
www.ejgta.org

Electronic Journal of Graph Theory and Applications 13 (2) (2025), 323–342

On Ramsey (2K2,Wn)-minimal graphs of
smallest order
Muhammad Rafif Fajria, Hilda Assiyatun∗,b,c, Edy Tri Baskorob,c

aDoctoral Program of Mathematics, Faculty of Mathematics and Natural Sciences,
Institut Teknologi Bandung, Indonesia
bCombinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences,
Institut Teknologi Bandung, Indonesia
cCenter for Research Collaboration on Graph Theory and Combinatorics, Indonesia

30123003@mahasiswa.itb.ac.id, hilda@itb.ac.id, ebaskoro@itb.ac.id

*Corresponding author

Abstract

The notation F → (H,G) means that if all edges of F are arbitrarily colored by red or blue,
then either the subgraph of F induced by all red edges contains a graph H or the subgraph of F
induced by all blue edges contains a graph G. Let R(H,G) denote the set of all graphs F satisfying
F → (H,G) and for every e ∈ E(F ), (F−e) ̸→ (H,G). In this paper, we propose some properties
of Ramsey (2K2, G)-minimal graph of smallest order, where G is a graph containing a dominating
vertex. We also find all members of R(2K2,Wn) of smallest order for n ∈ [5, 8].
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1. Introduction

Ramsey theory, first introduced by Ramsey [14] in 1930, investigates the unavoidable emer-
gence of order in large or complex structures. While the classical formulation focused on complete
graphs and cliques, the theory was later extended in the 1950s by Erdős and Rado [7] to a more
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general setting involving arbitrary graphs. All graphs considered in this paper are simple. The
notation F → (H,G) means that each red-blue coloring of the edges of the graph F results in F
containing a red subgraph that is isomorphic to H or a blue subgraph that is isomorphic to G.

The smallest integer n for which Kn → (H,G) is called the Ramsey number for the graphs
H and G, denoted by R(H,G). Zhang et al. [20] established the best known general upper
bound for R(C4,Wn) and determined several exact values of R(C4,Wn) for specific values of n.
Furthermore, Sudarsana [15] proved that if n ≥ f(t), then the Ramsey number R(Cn, tW4) =
2n+ t− 2 holds for all t ≥ 1, where f(t) = 15t2 − 4t+ 2

Ramsey’s theory evolved to become the minimal Ramsey graph theory as defined by Burr
et al. [6] in 1976. A graph F is called a Ramsey (H,G)-minimal graph if F → (H,G) and
F − e ↛ (H,G) for any subgraph F − e ⊂ F. R(H,G) is the set of all (H,G)-minimal graphs.
The pair (H,G) is called Ramsey-finite if R(H,G) is finite and Ramsey-infinite otherwise.

Łuczak [10] showed that the set R(H,G) is infinite for every forest H other than a matching
mK2 and every graph G containing a cycle. Nabila et al. [13] presented several finite and infinite
classes of Ramsey (C4, K1,n)-minimal graphs for every n ≥ 3. Furthermore, Assiyatun et al.
[1] introduced a new class of Ramsey (C4, K1,n)-minimal graphs. Burr et al. [5] proved that
R(mK2, G) is Ramsey finite for any graph G and a positive integer m. In this paper, we focus on
the class R(mK2, G), where G is a graph containing a dominating vertex (a vertex that is adjacent
to any other vertices in the graph).

Mangersen and Oeckermann [11] proved that R(2K2, K1,2) = {2K1,2, C4, C5}, and presented
the characterization of graphs belonging to R(2K2, K1,n) for n ≥ 3. Furthermore, Muhshi and
Baskoro [12] proved that R(3K2, P3) = {3P3, C4∪P3, C5∪P3, C7, C8}. Baskoro and Yulianti [4]
characterized all graphs in R(2K2, Pn) for n ∈ {3, 4}, while Fajri et al. [9] determined all graphs
in R(2K2, Fn) with minimum order for n ∈ [4, 8], where Fn = K1 + Pn−1. Moreover, Yulianti et
al. [19] gave the construction of some infinite class in R(K1,2, P4). Wijaya et al. [16] determined
all graphs belonging to R(2K2, K4). Wijaya et al. [17] characterized all uncyclic graphs belonging
to R(mK2, P3), and subsequently Baskoro et al. [3] characterized all uncyclic graphs belonging
to R(mK2, P4).

Baskoro and Wijaya [2] derived the necessary and sufficient conditions for the graphs to be in
R(2K2, G) for any connected graph G. They proved the following theorem.

Theorem 1.1. [2] Let G be any connected graph. F ∈ R(2K2, G) if and only if the following
conditions are satisfied:

(i) for every v ∈ V (F ), F − v ⊇ G,

(ii) for every K3 in F, F − E(K3) ⊇ G,

(iii) for every e ∈ E(F ), there exists v ∈ V (F ) or K3 in F such that (F − e) − v ⊉ G or
(F − e)− E(K3) ⊉ G.

