. Let F € R(2K5,G) with A(F) = n. Letv; € V(F) for j € [1,n + 1] and deg,(v,) = n.
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(7) Suppose D(F,n) < i+ 1, then D(F —v;,n — 1) < i = D(G,n — 1). Thus, we obtain
G ¢ F—v;. By Theorem 1.1, F' & 7@(2[(2, (7), a contradiction. Therefore, D(F,n) > i+1.

(¢7) By Point (7), letdegp(vy) = n, for k € [1,i41]. Observe a K3, with V (K3) = {v1, v2, viy3}.
Suppose that D(F,n) + D(F,n — 1) < i+ 3. By Point (i), we know that D(F,n) =i+ 1
or ¢ + 2. Consider the following cases.

(@) Let D(F,n) =i+1,then D(F,n—1) < 1.If D(F,n—1) = 1,letdegp(v;13) =n—1,
we obtain D(F — E(K3),n — 1) = 0 and D(F — E(K3),n) = ¢ — 1. Hence, if
D(F,n—1) =0, we also obtain D(F — E(K3),n—1) =0and D(F — E(K3),n) =
i — 1. For both possibilities, we have D(F' — E(K3),n) + D(F — E(K3),n — 1) =
i—1<i=DGn—1).

(b) Let D(F,n) =i+ 2, then D(F,n — 1) = 0. We obtain D(F' — E(K3),n) + D(F —
E(K3),n—1)=i—1<i=D(G,n—1).

For both above cases, we obtain G ¢ F — E(K3). By Theorem 1.1 (i), F & R(2K>,G), a
contradiction. Therefore, D(F,n) + D(F,n —1) > i+ 3.

]

Based on the lemma above, we conclude that there are at least ¢ 4+ 3 vertices with degrees of
at least n — 1, and at least ¢ + 1 of them have degrees n. Thus, we can construct basic graphs that
satisfy these conditions. Define a graph B, ; ;, where |V (B,,; ;)| = n+1forn > 2,7 > 1, and
J € [1, 3], with exactly i + 1 vertices of degree n and exactly two vertices of degree n — 1. The
graphs B, ; 1, B, 2, and B, ; 3 have, respectively, n, n — 1, and n — 2 common neighbors of the
two vertices of degree n — 1. The graphs B,, ; ;, for i € [1, 3|, are shown in Figure 1.

Ky —
° )
. A I ° .
K o—o—o ‘ Kin —eo—o
By B, Byis

Figure 1. Graph B,, ; 1, By i 2, and By, ; 3
In the following theorem, we obtain the necessary conditions for a graph contained in F' to be
a member of R(2K5, G) with maximum degree n, where G € Gp(n,1).

Theorem 2.2. Let G € Gp(n, i) forn > 2. If F € R(2K,, G) with A(F) = n, then F D By,
for some j € [1,3].

Proof. We observe that every possible graph with n 4 1 vertices, where there are exactly ¢ + 1
vertices of degree n and two vertices of degree n—1, is represented by the graph B,, ; ; for j € [1, 3].
By Lemma 2.1, F' D B,,; ; for some i € [1, 3]. O
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The graph B, ; ; for j € [1, 3], is referred to as the basic graph that must be contained in F'.
By Lemma 2.1, we obtain additional necessary conditions for the graph /' to be a member of
R(2K;, G) with maximum degree n, where G' € Gp(n, ).

Proposition 2.3. Let G € Gp(n,i) forn > 2. If F € R(2K,, Q) with A(F) = n, then all the
following conditions are necessary for graph F'.

(i) The minimum degree of F, 5(F) > §(G) + 1.
(17) Any two vertices of degree 6(G) + 1 are not adjacent.

Proof. Let F € R(2K,,G) with A(F) = n. Let v, € V(F) for k € [1,n + 1]. By Lemma 2.1,
let deg(vy,) = n and degp(vg,) > n — 1fork, € [1,i+ 1] and ko € [i + 2,7 + 3].

[i

(i) Suppose §(F) < §(G) + 1. Since §(F —vy) = §(F) — 1 < 0(G), then G € F — vy. By
Theorem 1.1 (i), F & R(2K5, G), a contradiction. Therefore, §(F) > 6(G) + 1.

(17) Let vy, v,01 € V(F), with degp(v,) = degp(v,1) = 6(G) + 1. Suppose that v,, and
vny1 are adjacent. Observe a graph K3, with V(K3) = {v1,v,, Uy 1}. Consider 0(F —
E(Kj)) = degFfE(Kg)(vn) = degFfE(Kg)(vnH) = §(G) —1, hence v, v,1 € V(G). Since
|\V(F—E(K3))| =n+1and v, v,41 € V(G), then F— E(K3) 2 G. By Theorem 1.1 (i),
Fg 7@(2[(2, (), a contradiction. Therefore, v,, and v, are not adjacent.

]

If the graph G has exactly one dominating vertex, thatis G € G p(n, 1), then we obtain some
specific necessary conditions for the graphs that are members of R (2K, G') with maximum degree
n as stated in the following proposition.

Proposition 2.4. Let G € Gp(n, 1) forn > 2. If F € R(2Ks, G) with D(F,n) = 2, D(F,n—1) =
2, and 0(G) > 3, then all the following conditions are necessary for the graph F.

(1) If there exists a vertex of degree 5(G) +t witht € [1,2], then the two vertices of degree n — 1
are adjacent.
(i7) If there exists a vertex of degree §(G) + 1, then each vertex of degree 6(G) + 1 is adjacent
to at most one vertex of degree n — 1.
(1ii) If there exists a vertex of degree 6(G) + 2 that is adjacent to both vertices of degree n — 1,
then neighbors of the vertex of degree 6(G) + 2 are also neighbors of at least one vertex of
degree n — 1.

Proof. Let F € R(2K,,G) with D(F,n) = 2, D(F,n — 1) = 2, and 6(G) > 3. Let v, € V(F)
for k € [1,n + 1]. Let deg,(vg,) = n and degp(vg,) = n — 1 for ky € [1,2] and ky € [3,4].

(1) Letdegy(vny1) = 0(G)+t for some t € [1,2]. Suppose v and vy are not adjacent. Since v
and v, are not adjacent, then v3 and v,,,; are adjacent, and v4 and v,,,; are adjacent. Observe
a K3, with V(K3) = {v1, 02, vny1}. Consider §(F' — E(K3)) = degp_ gy (Vnr1) < 0(G)+
t—2and A(F — E(K3)) = degp_px,)(v3) = degp_p g, (va) = n—1, hence v3 and v, are
the dominating vertices of G. Without loss of generality, choose vertex v as the dominating
vertex. Since v and vy are not adjacent, the vertex v, can be ignored. Thus, we obtain
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5(F—E(K3> —U4) = degFfE(Kg)fm(Un'i‘l) = 5(G)+t—3 Since |V(F—E(K3) —’U4)| =N
and 0(F — E(K3) —vg) = 0(G) +t — 3 < 6(G) fort € [1,2], then F — E(K3) 2 G. By
Theorem 1.1 (ii), F ¢ R(2K,, (), a contradiction. Therefore, vs and v are adjacent.