If a graph F satisfies Theorem 1.1 (i) and (ii), then F → (2K2, G). Moreover, a graph F satisfying
Theorem 1.1 (iii) means that F satisfies the minimality property of F, that is for each e ∈ F,
F − e ↛ (2K2, G). Furthermore, Wijaya and Baskoro [18] described the necessary and sufficient
conditions for graphs in R(mK2, G).
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In this paper, we propose some properties of Ramsey (2K2, G)-minimal graph of smallest or-
der, where G is a graph containing a dominating vertex. We also find all members of R(2K2,Wn)
of smallest order for n ∈ [5, 8].

2. Main Result

We will introduce some definitions and notations. A complete graph and a cycle on the n
vertices are denoted by Kn and Cn, respectively. A wheel Wn is defined as the graph K1 + Cn−1.
A union of m disjoint copies of K2, denoted by mK2, is called a matching. A complete multipartite
graph consisting of j partite sets and k vertices in each partite set is denoted by Kj×k. Given a
graph G, Ei denotes the set of i arbitrary edges of E(G). The notation G−Ei denotes the removal
of any i edges from the graph G. The notation [i, t] represents the set of all integers that lie between
i and t (including i and t themselves).

The main results of this paper are presented through several theorems. The first theorem (Theo-
rem 2.1) provides a characterization of the graphs belonging to Ramsey (2K2, G)-minimal graphs
of smallest order and maximum degree n− 1 for any graph G with n vertices, where G = K1+H
for some H ⊇ Kn+1

2
×2 − e. The second theorem (Theorem 2.2) establishes necessary conditions

for a graph contained in F to be a member of R(2K2, G) of smallest order and maximum degree
n, where G has a dominating vertex. In the final theorems (Theorems 2.3-2.6), we discover and
prove the complete list of Ramsey (2K2,Wn)-minimal graphs of smallest order for n ∈ [5, 8].

Let G(n) denote the set of finite simple graphs G that have exactly n vertices, none of which is
isolated, and let G(n, c) denote the subset of G(n) with the independence number c. Faudree et al.
[8] found the Ramsey number for matching and any graph G as follows.

Corollary 2.1. [8] Let G ∈ G(n, c). Then R(sK2, G) = n+ s− 1 if s ≤ ⌊2
3
c⌋+ 1.

As a result of Corollary 2.1, when we set s = 2, it follows that R(2K2, G) = n + 1 for c ≥ 2.
Define GD(n, i) as the subset of G(n, c) where n ≥ 2, c ≥ 2, and precisely i vertices have degree
n − 1 for i ≥ 1. Utilizing the relationship between the Ramsey number and Ramsey-minimal
graphs, the smallest order of F ∈ R(H,G) is R(H,G). It follows that for each G ∈ GD(n, i), the
minimum order of F ∈ R(2K2, G) is n+1. Hereafter, we limit our discussion to the set of Ramsey
(H,G)-minimal graphs of the smallest order, denoted by R̂(H,G). The subsequent proposition is
established.

Proposition 2.1. Let G ∈ GD(n, i). If F ∈ R̂(2K2, G), then n− 1 ≤ ∆(F ) ≤ n.

Proof. Since |V (F )| = n+ 1 and ∆(G) = n− 1, then n− 1 ≤ ∆(F ) ≤ n.

Let degG(v) denote the degree of the vertex v in the graph G, and let D(G, i) represent the
number of vertices of degree i in the graph G. Let G ∈ GD(n, i) and denote G = K1+H for some
graph H . By Theorem 1.1 and Proposition 2.1, we obtain necessary and sufficient conditions for
graphs belonging to R̂(2K2, G) in following observation.

Observation 2.1. Let G ∈ GD(n, i). Let G = K1+H , F ∈ R̂(2K2, G) if and only if the following
conditions are satisfied:
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(i) For every v ∈ V (F ), there exists v′ ∈ V (F − v) where degF−v(v
′) ≥ n − 1 such that

(F − v)− v′ ⊇ H .
(ii) For every K3 in F , there exists v′ ∈ V (F − E(K3)) where degF−E(K3)

(v′) ≥ n − 1 such
that (F − E(K3))− v′ ⊇ H .

(iii) For every e ∈ E(F ), there exists v ∈ V (F − e) or K3 ⊂ F − e such that
(a) ∆((F − e)− v) < n− 1 or ∆((F − e)− E(K3)) < n− 1, or
(b) for every v′ ∈ (F − e)− v where deg(F−e)−v(v

′) ≥ n− 1, ((F − e)− v)− v′ ⊉ H , or
(c) for every v′ ∈ (F−e)−E(K3) where deg(F−e)−E(K3)

(v′) ≥ n−1, ((F−e)−E(K3))−
v′ ⊉ H .