(17) Let degy(vny1) = d(G) + 1. From conditions (1), vz and vy are adjacent. Suppose vz and
Un41 are adjacent, and vy and v, 1 are adjacent. Observe a K3, with V (K3) = {vy, va, Uny1}-
Consider §(F'— E(K3)) = degp_p(x,)(Vnt1) = 6(G) —1and A(F — E(K3)) = degp_p g,
(v3) = degp_ B KS)(U4) = n — 1,. Since v3 and v,,, | are adjacent, v, and v,,, are adjacent,
and A(F — E(K3)) = degp_p(x,)(vs) = degp_p(x,)(va) = n — 1, then v,41 € V(G).
Since v,41 € V(G) and 6(F — E(K3)) = degF_E(KS)(vnH) = §(G) — 1 < §(G), then
F — E(Ks) 2 G. Theorem 1.1 (ii), F ¢ R(2K>,G), a contradiction. Therefore, v3 and
Un+1 are not adjacent or vy and v,,41 are not adjacent.

(#7i) Let degp(vyi1) = O6(G) + 2, vy and v, are adjacent, and v, and v, are adjacent.
From conditions (1), v3 and v, are neighbors. Let v, 4, and v,, are adjacent. Suppose v3
and v,, are not adjacent and v, and v,, are not adjacent. Observe a K3, with V(K3) =
{v1,v2, vy 41} Consider degp_pfe,) (Vn+1) = 6(G) and A(F—E(K3)) = degp_px,)(v3) =
degr_p(fc,)(va) = n — 1. Since vy and v, are not adjacent and v4 and v, are not adjacent,
then v, ¢ V(G), so the vertex v, can be ignored. Since |V (F — E(K3) — v,)| = n
and degp_ gy, (v3) = 0(G) =1 < 0(G), then G € F — E(Kj3). Theorem 1.1 (i),
F g 7@(2]{ 2, G), a contradiction. Therefore, v3 and v,, are adjacent or v, and v,, are adja-
cent.

]

2.2. Complete List of Ramsey (2K, W,,)-Minimal Graphs of smallest Order

In this subsection, we give the complete list of 7%(2K 2, W) for n € [5,8] in Theorems 2.3-2.6.
Before we discuss these theorems, we introduce some notations. Let F € 7%(2[(2, W,,) where
v; € V(F) fori € [1,n + 1] and let d, j1, jo, J3, k1, k2, ..., ko1 € [1,n + 1]. The notations
{71}, (d; k1, ko, ks..., ky—1)] and [(j1, Jo, J3), (d; k1, ko, ..., kn_1)], respectively, denote the removal
of the vertex v;, and the edges of the triangle K3 with V' (K3) = {vj,,v),,v;,} in F' such that F' —
vy, F—E(K3) D W, where W,, = v4+E(C,,—1) with E(Cp,—1) = {Uk, Vky, UkyVky s -3 Vky_2Vkn, 1 }-
The notations [e = (k,1),{j1}] and [e = (k,[), (41, jo, J3)], respectively, denote the removal of
the vertex v;, and edges of the triangle K3 with V(K3) = {v,,,v;,,v;,} in F' — vzv; such that
F — v — v, F — o — E(K3) 2 W,. All the notations we have defined above are called
red-blue coloring codes of F'.

In the following Theorem 2.3, we obtain the characterization of the member 7@(2K 2, W5).

Theorem 2.3. The graph K¢ — ey is the unique graph in R(2K,, W), for any e; € E(Kg).

Proof. Let v; € V(Kg), for i € [1,6]. Observe K¢ — ey, without loss of generality, choose
e; = v1vo. Consider the red-blue coloring codes on Kg — e; and K4 — e; — e as shown in Table 1.

Table 1. Red-Blue Coloring Codes on Graphs K¢ — e and K¢ — Eo

K6—€1 — (2K27W5) K@-@l —€7L> (2K2,W5)
[{1},(5;2,3,4,6)] [(1,5,6),(2;3,5,4,6)] [e = (16),(3,4,5)]
[{5},(6;1,4,2,3)] [(4,5,6),(3;1,4,2,6)] [e = (34), (4,5,6)]
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We obtain K¢ —e; € 7%(2K2, Ws). Sjnce K¢ D Kg—eyand Kg — ey D K¢ —e; — e, by
Observation 2.2 (1), K¢, Kg — e1 — E; € R(2K5, W5) for i > 1. Therefore, K¢ — e; is the unique
graph in R(2K5, W;). O

As illustrative examples, the notations [{1}, (5;2,3,4,6)] and [(1,5,6), (2;3,5,4,6)] in Ta-
ble 1 indicate, respectively, that assigning red to all edges incident to vertex v; yields a blue
subgraph W5 = vs5 + Cy 1, where E(Cy1) = {vqv3, 0304, U506, U6v2 }, and that coloring the tri-
angle formed by vertices vy, vs, and vg red produces a blue subgraph W5 = vy + Cy 2, wWhere
E(Cy2) = {vsvs, v504, v406, Ugvs } in the graph K¢ — e, as illustrated in Figure 2 (7) and (77). In
contrast, the notation [e = (16), (3,4, 5)] in Table 1 represents the removal of edge v,vs and the red
coloring of the triangle on vertices vs, v4, and v5, which does not yield a blue subgraph isomorphic
to W5 in K¢ — e, as shown in Figure 2 (i7).

[{1},(5:2,3,4,6)] [(1,5,6),(2:3,5,4,6)] [e = (16), (3,4,5)]
Uy Vs V4 Vs V4 Vs
U3 Vg V3 Vg U3 /- Vg
; gi',
U2 U1 () Uy Vo V1

(i) (id) (iii)

Figure 2. Examples of red edge colorings in K¢ — e and K¢ — Fs yielding (or failing to yield) a blue subgraph
isomorphic to Ws.

In the following Theorem 2.4, we obtain the characterization of the member R(2K5, W) of
smallest order.

Theorem 2.4. The graph K; — E(Py) is the unique graph in R(2K,, Wg).

Proof. Letv; € V(K7), fori € [1,7]. Observe K7 — E(Ps), where E(P;) = {vsvg, vgvr}. The
red-blue coloring codes of K7 — E(Ps;) and K; — E(P;) — e is shown in Table 2, we obtain
K7 — E(P3) € R(2Ko, We).