Characterizing all graphs in R(2K2, G) for a given graph G ∈ GD(n, i) is difficult. Based on
the definition of Ramsey (H,G)-minimal, we also obtain some properties for the graph belonging
to R̂(2K2, G) in the following observation.

Observation 2.2. Let F ′ be any graph. If F ∈ R̂(H,G), then the following conditions are satis-
fied:

(i) If F ⊃ F ′ or F ′ ⊃ F , then F ′ ̸∈ R̂(H,G).
(ii) If F ′ ∈ R̂(H,G), then F ⊉ F ′ and F ⊉ F ′.

2.1. Some Properties of Ramsey (2K2, G)-Minimal Graph of Smallest Order
In this subsection, we discuss some properties of the graph F that satisfy F ∈ R̂(2K2, G) for

G ∈ GD(n, i). The following result gives the characterizations of the graph F for odd n and i = 1,
with maximum degree n− 1.

Theorem 2.1. Let G ∈ GD(n, 1) for odd n ≥ 3, where G = K1 +H for some H ⊆ Kn−1
2

×2 − e.

Then Kn+1
2

×2 is the unique graph in R̂(2K2, G) with maximum degree n− 1.

Proof. Let vi ∈ V (Kn+1) for i ∈ [1, n+1]. For even n ≥ 3, define the graph Kn+1
2

×2 = Kn+1−E,
where E = {v2j−1v2j | j ∈ [1, n+1

2
]}. Let G = K1 +H, for some H ⊆ Kn−1

2
×2 − e. First, we will

show that Kn+1
2

×2 ∈ R̂(2K2, G). Observe the following cases

(i) Without loss of generality, consider v1 and choose v2 which is in the same partite with v1.
Note that Kn+1

2
×2 − v1 − v2 = Kn−1

2
×2.

(ii) Without loss of generality, consider a K3 with V (K3) = {v1, v3, v5}. Choose v2 as the
dominating vertex in G. Since v1 is not adjacent to v2, we can disregard v1. Observe that
Kn+1

2
×2 − E(K3)− v2 − v1 = Kn−1

2
×2 − e.

Based on both cases above, since H ⊆ Kn−1
2

×2 − e ⊂ Kn−1
2

×2, by Observation 2.1 (i) and
(ii), Kn+1

2
×2 → (2K2, G). Next, we will show that Kn+1

2
×2 − e ̸→ (2K2, G). Without loss of

generality, let e = v1v3. Note that ∆(Kn+1
2

×2 − e− v1) = n− 2, thus G ̸⊆ Kn+1
2

×2 − e− v1. By

Observation 2.1 (iii), Kn+1
2

×2 − e ̸→ (2K2, G). Therefore, we obtain Kn+1
2

×2 ∈ R̂(2K2, G).

Afterward, we will show that Kn+1
2

×2 is the unique graph in R̂(2K2, G) with the maximum
degree n − 1. Let F be any graph with n + 1 vertices and maximum degree n − 1, where F ̸=
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K(n+1
2

)×2. We know F ⊂ K(n+1
2

)×2 ∈ R̂(2K2, G). By Observation 2.2 (i), F ̸∈ R̂(2K2, G).

Therefore, K(n+1
2

)×2 is the unique graph in R̂(2K2, G) with maximum degree n − 1 for odd n ≥
3.

For other conditions on n and i, the following proposition proves that no other graphs belong
to R̂(2K2, G) with maximum degree n− 1.

Proposition 2.2. Let G ∈ GD(n, i). If n is even and i ≥ 1 or n is odd and i ≥ 2, there are no
graphs belonging to R̂(2K2, G) with maximum degree n− 1.

Proof. Let vl ∈ V (Kn+1) for l ∈ [1, n+1]. We will show that for both following conditions, there
are no graphs belonging to R̂(2K2, G) with maximum degree n− 1.

(i) For even n and i ≥ 1.
Define a graph Kn+1 − E, where E = {v2k−1v2k|k ∈ [1, n

2
]} ∪ {v1vn+1}. Let F be any

graph with order n + 1 and maximum degree n − 1, we know that Kn+1 − E ⊇ F . Since
∆(Kn+1−E−vn+1) = n−2, then Kn+1−E−vn+1 ̸⊇ G. By Theorem 1.1 (i), Kn+1−E ̸∈
R̂(2K2, G). Since Kn+1 − E ⊇ F , by Observation 2.2 (i), F ̸∈ R̂(2K2, G). Therefore,
there are no graphs belonging to R̂(2K2, G) with maximum degree n− 1 for even n ≥ 2.