Table 2. Red-Blue Coloring Codes on Graphs K7 — E(P3) and K7 — E(P;) — e

K7 — E(Ps;) — (2K, Ws) K7 — E(Ps) — e #» (2K3, W)
[{1},(2;3,6,4,5,7)]  [(126),(3;1,5,4,2,7)] [e =(12),(3,4,5)]
[{5},(1;2,4,6,3,7)] [(245), (1;2,6,4,3,7)] [e =(25),(1,3,4)]

[(123)7<4;2a6737577)] [(257)7(1;2a3777476)] [6 - (26)7{1}]
[(125),(3;1,6,5,4,7)] [(457),(1;2,4,6,3,7)] le = (57), {1}]

Next, we will show that K7 — E(Ps) is the unique graph in R(2K5, W).

(1) Since K7 —e D K7 — E(Ps), by Observation 2.2 (i), K7, K7 — e & R(2K>, Ws). Therefore,
no graph obtained by removing at most any single edge from K7 belongs to R (2K, Wg).
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(2) The graph K; — E(2K3) is the only graph obtained by removing any two edges from K’
which is not isomorphic to K; — E(P;). Without loss of generality, choose E(2K5) =
{v3vy, v506}. Observe a K3, with V(K3) = {vy, va,v3}. Since K7 — F(2K5)— E(K3)—v3 2
Cs, by Observation 2.1 (i), K7 — E(2K,) ¢ R(2K,, Wg). Therefore, removing any two
edges from K only produces the graph K7 — E(P3) as a member of R(2K5, Wy).

(3) Let Gr* = {K; — F3 | K7 — F3 € R(2K,, Wg)}. By Theorem 2.2 for every G3, € Gr?,
G% D By forsome i € [1,3]. All possible graphs K7 — E3 D Bg 1 ; are represented by the
graph K7 — E(G), where G = { K3, K, 3, Ky U P3, P, }. Since K7 — E(P;) D K7 — E(G),
by Observation 2.2 (i), K7 — E(G) & R(2K,, W;). Thus, Gr® = 0. Furthermore, since
K; — E(P3) D K7 — E(G) — e, by Observation 2.2 (i), no graph obtained by removing at
least three edges from K7 belongs to R(2K5, Wg).

Based on Points (1) — (3), it is proved that K7 — E(P;) is the unique graph in R(2K,, Wg). [

Before determining the characterization for wheels of larger order, we will discuss the neces-
sary conditions for a graph to be a member of R (2K, W,,) with maximum degree n + 1. Propo-
sition 2.3, 2.4, and the following lemma are used to directly eliminate graphs that do not belong to

~

R(2Ky, Wy),n > T.

Lemma 2.2. Let F € R(2K,, W,,), withn. > 7. If A(F) = n, then all the following conditions
are necessary for the graph F.

(1) Any two vertices of degree four have at most three common neighbors.
(i) F does not contain f([%l].

Proof. By Lemma 2.1, let deg-(vg,) = n and let deg,.(vx,) > n— 1 for ky € [1,2] and k5 € [3,4].

(1) Let degp(v,) = degp(vni1) = 6(F) = 4 and v, and v, 41 are not adjacent. Suppose
N(F,v,) = N(F,v,:1). Since deg(v3) = degp(vs) > n—1, then without loss of generality
vy € N(F,v,) and vy € N(F,v,41). Since N(v,) = N(vp11), then v3 € N(v,41) and
vy € N(vy). Thus, we obtain N(F,v,) = N(F,v,41) = {v;]i € [1,4]}. Consider the graph
F — ;. Since A(F —v;) = degp_, (v2) = n — 1, then v, is the dominating vertex in W,,.
Since |V (F —v; —v9)| =n—1and N(F — vy —vg,v,) = N(F — vy —v2,0p41) = {v3, 04},
then there is a cycle Cy with V (Cy) = {v;|j € [3,6]} in F'—v; —vy. Since C,,_1 2 Cy, with
n > 7, then F— vy — vy 2 C,_y. By Observation 2.1 (i), F & R(2K,, W,,), a contradiction.
Therefore, N (v,,) # N (vpt1).

(77) Suppose f([%] D F. Consider A(F — vy) = degF — vy,v3) = n — 1, thus v, is the
dominating vertex of the wheel W,,. Since K roii) D F, there exists a partition with [”7“1
vertices in the graph F. Since |V (F — v1 — v3)| = n — 1 and there is a partition with [24+]
vertices in F' — vy — v, then [21] > n — [%E] — 2. Consequently, F — v; — va 2 Cpr_1.
By Observation 2.1 (i), F ¢ R(2K,, W,,), a contradiction. Therefore, Kpniay ¢ F.

O]

Lemma 2.3. Let F € R(2K,, W,)) forn > 7. Then |E(F)| > 4n — 7.
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Proof. By Theorem 2.2, there exists B,, ; ; fori € [1,3] suchthat /' D B, ; ;. Consider |E(B,11)| =

dn—8 > |E(By1,)| = 4n—Tfor j € [2,3]. By Proposition 2.3 (), By, 12, Bn13 € R(2K5, W,,).

Since F D) Bn,l,i for some i € [1, 3] and Bn,l,?a Bn,1,3 ¢ R(QKQ, Wn)7 then E(F) > ’E(Bn71,2)| +

1= |E(Buis)|+1=4n—1. O
The graphs H; for i € [1, 4] are shown in Figure 3.

Us Us V5 Vg U5 V6 U5 Ug

i e B

H,

vy

v " ) ) )
H2 1 vy H;; U U2 I_]1 Uy

Figure 3. H; fori € [1,4]

In the following Theorem 2.5, we obtain the characterization of the member 7@(2[( 2, Wr).
Theorem 2.5. The graphs in 7@(2[(2, W7) are precisely K55 and H; fori € [1,4].
Proof. By Theorem 2.1, K42 € 7%(2K2, W>). The red-blue co}orings codes of H; and H; — e for
i € [1,4], respectively, as shown in Table 3 and 4. Thus, H; € R(2K,, W7).