(ii) For odd n and i ≥ 2.
Define a graph K(n+1

2
)×2 = Kn+1 − E, where E = {v2j−1v2j | j ∈ [1, n + 1]}. Let F be

any graph with n + 1 vertices and maximum degree n − 1, we know that F ⊆ K(n+1
2

)×2.
Consider the graph K(n+1

2
)×2 − v1, since G ∈ GD(n, i) and degK

(n+1
2 )×2

−v1
(vj) = n − 2 for

i ≥ 2 and j ∈ [3, n + 1], then G ̸⊆ K(n+1
2

)×2 − v1. Since F − v1 ⊆ K(n+1
2

)×2 − v1, then

G ̸⊆ F−v1. By Theorem 1.1 (i), F ̸∈ R̂(2K2, G). Therefore, there are no graphs belonging
to R̂(2K2, G) with maximum degree n− 1 for odd n ≥ 3.

Based on both conditions above, we obtain there are no graphs belonging to R̂(2K2, G) with
maximum degree n− 1.

Based on Theorem 2.1 and Proposition 2.2 above, we conclude that for every G ∈ GD(n, i),
only odd n and i = 1 produce graphs belonging to R̂(2K2, G) with maximum degree n−1, where
G = K1 +H for some H ⊆ Kn−1

2
−e×2.

The notation D(F, n) denotes the number of vertices with degree n in the graph F . For the
remaining of this subsection, assume that deg(vi) ≥ deg(vj), for i < j. Next, we will discuss
some necessary conditions for F ∈ R̂(2K2, G) with maximum degree n for G ∈ GD(n, i). The
following result provides the properties of degrees in such graphs F .

Lemma 2.1. Let G ∈ GD(n, i). If F ∈ R̂(2K2, G) with ∆(F ) = n, then

(i) D(F, n) ≥ i+ 1.
(ii) D(F, n) +D(F, n− 1) ≥ i+ 3

Proof. Let F ∈ R̂(2K2, G) with ∆(F ) = n. Let vj ∈ V (F ) for j ∈ [1, n+ 1] and degF (v1) = n.

327



www.ejgta.org

On Ramsey (2K2,Wn)-minimal graphs of smallest order | M. R. Fajri et al.

(i) Suppose D(F, n) < i + 1, then D(F − v1, n − 1) < i = D(G, n − 1). Thus, we obtain
G ̸⊆ F−v1. By Theorem 1.1, F ̸∈ R̂(2K2, G), a contradiction. Therefore, D(F, n) ≥ i+1.

(ii) By Point (i), let degF (vk) = n, for k ∈ [1, i+1]. Observe a K3, with V (K3) = {v1, v2, vi+3}.
Suppose that D(F, n) +D(F, n− 1) < i + 3. By Point (i), we know that D(F, n) = i + 1
or i+ 2. Consider the following cases.

(a) Let D(F, n) = i+1, then D(F, n−1) ≤ 1. If D(F, n−1) = 1, let degF (vi+3) = n−1,
we obtain D(F − E(K3), n − 1) = 0 and D(F − E(K3), n) = i − 1. Hence, if
D(F, n− 1) = 0, we also obtain D(F −E(K3), n− 1) = 0 and D(F −E(K3), n) =
i − 1. For both possibilities, we have D(F − E(K3), n) + D(F − E(K3), n − 1) =
i− 1 < i = D(G, n− 1).

(b) Let D(F, n) = i + 2, then D(F, n − 1) = 0. We obtain D(F − E(K3), n) +D(F −
E(K3), n− 1) = i− 1 < i = D(G, n− 1).

For both above cases, we obtain G ̸⊆ F − E(K3). By Theorem 1.1 (ii), F ̸∈ R̂(2K2, G), a
contradiction. Therefore, D(F, n) +D(F, n− 1) ≥ i+ 3.

Based on the lemma above, we conclude that there are at least i + 3 vertices with degrees of
at least n− 1, and at least i + 1 of them have degrees n. Thus, we can construct basic graphs that
satisfy these conditions. Define a graph Bn,i,j , where |V (Bn,i,j)| = n + 1 for n ≥ 2, i ≥ 1, and
j ∈ [1, 3], with exactly i + 1 vertices of degree n and exactly two vertices of degree n − 1. The
graphs Bn,i,1, Bn,i,2, and Bn,i,3 have, respectively, n, n − 1, and n − 2 common neighbors of the
two vertices of degree n− 1. The graphs Bn,i,j, for i ∈ [1, 3], are shown in Figure 1.

Figure 1. Graph Bn,i,1, Bn,i,2, and Bn,i,3

In the following theorem, we obtain the necessary conditions for a graph contained in F to be
a member of R̂(2K2, G) with maximum degree n, where G ∈ GD(n, i).

Theorem 2.2. Let G ∈ GD(n, i) for n ≥ 2. If F ∈ R̂(2K2, G) with ∆(F ) = n, then F ⊇ Bn,i,j

for some j ∈ [1, 3].

Proof. We observe that every possible graph with n + 1 vertices, where there are exactly i + 1
vertices of degree n and two vertices of degree n−1, is represented by the graph Bn,i,j for j ∈ [1, 3].
By Lemma 2.1, F ⊇ Bn,i,j for some i ∈ [1, 3].
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The graph Bn,i,j for j ∈ [1, 3], is referred to as the basic graph that must be contained in F .
By Lemma 2.1, we obtain additional necessary conditions for the graph F to be a member of
R̂(2K2, G) with maximum degree n, where G ∈ GD(n, i).

Proposition 2.3. Let G ∈ GD(n, i) for n ≥ 2. If F ∈ R̂(2K2, G) with ∆(F ) = n, then all the
following conditions are necessary for graph F .

(i) The minimum degree of F , δ(F ) ≥ δ(G) + 1.
(ii) Any two vertices of degree δ(G) + 1 are not adjacent.

Proof. Let F ∈ R̂(2K2, G) with ∆(F ) = n. Let vk ∈ V (F ) for k ∈ [1, n + 1]. By Lemma 2.1,
let degF (vk1) = n and degF (vk2) ≥ n− 1 for k1 ∈ [1, i+ 1] and k2 ∈ [i+ 2, i+ 3].

(i) Suppose δ(F ) < δ(G) + 1. Since δ(F − v1) = δ(F ) − 1 < δ(G), then G ̸⊆ F − v1. By
Theorem 1.1 (i), F ̸∈ R̂(2K2, G), a contradiction. Therefore, δ(F ) ≥ δ(G) + 1.

(ii) Let vn, vn+1 ∈ V (F ), with degF (vn) = degF (vn+1) = δ(G) + 1. Suppose that vn and
vn+1 are adjacent. Observe a graph K3, with V (K3) = {v1, vn, vn+1}. Consider δ(F −
E(K3)) = degF−E(K3)

(vn) = degF−E(K3)
(vn+1) = δ(G)−1, hence vn, vn+1 ̸∈ V (G). Since

|V (F −E(K3))| = n+1 and vn, vn+1 ̸∈ V (G), then F −E(K3) ̸⊇ G. By Theorem 1.1 (ii),
F ̸∈ R̂(2K2, G), a contradiction. Therefore, vn and vn+1 are not adjacent.

If the graph G has exactly one dominating vertex, that is G ∈ GD(n, 1), then we obtain some
specific necessary conditions for the graphs that are members of R̂(2K2, G) with maximum degree
n as stated in the following proposition.

Proposition 2.4. Let G ∈ GD(n, 1) for n ≥ 2. If F ∈ R̂(2K2, G) with D(F, n) = 2, D(F, n−1) =
2, and δ(G) ≥ 3, then all the following conditions are necessary for the graph F .

(i) If there exists a vertex of degree δ(G)+ t with t ∈ [1, 2], then the two vertices of degree n−1
are adjacent.

(ii) If there exists a vertex of degree δ(G) + 1, then each vertex of degree δ(G) + 1 is adjacent
to at most one vertex of degree n− 1.

(iii) If there exists a vertex of degree δ(G) + 2 that is adjacent to both vertices of degree n − 1,
then neighbors of the vertex of degree δ(G) + 2 are also neighbors of at least one vertex of
degree n− 1.

Proof. Let F ∈ R̂(2K2, G) with D(F, n) = 2, D(F, n − 1) = 2, and δ(G) ≥ 3. Let vk ∈ V (F )
for k ∈ [1, n+ 1]. Let degF (vk1) = n and degF (vk2) = n− 1 for k1 ∈ [1, 2] and k2 ∈ [3, 4].

(i) Let degF (vn+1) = δ(G)+ t for some t ∈ [1, 2]. Suppose v3 and v4 are not adjacent. Since v3
and v4 are not adjacent, then v3 and vn+1 are adjacent, and v4 and vn+1 are adjacent. Observe
a K3, with V (K3) = {v1, v2, vn+1}. Consider δ(F−E(K3)) = degF−E(K3)

(vn+1) ≤ δ(G)+
t−2 and ∆(F −E(K3)) = degF−E(K3)

(v3) = degF−E(K3)
(v4) = n−1, hence v3 and v4 are

the dominating vertices of G. Without loss of generality, choose vertex v3 as the dominating
vertex. Since v3 and v4 are not adjacent, the vertex v4 can be ignored. Thus, we obtain
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δ(F−E(K3)−v4) = degF−E(K3)−v4
(vn+1) = δ(G)+t−3. Since |V (F−E(K3)−v4)| = n

and δ(F − E(K3) − v4) = δ(G) + t − 3 < δ(G) for t ∈ [1, 2], then F − E(K3) ̸⊇ G. By
Theorem 1.1 (ii), F ̸∈ R̂(2K2, G), a contradiction. Therefore, v3 and v4 are adjacent.