Table 3. Red-Blue Coloring Codes of Graphs H; for i € [1, 4]

7 Hi — (2K2, W7)
{2},(1;3,5,7,4,6,8)] {8},(1;2,6,4,3,5,7)] [(1,2,8),(4;1,3,8,6,2,7)] [(2,5,7),(1;2,6,4,7,3,8)]
1 {4}, (1;2,3,7,5,8,6)]  [(1,2,3),(4;1,6,2,8,3,7)] [(2,3,5),(1;2,6,4,7,3,8)] [(3,4,8),(1;2,3,7,4,6,8)]
{6},(3;1,7,5,2,4,8)] [(1,2,6),(3;1,4,8,2,5,7)] [(2,3,8),(1;2,6,4,7,3,5)]
{1},(2;3,5,7,6,4,8)] [(1,2,3),(4;1,6,2,7,3,8)] [(2,3,5),(4;1,3,7,6,2,8)]
2 | [{3},(1;2,5,7,6,4,8)] [(1,2,5),(1;2,6,4,7,3,5)] [(3,4,7),(1;4,8,3,6,7,5)]
{5},(1;2,3,7,6,4,8)] [(2,3,4),(1;2,6,4,7,3,8)] [(3,4,8),(1;2,3,5,7,4,6)]
{1},(2;3,6,4,7,5,8)] {7}, (1;2,6,5,3,4,8)] (2,3,6),(1;2,4,3,7,5,8)] [(3,5,7),(1;2,5,8,3,4,7)]
3 {4}, (1;2,6,3,8,5,7)]  [(1,2,3),(4;1,7,2,6,3,8)] [(2,3,7),(1;2,5,7,4,2,6)]
{5}, (1;2,6,3,8,4,7)] [(2,3,4),(1;3,6,4,8,5,7)] [(3,4,6),(1;2,3,8,5,7,4)]
{6},(1;2,5,3,7,4,8)] [(2,3,5),(1;3,6,4,8,5,7)] [(3,4,7),(1;2,4,8,3,5,7)]
{1},(2;3,7,5,6,4,8)] [(1,2,3),(4;1,6,2,8,3,7)] [(2,3,5),(1;2,6,4,7,3,8)] [(2,5,7),(1;2,6,5,3,4,8)]
{3}, (1;2,6,5,7,4,8)] [(1,2,4),(3;1,5,2,7,4,8)] [(2,3,7),(1;2,4,6,5,4,8)] [(3,4,7),(1;2,4,6,5,3,8)]
4 | [{5},(1;2,6,4,8,3,7)] [(1,2,6),(3;1,5,2,8,4,7)] [(2,4,6),(1;2,7,4,3,5,8)]
{6},(1;2,5,3,7,4,8) [(1,2,7),(3;1,4,7,5,2,8)] [(2,4,7),(1;2,6,5,7,3,8)]
[{7}7 (1;27 6? 57 37 478)] [(27 374)7(1;27 77 57 67 47 8)] [(2’ 576)?(1; 277 5? 37 47 8)]
Table 4. Red-Blue Coloring Codes of Graphs H; — e for i € [1, 4]
i Hi —e /A (2K3, Wr)
1 | =027} [e=(25),{1}] [e=(34),(1,2,3)] [e=(37),(1,2,4)]
e =(23),{1} le=(27),{1}] [e=(35),(1,2,4)] [e=(57),(1,2,7)
2 | [e=(12),{3}] [e=(23),{1})] e =(25),{1} e=(34),(1,2,8) [e = (3,5),{1}]
3 | le=1(12),{8}]  [e=(25),{1}] e=(27), {1} e=(47),(1,2,3)
le=(24),{1}] [e=(26),{1}] [e=(46),(1,2,3)] [e = (57), {1}]
4 | le=(02),{8}]  [e=(24),{1}] [e = (27), {1}] [e = (35),(1,2,4)] [e = (46), {1}]
[e=23),{1}] [e=(26),{1}] [e=(34),(1,2,5)] [e=(37),(1,27)] [e=(47),(1,2,7)]
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By Proposition 2.2, K, is only the graph in 7@(2K2, W) with maximum degree 6. Thus, we
only need to prove that H; for i € [1,4] are the only graphs with eight vertices in R(2K5, W7)
with maximum degree 7. Let v; € V(KG3) for i € [1, 8]. Define the graphs H,; ; = Kgs — E(Hs, ),
where the data from the set of edges Hg; ; is shown in Table 5 for ¢ € [3, 7] and some j.

Table 5. The Set of Edges Ej ; ; for i € [3,7] and some j

E(Hs.71) = {45,56,57,58,67,68, 78} | E(Hs.e.0) = 156,57,58,67,68,78} | E(Hs 1.1) = {57, 58,67, 68}
E(Hg.72) = {35,45,57,58,67,68,78} | E(Hss10) = {36,45,57,67,68,89} | E(Hs 4.2) = {46,56,67, 78}
E(Hs 7.5) = {35,45,56,57,58,67,68} | E(Hso11) = {35,45,58,67,68,80} | E(Hsa3) = {35,45,67, 68}
E(Hs 7.4) = {36,45, 56,57, 58,67, 78} E(Hs5,1) = {45,57, 58, 67,68} E(Hs 4.4) = {45, 58, 67,68}
E(Hs 7.5) = {36,45, 56,57, 58, 67, 68} E(Hg5.2) = {36, 45,56, 67, 78} E(Hsg.a5) = {56,67,68,78}
E(Hs 7.6) = {36,45, 57,58, 67,68, 78} E(Hg.53) = {35,45,57, 67,78} E(Hg.a6) = {34,57,58,67}
E(Hs 7.7) = {34,56, 57,58, 67,68, 78} E(Hs.5 4) = {36,45,57, 68, 78} E(Hs.a.7) = {35,45,59,67}
E(Hs 1) = {45,56,57, 58, 67, 68} E(Hss5) = {45,57, 58,67, 78} E(Hs 4s) = {45,67, 68,78}
E(Hsg.2) = {35,45,57, 58,67, 68} E(Hss.6) = {46,56, 67,68, 78} E(Hs 4.0) = {35,45,56,57}
E(Hs.o3) = {36, 45,56, 67, 68, 78} E(Hg57) = {35,45,57,58, 67} E(Hg.31) = {36,46,56}
E(Hs.¢.4) = {35,45,56,57,58,67} E(Hss.s) = {35,45, 56,57, 58} E(Hgss2) = {34,45,56}
E(Hs¢.5) = {35,45,57,58,67, 78} E(Hs.50) = {57, 58,67, 68,78} E(Hg 3 3) = {45,56, 78}
E(Hsg6) = {36,45,57,58,67, 68} E(Hs 5,10) = {34, 57,58, 67, 68} E(Hss.4) = {34,56,78}
E(Hsg.7) = {45,57, 58, 67, 68, 78} E(Hs 511) = {35, 45,58, 67, 68} E(Hss.5) = {45,46, 56}
E(Hsg.s) = {34,57, 58, 67,68, 78} E(Hg.512) = {35,45,67,68, 78}

Let Hz! = {Ks — E, | Ks — E, € R(2K,, W»)}. By Lemma 2.3, since |E(Ks — E,)| > 21,
then y < 7. In the following cases, we will prove that H; for ¢ € [1,4] are the only graphs with
eight vertices in R (2K, W7) with maximum degree 7.

Case 1.

Case 2.

Case 3.

Case 4.

Kg — E7.

By Theorem 2.2 for every Hy € Hz', Hy D By, for some i € [1,3]. All possible
graphs Kg — E7; D By, are represented by the graphs Hy ; for j € [1,7]. According to
Proposition 2.3 (7), (i¢), and Lemma 2.2 (m) respectively, H7 ;, Hr ¢, and H7 7 do not belong
to R(2Ky, W), for j € [1,5]. Thus, Hz" = 0. Therefore, there are no graphs obtained by
removing any seven edges from Ky that belonging to R(2K 2, Wr).

Kg — E6-

All possible graphs H7 ;+e fort € [1, 7] that are not isomorphic to H; and H, are represented
by the graphs Hg ; for j € [1,11]. According to Proposition 2.3 (i), (i¢), Lemma 2.2 (7), and
Proposition 2.4 (i1), respectively He j,, He 6, Hs j,, and Hg j, do not belong to R(2K,, Wr),
for j; € [1,5], jo € [7,9], and j3 € [10,11]. Thus, Hz" = {H;, H}. Therefore, removing
any six edges from the graph Ky only produces the graphs H; and H; as a member of
R(2K,, Wr).

Kg — Es.

All possible graphs Hg; + e for ¢t € [1, 11] that are not isomorphic to H3 and H, are repre-
sented by the graphs H5 ; for j € [1,12]. Consider H5 ; D H; and Hs 5 D H, for j € [1,4].
By Observation 2.2 (i), Hs,;, & R(2K,, W) for t; € [1,5]. According to Proposition 2.3
(i), Lemma 2.2 (7), Proposition 2.4 (i), and (4i7), respectively Hy y,, H5 9, H5 10, and Hj j,
do not belong to R(2K,, Wy), for ky € [6,8] and ky € [11,12]. Thus, Hr® = {Hs, H,}.
Therefore, removing any five edges from the graph K only produces the graphs H3 and H,
as a member of R(2K,, Wr).

Kg — E4.

All possible graphs Hs; + e for ¢t € [6, 12] are represented by the graphs H, ; for j € [1,9].
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Consider H, ;, D Hy, Hyy D Hy, Hy5 D Hs, and Hy j, D H, for j; € [1,3] and j, € [6, §].
By Observation 2.2 (i), Hy,, & R(2K,, W5) for t; € [1,8]. By Proposition 2.3 (i), Hyo &
7@(2[( 2, Wr). Thus, Hp* = (. Therefore, there are no graphs obtained by removing any four
edges from Ky that belonging to R(2K,, Wr).

Case 5. Ky — Ej.
All possible graphs H, g + e are represented by the graphs Hj; for i € [1,5]. Since H3; D
H;, then Hs; ¢ 7@(2[(2, W>). Thus, Hz> = (). Therefore, there are no graphs obtained by
removing any three edges from Ky that belonging to R(2K,, Wr).

Case 6. Ky — E; fort < 2.
Since Hs; + e D Hj, by Observation 2.2 (i), Hr' = () for t < 2. Therefore, there are no
graphs obtained from removing at most two edges from K as a member of 7@(2[( 2, Wr).

Based on cases 1 — 6 above, the graphs with maximum degree 7 in 7@(2[( 2, W7) are only H; for
i € [1,4]. Thus, we have proven that the graphs in R(2K5, W) are precisely K5.o and H; for
i€[l,4]. O

The graphs F; for i € [1, 10] are shown in Figure 4.

4 " A ) e
ﬁ.é"r;
XN/

X 1S

BN\ 7

’/,‘\\\V

Figure 4. F; for i € [1, 10]

In the following Theorem 2.6, we obtain the characterization of the member 7@(2[( 2, Wy).
Theorem 2.6. The graphs with nine vertices in R(2K,, Wy) are precisely F, fori € [1,10].

Proof. The red-blue colorigg codes of F; and F; — e for i € [1,10], respectively, as shown in
Table 6 and 7. Thus, F; € R(2K,, Wy).
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Table 6. Red-Blue Coloring Codes of Graphs F; for i € [1, 10]
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% F; —e /4 (2K2, Ws)
[6: (23)7{1}] [(i: (36)7(17278)] [67 (3 )7(17278)] [67 (48)7(17273)] [6: (57)7{1}]
6 [6 = (34)7 (17 2, 8)] [6 = (37)7 (17 2, 8)] [6 = (46)7 (17 2, 3)] [6 = (49)7 (17 2, 3)] [e = (59)7 {1}]
[e =(35),(1,2,8)] [e = (38), {1}] [e = (47),(1,2,3)] [e = (56), {1}]
[e: (23)7{1}] [(i: (36)7(17278)] [67 (39)7(17278)] [67 (48)7(17273)] [6: (69)7{1}]
7 [6 = (34)7 (17 2, 3)] [6 = (37)7 (17 2, 8)] [6 = (46)7 (17 2, 3)] [6 = (49)7 (17 2, 3)] [e = (79)7 {1}]
[6 = (35)7 (17 2, 8)] [6 = (38)7 (17 2, 5)] [6 = (47) (17 2, 3)] [e = (56)1 {1}]
[e = (12),{3}] [e = (25),{1}] [e = (28), {1}] [e = (36),(1,2,4)] [e = (56),{7}] [e = (89),{1}]
8 [e = (23), {1}] [e = (26), {1}] [e=(34),(1,2,3)] [e=(38),(1,2,4)] [e=(67),(1,2,6)]
9 [e = (12), {3}] [e = (25), {1}] [e = (27), {1}] [e = (46),(1,2,3)] [e = (56), {8}]
[e = (23),{1}] [e = (26), {1}] [e=(34),(1,2,3)] [e=(47),(1,2,3)] [e=(67),(1,2,7)]
10| [e=1(12),{6}] [e = (25),{1}] [e = (28),{1}] [e = (36),(1,2,6)] [e = (56),{7}]
[e = (23), {1}] [e = (26), {1}] [e=(34),(1,2,9)] [e=(38),(1,28)]

By Proposition 2.2, there is no graph belonging to 7@(2]( 2, Wy) with maximum degree 7. Thus,
we only need to prove that F; for i € [1,10] are the only graphs with eight vertices in 7@(2K 2, Ws)
with maximum degree 8. Let v; € V(Ky) for i € [1,9]. Define the graphs F; ; = Ko — E(Fy, ),
where the data from the set of edges Fy ; ; is shown in Table 8 for i € [5,11] and some j.