(ii) Let degF (vn+1) = δ(G) + 1. From conditions (1), v3 and v4 are adjacent. Suppose v3 and
vn+1 are adjacent, and v4 and vn+1 are adjacent. Observe a K3, with V (K3) = {v1, v2, vn+1}.
Consider δ(F−E(K3)) = degF−E(K3)

(vn+1) = δ(G)−1 and ∆(F−E(K3)) = degF−E(K3)

(v3) = degF−E(K3)
(v4) = n − 1,. Since v3 and vn+1 are adjacent, v4 and vn+1 are adjacent,

and ∆(F − E(K3)) = degF−E(K3)
(v3) = degF−E(K3)

(v4) = n − 1, then vn+1 ∈ V (G).
Since vn+1 ∈ V (G) and δ(F − E(K3)) = degF−E(K3)

(vn+1) = δ(G) − 1 < δ(G), then
F − E(K3) ̸⊇ G. Theorem 1.1 (ii), F ̸∈ R̂(2K2, G), a contradiction. Therefore, v3 and
vn+1 are not adjacent or v4 and vn+1 are not adjacent.

(iii) Let degF (vn+1) = δ(G) + 2, v3 and vn+1 are adjacent, and v4 and vn+1 are adjacent.
From conditions (1), v3 and v4 are neighbors. Let vn+1 and vn are adjacent. Suppose v3
and vn are not adjacent and v4 and vn are not adjacent. Observe a K3, with V (K3) =
{v1, v2, vn+1}. Consider degF−E(K3)

(vn+1) = δ(G) and ∆(F−E(K3)) = degF−E(K3)
(v3) =

degF−E(K3)
(v4) = n − 1. Since v3 and vn are not adjacent and v4 and vn are not adjacent,

then vn ̸∈ V (G), so the vertex vn can be ignored. Since |V (F − E(K3) − vn)| = n
and degF−E(K3)−vn

(v3) = δ(G) − 1 < δ(G), then G ⊈ F − E(K3). Theorem 1.1 (ii),
F ̸∈ R̂(2K2, G), a contradiction. Therefore, v3 and vn are adjacent or v4 and vn are adja-
cent.

2.2. Complete List of Ramsey (2K2,Wn)-Minimal Graphs of smallest Order
In this subsection, we give the complete list of R̂(2K2,Wn) for n ∈ [5, 8] in Theorems 2.3-2.6.

Before we discuss these theorems, we introduce some notations. Let F ∈ R̂(2K2,Wn) where
vi ∈ V (F ) for i ∈ [1, n + 1] and let d, j1, j2, j3, k1, k2, ..., kn−1 ∈ [1, n + 1]. The notations
[{j1}, (d; k1, k2, k3..., kn−1)] and [(j1, j2, j3), (d; k1, k2, ..., kn−1)], respectively, denote the removal
of the vertex vj1 and the edges of the triangle K3 with V (K3) = {vj1 , vj2 , vj3} in F such that F −
vj1 , F−E(K3) ⊇ Wn where Wn = vd+E(Cn−1) with E(Cn−1) = {vk1vk2 , vk2vk3 , ..., vkn−2vkn−1}.
The notations [e = (k, l), {j1}] and [e = (k, l), (j1, j2, j3)], respectively, denote the removal of
the vertex vj1 and edges of the triangle K3 with V (K3) = {vj1 , vj2 , vj3} in F − vkvl such that
F − vkvl − vj1 , F − vkvl − E(K3) ̸⊇ Wn. All the notations we have defined above are called
red-blue coloring codes of F .

In the following Theorem 2.3, we obtain the characterization of the member R̂(2K2,W5).

Theorem 2.3. The graph K6 − e1 is the unique graph in R̂(2K2,W5), for any e1 ∈ E(K6).

Proof. Let vi ∈ V (K6), for i ∈ [1, 6]. Observe K6 − e1, without loss of generality, choose
e1 = v1v2. Consider the red-blue coloring codes on K6 − e1 and K6 − e1 − e as shown in Table 1.

Table 1. Red-Blue Coloring Codes on Graphs K6 − e and K6 − E2

K6 − e1 → (2K2,W5) K6 − e1 − e ̸→ (2K2,W5)
[{1}, (5; 2, 3, 4, 6)] [(1, 5, 6), (2; 3, 5, 4, 6)] [e = (16), (3, 4, 5)]
[{5}, (6; 1, 4, 2, 3)] [(4, 5, 6), (3; 1, 4, 2, 6)] [e = (34), (4, 5, 6)]
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We obtain K6 − e1 ∈ R̂(2K2,W5). Since K6 ⊃ K6 − e1 and K6 − e1 ⊃ K6 − e1 − e, by
Observation 2.2 (i), K6, K6 − e1 −Ei ̸∈ R̂(2K2,W5) for i ≥ 1. Therefore, K6 − e1 is the unique
graph in R̂(2K2,W5).