Table 8. The set of edges Ey ; j for i € [5,11] and some j

E(Fo1.11) = {35, 45,57, 58,59, 67, 68, 69, 78, 78,89} | E(Fo,4.8) = {36, 45, 56,57, 67, 68, 78,89} | E(Fo187) = {35,45,59,67, 78,79, 39}
E(Fo2.11) = {34,45,56,57,58,59,67,68,69,78, 79} | E(Fo58) = {36,45,57,58,68,69,79,89} | E(Fo107) = {35,45,58,67,68,78,89}
E(Fo,3.11) = {36,45,56, 57, 58,67, 68,69,78,79,89} | E(Fy¢.s) = {36,45,56,57,58,67,69,89} | E(Fy20,7) = {36,45,56,57,67,78,79}
E(Fo411) = {36,46,56, 57,58, 59,67,68,69,78,79} | E(For7s) = {36,45,57,58,67,68,78,89} | E(Fy21.7) = {35,45,58,59,68,78,89}
E(Fo511) = {36,45,57,58,59,67,68,69,78,79,89} | E(Foss)={36,45,56,57,67,69,78,89} | E(Fo227) = {36,45,68,69,78,79,89}
E(Fo611) = {34, 56,57, 58,59, 67,68,69,78,79,89} | E(Fo98)={36,45,56,57,58,68,69,78} | E(Fo237) = {45,59,67,68,78,79,89}
E(Fo,711) = {45,56,57, 58,59, 67, 68,69,78,79,89} | E(Fo10,8) = {45,58,59,67,68,69,78,79} | E(Fy24,7) = {35,45,59,67, 68, 78,89}
E(Fo,1.10) = {45,56,57, 58,59, 67, 68, 69, 78, 79} E(Fo.13,8) = {36,45,56,58,67,78,79,89} | E(Fy257) = {36,45,56,67,78,79,89}
E(Fo.2.10) = {36,45, 56, 58,67, 68, 69, 78, 79, 89} E(Fo.11.8) = {45,58,59,67,68,69,78,79} | E(Fy.26.7) = {36,45,58,67,69,78,89}
E(Fy,3,10) = {36, 45,56, 58,59, 67, 68,69, 78, 79} E(Fo12,8) = {36,45,57,68,69,78,79,89} | E(Foo77) = {36,45758,69, 78779,89}
E(Fo.4,10) = {36, 45,56, 57,59, 67,68,69,78, 79} E(Fo14.8) = {36,45,57,58,67,68,79,89} | E(Fo2s7) = {36,45,57,68,69, 78,89}
E(Fy5,10) = {36,45, 56,57, 58,59, 67, 68, 69, 78} E(Fo,15,8) = {36,45,57,58,67,68,69,89} | E(Fya9.7) = {36,45,67,68,69,79,89}
E(Fo.6.10) = {35,45, 57, 58,59, 67, 68,69, 78, 79} E(Fo.16,8) = {36,45,58,67,68,69,79,89} | E(Fy30.7) = {45,57,58,59,67,68,69}
E(Fo.7.10) = {35,45, 57, 58,59, 67, 68, 78,79, 89} E(Fo.17.8) = {36,45,57,58,59,67,68,69} | E(Fy31.7) = {36,45,58,67,68,69, 79}
E(Fo,8.10) = {35, 45,56, 57, 58,59, 68,69, 78, 79} E(Fo18.8) = {36,45,57,58,67,68,69,78} | E(Fo327) = {58,59,67,68,69,78,79}
E(Fo.0,10) = {35, 45, 56,57, 58,59, 67, 68,78, 79} E(Fo10.8) = {36, 45,56, 58, 67, 68, 69,78} E(Fo337) = {45,56,67, 68, 69,79,89}
E(Fy 10,10) = {36, 45,57, 58, 59, 67, 68,69, 78, 89} E(F9,20,8) = {36,45,56,57,58,67,68,69} | E(Fy347) = {45,56,57,67,78,79,89}
E(Fy11,10) = {56, 57,58, 59, 67, 68, 69, 78, 79, 89} E(F9.01.8) = {45,56,57,58,59,67,68,69} | E(Fy357) = {45,56,58,67,68,69,79}
E(Fo.12.10) = {34,57,58, 59, 67,68, 69, 78, 79, 89} E(Fo.22.8) = {45,56,57,58,59,67,68,79} | E(Fs.36.7) = {45,56,58,67,68,69, 79}
E(Fo13,10) = {45, 57,58, 59,67, 68,69, 78,79, 89} E(Fo.23.8) = {36,45,56,67,68,69,79,89} | E(Fo377) = {35,45,59,68,69,78,79}
E(Fo14.10) = {36,45,56,57,58,67,68,78,79,89} E(Fo24.8) = {36,45,56,57,67,68,69,78} | E(Fo3s7) = {35,45,59,68,69,78,79}
E(Fy,15,10) = {36, 45,57, 58, 67, 68, 69, 78,79,89} E(Fo,25,8) = {35,45,57,58,59,68,69,79} | E(Fy30.7) = {35,45,58,59,67, 78,89}
E(Fo.16.10) = {35, 45,58, 59, 67,68, 69, 78, 79, 89} E(Fy 268) = {35,45,57,58,59,78,79,89} | E(Fy407) = {45,57,58, 67,69, 78,89}
E(Fo.17.10) = {36,45,56, 57, 58,67, 69, 78, 79, 89} E(Fo.27.8) = {35,45,56,57,58,59, 68,79} | E(Fo.41.7) = {35,45,57, 58,59, 67, 68}
E(Fo.18.10) = {36,45,56,57,58, 68,69, 78,79, 89} E(Fo.08.8) = {35,45,57,58,59,67,68,78} | E(Fo42.7) = {35,45,56,58,59, 67,89}
E(Fo1.0) = {36, 45, 56, 57, 58, 67, 68, 69, 78} E(Fo29.8) = {35,45,56,57,58,59,67,68} | E(Fo437) = {35,45,56,57,59,67,68}
E(Fy,2,9) = {36,45,56,67,68,69,78, 79,89} E(F9.30,8) = {36,57,67,68,69,78,79,89} | E(Fo447) = {35,45,56,57,58,59,67}
E(Fo.3.0) = {36,45, 56,57, 58,67, 68,69, 89} E(Fo.31.8) = {58,59,67,68,69,78,79,89} | E(Fy457) = {45,56,57,58,59,68,79}
E(Fo.4,9) = {35,45, 56,57, 58, 59, 67, 68, 78} E(Fo 32,8) = {45, 58,59, 68,69,78,79,89} | E(Fo,46,7) = {36, 56,67, 68,69,79,89}
E(Fo.59) = {36, 56,57, 58,67, 68, 69, 79, 89} E(Fo33.8) = {34, 58,59, 68,69,78,79,89} | E(Fo477) = {58,59,68,69,78,79,89}
E(Fo,6,0) = {36,45, 56, 58,67, 68, 69, 79, 89} E(Fo,34,8) = {34,58,59,67,68,69,78,79} | E(Fo4s,7) = {34,58,59, 67, 69,79,89}
E(Fo,7.0) = {45,56, 57, 58,59, 67, 68,69, 79} E(Fo.35.8) = {34,58,59,67,68,69,79,89} | E(Fy49.7) = {35,58,59,67,68,69,78}
E(Fo.8.0) = {45,56, 57, 58,59, 67,69, 78, 79} E(Fo.36.8) = {36,45,58,67,68,69,78,89} | E(Fy50.7) = {36,45,57,67,78,79,89}
E(Fo.0,9) = {35,45, 56,57, 58, 59, 68, 69, 79} E(Fo37.8) = {36,45,58,68,69,78,79,89} | E(Fo51,7) = {36,45,57,67,78,79,89}
E(Fo,10,0) = {35,45,57,58,59, 67,68, 78,79} E(Fo38.8) = {36,45,57, 58, 68, 69, 78,89} E(Fops2.7) = {35,45,67, 68, 78,79,89}
E(Fy11,0) = {35,45,57, 58, 59, 68, 69, 78, 79} E(Fo,30,8) = {36,45,56,57,67,78,79,89} | E(Fys37) = {45,67,68,69,78,79,89}
E(Fy 12,0) = {35,45,57, 58, 59,67, 78,79, 89} E(F9.40,8) = {36,45,56,57,58,69,78,89} | E(Fys47) = {56,67,68,69,78,79,89}
E(Fo.13,0) = {45,56,57, 58,59, 68,69, 78,79} E(Fo.418) = {35,45,58,67,68,78,79,89} E(Fo.1.6) = {36, 56,68, 69, 79, 89}
E(Fo,14,0) = {36,56,58,67,68,69,78,79,89} E(Fo 42.8) = {34, 45,59, 68,69, 78,79, 89} E(Fon6) = {45,56, 58,59, 67,89}
E(Fo15.0) = {36,45, 56, 57,58, 59, 67, 68,69} E(Fo43.8) = {35, 45,58, 59, 67, 68, 78,89} E(Fo.3.6) = {36,45,57,67,79,89}
E(Fy,16,0) = {36, 56,57, 58,67, 68,69, 78,89} E(Fy 44.8) = {35,36,69,67,68,78,79,89} E(Fy 4,6) = {56, 59, 67,68,78,89}
E(Fo.17.0) = {36,45,56, 58,67, 68,69, 78,89} E(Fo.45.8) = {35,45,58,59,67,68,78,79} E(Fo.5.6) = {36,56,67,68,79,89}
E(Fo.18.0) = {57, 58,59, 67, 68,69, 78,79,89} E(Fo.46.8) = {45,56, 67, 68,69, 78,79,89} E(Fo.6.6) = {34,59, 67,68, 78,89}
E(Fo,10.9) = {45,58,59, 67, 68,69, 78, 79,89} E(Fo 47.8) = {36, 45,67, 68,69, 78,79, 89} E(Fo.7.6) = {35,45, 68, 78,79, 89}
E(Fo.20.0) = {45,57,58,59,67,68,78,79,89} E(Fo4s.8) = {36, 58,67, 68,69,78,79,89} E(Fos6) = {36,45,57,67,78,79}
E(F9,21.0) = {46,56,57, 58,67,68,78,79,89} E(Fy.408) = {35,45,67,68,69,78,79,89} E(Fo,9.6) = {34,56,59, 68, 78,89}
E(F9.22.9) = {45,56,58,67,68,69,78,79,89} E(Fy 508) = {45, 59, 67, 68,69, 78, 79, 89} E(Fo.10.6) = {34, 56,67, 68, 78,89}
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Fo.23.0) = {45,56, 57,59, 67, 68, 69, 78, 79}
Fo049) = {34,58,59, 67,68, 69,78, 79,89}
Fo,25.0) = {35,45, 58,59, 68, 69, 78,79, 89}
Fo26,9) = {34, 57,58, 59, 67,68, 69, 79,89}
Fo,27.0) = {36,45,57,58, 67,68, 69, 78,89}
Fy 28,9) = {36,45,58, 67,68, 69, 78,79, 89}
E(F9,29.0) = {36,45, 57,58, 68,69, 78,79, 89}
E(Fo,30,0) = {36,45,57,58,67,68,78,79,89}
E(Fy31,0) = {36,45,56,57, 58,68, 69, 78,89}
E(Fo,32.0) = {36,45,56,57, 67,69, 78,79, 89}
= {36,45,56,58,67,68,78,79,89}
= {35,45,59,67, 68,69, 78, 79,89}
= {35,45,58,59,67,68,78,79,89}
E(Fg 36.0) = {35,45, 58, 59, 67, 68, 69, 78, 79}
E(Fo 37.0) = {45,57,58,59, 67, 68, 69, 78,89}
E(Fy 38.9) = {36,45,56,57, 58,67, 68, 78,89}
E(Fy18) = {45,57, 58,59, 67,69, 78,89}
E(Fy25) = {45,57, 58,59, 67, 68,69, 79}
E(Fy35) = {45,56, 58,67, 68,69, 79,89}

£(
E(
E(
E(
E(
E(

3

w

W

o
—— — —

E(Fy,51,8) = {36,45,56,57,67,68, 78,89}
E(Fo52,8) = {57, 58,59, 67,68, 69, 78, 89}
E(Fy1,7) = {58,59,67, 68,69, 78,89}

E(Fy2,7) = {45, 58,59, 68,69, 78, 79}
E(Fy,3,7) = {45,58,59,67,68,78,79}
E(Fo4,7) = {45,57,58,59,67,68,79}
E(Fy5,7) = {45,56, 58, 67, 68,78, 79}
E(Fy6,7) = {45,56, 58, 59, 67, 68,69}
E(Fo,7,7) = {36,48,68,69,78,79,89}
E(Fy,8,7) = {36,56,68,69,78,79,89}
E(Fy,9,7) = {36,45,57, 58,67, 68,89}

E(Fy,10,7) = {36, 45,56, 57,69, 78,89}

E(Fo,11,7) = {36,45,56,67,68,79,89}
E(Fy,12,7) = {36, 45,57, 67,69, 78,89}
E(Fy,13,7) = {36,45, 56, 58,67, 78,89}
E(Fy,14,7) = {36,45,56, 58,67, 69,79}
E(Fy15,7) = {37,45,56, 58,67, 78,79}
E(Fs,16,7) = {36,45,56,57,67,79,89}
E(Fy,17,7) = {36,45,56, 67,68, 78,89}

E(Fo,11,6) = {56, 68,69, 78,79,89}
E(Fy,12,6) = {56, 67, 68,69, 78,79}
E(Fy,13,6) = {58, 59, 67,69, 79,89}
E(Fy,14,6) = {45, 68,69, 78,79,89}

E(Fy,15,6) = {58, 59, 68.69.78.89}
E(Fs,16,6) = {35,45,67,68,79,89}
E(Fo,17,6) = {35,45, 58,59, 67,89}
E(Fy,18,6) = {35,45,58,59, 67,68}
E(Fs,19,6) = {35,45, 56,59, 67,68}
E(Fy,20,6) = {35,45,56, 58,59, 89}
E(Fo,21,6) = {35,45,57,58,59,67}
E(F9,22,6) = {35,45,56,57,58,59}
E(Fy,23,6) = {67,68,69,78,79,89}
E(Fy,1,5) = {68, 69,78, 79, 89}
E(Fy,2,5) = {35,45,58,59,89}
E(Fy,3,5) = {35,45,56,58,89}
E(F,4,5) = {35,45, 58,59, 67}
E(Fo,5,5) = {34, 35,56, 58,59}

Let Fr¥ = {Ky — E,|E, = {e1,€,...,¢,} € E(Ky)and Ky — E, € R(2K>, Ws)}. By
Lemma 2.3, since |E(Ky — E,)| > 25, then y < 11. In the following cases, we will prove that F;

for i € [1,10] are the only graphs with eight vertices in R(2K>, Ws) with maximum degree 8.