As illustrative examples, the notations [{1}, (5; 2, 3, 4, 6)] and [(1, 5, 6), (2; 3, 5, 4, 6)] in Ta-
ble 1 indicate, respectively, that assigning red to all edges incident to vertex v1 yields a blue
subgraph W5 = v5 + C4,1, where E(C4,1) = {v2v3, v3v4, v5v6, v6v2}, and that coloring the tri-
angle formed by vertices v1, v5, and v6 red produces a blue subgraph W5 = v2 + C4,2, where
E(C4,2) = {v3v5, v5v4, v4v6, v6v3} in the graph K6 − e, as illustrated in Figure 2 (i) and (ii). In
contrast, the notation [e = (16), (3, 4, 5)] in Table 1 represents the removal of edge v1v6 and the red
coloring of the triangle on vertices v3, v4, and v5, which does not yield a blue subgraph isomorphic
to W5 in K6 − e, as shown in Figure 2 (iii).

Figure 2. Examples of red edge colorings in K6 − e and K6 − E2 yielding (or failing to yield) a blue subgraph
isomorphic to W5.

In the following Theorem 2.4, we obtain the characterization of the member R̂(2K2,W6) of
smallest order.

Theorem 2.4. The graph K7 − E(P3) is the unique graph in R̂(2K2,W6).

Proof. Let vi ∈ V (K7), for i ∈ [1, 7]. Observe K7 − E(P3), where E(P3) = {v5v6, v6v7}. The
red-blue coloring codes of K7 − E(P3) and K7 − E(P3) − e is shown in Table 2, we obtain
K7 − E(P3) ∈ R̂(2K2,W6).

Table 2. Red-Blue Coloring Codes on Graphs K7 − E(P3) and K7 − E(P3)− e
K7 − E(P3) → (2K2,W6) K7 − E(P3)− e ̸→ (2K2,W6)

[{1}, (2; 3, 6, 4, 5, 7)] [(126), (3; 1, 5, 4, 2, 7)] [e = (12), (3, 4, 5)]
[{5}, (1; 2, 4, 6, 3, 7)] [(245), (1; 2, 6, 4, 3, 7)] [e = (25), (1, 3, 4)]
[(123), (4; 2, 6, 3, 5, 7)] [(257), (1; 2, 3, 7, 4, 6)] [e = (26), {1}]
[(125), (3; 1, 6, 5, 4, 7)] [(457), (1; 2, 4, 6, 3, 7)] [e = (57), {1}]

Next, we will show that K7 − E(P3) is the unique graph in R̂(2K2,W6).

(1) Since K7− e ⊃ K7−E(P3), by Observation 2.2 (i), K7, K7− e ̸∈ R̂(2K2,W6). Therefore,
no graph obtained by removing at most any single edge from K7 belongs to R̂(2K2,W6).
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(2) The graph K7 − E(2K2) is the only graph obtained by removing any two edges from K7

which is not isomorphic to K7 − E(P3). Without loss of generality, choose E(2K2) =
{v3v4, v5v6}. Observe a K3, with V (K3) = {v1, v2, v3}. Since K7−E(2K2)−E(K3)−v3 ̸⊇
C5, by Observation 2.1 (ii), K7 − E(2K2) ̸∈ R̂(2K2,W6). Therefore, removing any two
edges from K7 only produces the graph K7 − E(P3) as a member of R̂(2K2,W6).

(3) Let GR
3 = {K7 − E3 | K7 − E3 ∈ R̂(2K2,W6)}. By Theorem 2.2 for every G3

R ∈ GR
3,

G3
R ⊃ B6,1,j for some i ∈ [1, 3]. All possible graphs K7−E3 ⊃ B6,1,j are represented by the

graph K7 − E(G), where G = {K3, K1,3, K2 ∪ P3, P4}. Since K7 − E(P3) ⊃ K7 − E(G),
by Observation 2.2 (i), K7 − E(G) ̸∈ R̂(2K2,W6). Thus, GR

3 = ∅. Furthermore, since
K7 − E(P3) ⊃ K7 − E(G) − e, by Observation 2.2 (i), no graph obtained by removing at
least three edges from K7 belongs to R̂(2K2,W6).

Based on Points (1)− (3), it is proved that K7 − E(P3) is the unique graph in R̂(2K2,W6).

Before determining the characterization for wheels of larger order, we will discuss the neces-
sary conditions for a graph to be a member of R̂(2K2,Wn) with maximum degree n + 1. Propo-
sition 2.3, 2.4, and the following lemma are used to directly eliminate graphs that do not belong to
R̂(2K2,Wn), n ≥ 7.

Lemma 2.2. Let F ∈ R̂(2K2,Wn), with n ≥ 7. If ∆(F ) = n, then all the following conditions
are necessary for the graph F.

(i) Any two vertices of degree four have at most three common neighbors.
(ii) F does not contain K̄⌈n+1

2
⌉.

Proof. By Lemma 2.1, let degF (vk1) = n and let degF (vk2) ≥ n− 1 for k1 ∈ [1, 2] and k2 ∈ [3, 4].