Casel. Kg — FIq;.

By Theorem 2.2 for every Fi' € Fr'', Fi' O Bgy, for some i € [1,3]. All possible
graphs K9 — Ey; O Bg;,; are represented by the graphs Fi; ; for j € [1,7]. According
to Proposition 2.3, and Lemma 2.2 (ii), respectively, Fiy 4, and Fyq j, do not belong to
R(2K,, Wy), for j; € [1,5] and j, € [6,7]. Thus, Fr'' = ). Therefore, there are no graphs
obtained by removing any eleven edges from Ky that belonging to 7@(2[( 2, Wy).

Ky — Eyp.

All possible graphs Fiq + e for ¢t € [1,7] are represented by the graphs Fio; for j €
[1,18]. According to Proposition 2.3, Lemma 2.2 (), and Proposition 2.4 (i), respectively,
Fio,, Fioj,» and Fyg , do not belong to R(2K,, Wy), for j; € [1,10], j, € [11,16], and
js € [17,18]. Thus, Fr'" = (). Therefore, there are no graphs obtained by removing any ten
edges from Ky that belonging to 7@(2[( 2, Wy).

Kg — Eg.

All possible graphs Fyg; + e for t € [1,18] are represented by the graphs Fy; for j €
[1,38]. According to Proposition 2.3 (i), Lemma 2.2 (¢), and Proposition 2.4, respectively,
Fy ., Fy j,, and Fy 36 do not belong to R(2K5, Wy), for j; € [1,26], and j, € [27, 35]. Next,
since Fy 37 —v1 —vg, Fy 35 —v1—vy 2 W), by Observation 2.1 (i) Fy 37, Fo 35 & 7@(2[(2, Wy).
Thus, Hz° = {F;|i € [1,5]}. Therefore, removing any nine edges from the graph Ky only
produces the graphs F; for i € [1, 5] as members of R(2K,, Wy).

Kg — Eg.

All possible graphs Fy, + e for ¢t € [1, 38] are represented by the graphs Fy ; for j € [1, 52].
Consider Fy; DO Fi, Fyj, D Iy, Fg;s D F3, and Fg,, O Fj for j1 € [1,9],7, €
[10,13], j3 € [14,16], and j, € [17,18]. By Observation 2.2 (i), Fs;, & R(2K,, Wy) for
t1 € [1,18]. According to Proposition 2.3 (i), Lemma 2.2, and Proposition 2.4, respectively,
F3 1y, Fs iy, and Fy i, do not belong to R(2K5, Wy), for ky € [19,30], k; € [31,33]U[46, 50],

Case 2.

Case 3.

Case 4.
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Case 5.

Case 6.

Case 7.

Case 8.
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and k3 € [34,45]. Afterward, since Fg5 — v13 — U9, Fgs0 — v1 — vo 2 W, by Observa-
tion 2.1 (i) Fys1, Fyso & 7?,(2[(2, Ws). Thus, Hr® = {Fj|i € [6,9]}. Therefore, removing
any eight edges from the graph Ky only produces the graphs F; for i € [6,9] as members of
R(2K,, Wy).

Kg - E7.

All possible graphs Fg; + e for t € [19, 52] are represented by the graphs % ; for j € [1, 54].
Consider F7,j1 D Fl, F77j2 D FQ, 1777]'3 D) Fg, F77j4 D) F@, F77j5 D F7, F7,37 D) Fg, and
Frj. DO Fyfor j; € [1,21],50 € [22,28],j5 € [29,32], ju € [33,35], and j5 € [38,40].
By Observation 2.2 (i), Fy,, & R(2K,, W) for t; € [1,40]. According to Proposition 2.3
(i), Lemma 2.2, and Proposition 2.4, respectively, F;y,, F7,, and F;y, do not belong to
R(QKQ, Wg), for k’l S [41,46], ]’CQ S {47, 53,54}, and ]{33 S [48,52] ThUS, HRS = {Flo}.
Therefore, removing any seven edges from the graph Ky only produces the graph Fi as a
member of R(2K5, Ws).

Kg - EG-

All possible graphs F7 ; + e for t € [41, 54] are represented by the graphs F; ; for j € [1,23].
Consider F67j1 D Fi, F67j2 D Fy, F&g D Fj, F671[) D Fy, F67j3 D F, F67j4 D Fr, F6’j5 D)
Fs, Fsa7 DO Fy, and Fg,, D Fyp for ji € [1,3],752 € [4,8],j5 € [11,12], j4 € [13,14],
js € [15,16], and js € [18,20]. By Observation 2.2 (i), Fs,, & R(2K,, Ws) fort; € [1,20].
Next, According to Proposition 2.3 (), and Lemma 2.2 (i), respectively, F ; and Fg o3 do
not belong to R(2K,, Ws), for j € [20,22].

By Theorem 2.2, Fy,, & R(2K5, W) for t, € [20,23]. Thus, Hz* = ). Therefore, there are
no graphs obtained by removing any six edges from Ky that belonging to 7@(2[( 2, Wg).

Ky — Fs.

All possible graphs F7; + e for t € [20, 23] are represented by the graphs Fj ; for j € [1, 5].
Consider F5; D Fg, F5o D Fy, and F5; D Fj3 for j € [3,4]. By Observation 2.2 (i),
Hs,, & R(2K,,Wy) for t; € [1,4]. Next, by Proposition 2.4 (i), Fy5 & R(2K,, Wy).
Thus, Fr° = (). Therefore, there are no graphs obtained by removing any five edges from
K, that belonging to R(2K5, W).

Ky — FE; fort <4.

Since F55 + e D Fy, by Observation 2.2 (i), Fr' = 0 for t < 4. Therefore, there are no
graphs obtained from removing at most four edges from /g as a member of 7@(2[( 9, Wg).

Based on cases 1 — 8 above, the graphs with maximum degree 8 in 7@(2}( 2, Wy) are only F; for
i € [1,10]. Thus, we have proven that the graphs with nine vertices in R(2K,, Wy) are precisely
F; fori € [1,10]. ]
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