(i) Let degF (vn) = degF (vn+1) = δ(F ) = 4 and vn and vn+1 are not adjacent. Suppose
N(F, vn) = N(F, vn+1). Since degF (v3) = degF (v4) ≥ n−1, then without loss of generality
v3 ∈ N(F, vn) and v4 ∈ N(F, vn+1). Since N(vn) = N(vn+1), then v3 ∈ N(vn+1) and
v4 ∈ N(vn). Thus, we obtain N(F, vn) = N(F, vn+1) = {vi|i ∈ [1, 4]}. Consider the graph
F − v1. Since ∆(F − v1) = degF−v1

(v2) = n − 1, then v2 is the dominating vertex in Wn.
Since |V (F −v1−v2)| = n−1 and N(F −v1−v2, vn) = N(F −v1−v2, vn+1) = {v3, v4},
then there is a cycle C4 with V (C4) = {vj|j ∈ [3, 6]} in F −v1−v2. Since Cn−1 ̸⊇ C4, with
n ≥ 7, then F −v1−v2 ̸⊇ Cn−1. By Observation 2.1 (i), F ̸∈ R̂(2K2,Wn), a contradiction.
Therefore, N(vn) ̸= N(vn+1).

(ii) Suppose K̄⌈n+1
2

⌉ ⊇ F . Consider ∆(F − v1) = degF − v1, v2) = n − 1, thus v2 is the
dominating vertex of the wheel Wn. Since K̄⌈n+1

2
⌉ ⊇ F , there exists a partition with ⌈n+1

2
⌉

vertices in the graph F . Since |V (F − v1 − v2)| = n− 1 and there is a partition with ⌈n+1
2
⌉

vertices in F − v1 − v2, then ⌈n+1
2
⌉ > n− ⌈n+1

2
⌉ − 2. Consequently, F − v1 − v2 ̸⊇ Cn−1.

By Observation 2.1 (i), F ̸∈ R̂(2K2,Wn), a contradiction. Therefore, K⌈n+1
2

⌉ ⊈ F̄ .

Lemma 2.3. Let F ∈ R̂(2K2,Wn) for n ≥ 7. Then |E(F )| ≥ 4n− 7.
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Proof. By Theorem 2.2, there exists Bn,1,i for i ∈ [1, 3] such that F ⊇ Bn,1,j . Consider |E(Bn,1,1)| =
4n− 8 > |E(Bn,1,j)| = 4n− 7 for j ∈ [2, 3]. By Proposition 2.3 (i), Bn,1,2, Bn,1,3 ̸∈ R̂(2K2,Wn).

Since F ⊇ Bn,1,i for some i ∈ [1, 3] and Bn,1,2, Bn,1,3 ̸∈ R̂(2K2,Wn), then E(F ) ≥ |E(Bn,1,2)|+
1 = |E(Bn,1,3)|+ 1 = 4n− 7.

The graphs Hi for i ∈ [1, 4] are shown in Figure 3.

Figure 3. Hi for i ∈ [1, 4]

In the following Theorem 2.5, we obtain the characterization of the member R̂(2K2,W7).

Theorem 2.5. The graphs in R̂(2K2,W7) are precisely K5×2 and Hi for i ∈ [1, 4].

Proof. By Theorem 2.1, K4×2 ∈ R̂(2K2,W7). The red-blue colorings codes of Hi and Hi − e for
i ∈ [1, 4], respectively, as shown in Table 3 and 4. Thus, Hi ∈ R̂(2K2,W7).

Table 3. Red-Blue Coloring Codes of Graphs Hi for i ∈ [1, 4]
i Hi → (2K2,W7)

1
[{2}, (1; 3, 5, 7, 4, 6, 8)] [{8}, (1; 2, 6, 4, 3, 5, 7)] [(1, 2, 8), (4; 1, 3, 8, 6, 2, 7)] [(2, 5, 7), (1; 2, 6, 4, 7, 3, 8)]
[{4}, (1; 2, 3, 7, 5, 8, 6)] [(1, 2, 3), (4; 1, 6, 2, 8, 3, 7)] [(2, 3, 5), (1; 2, 6, 4, 7, 3, 8)] [(3, 4, 8), (1; 2, 3, 7, 4, 6, 8)]
[{6}, (3; 1, 7, 5, 2, 4, 8)] [(1, 2, 6), (3; 1, 4, 8, 2, 5, 7)] [(2, 3, 8), (1; 2, 6, 4, 7, 3, 5)]

2
[{1}, (2; 3, 5, 7, 6, 4, 8)] [(1, 2, 3), (4; 1, 6, 2, 7, 3, 8)] [(2, 3, 5), (4; 1, 3, 7, 6, 2, 8)]
[{3}, (1; 2, 5, 7, 6, 4, 8)] [(1, 2, 5), (1; 2, 6, 4, 7, 3, 5)] [(3, 4, 7), (1; 4, 8, 3, 6, 7, 5)]
[{5}, (1; 2, 3, 7, 6, 4, 8)] [(2, 3, 4), (1; 2, 6, 4, 7, 3, 8)] [(3, 4, 8), (1; 2, 3, 5, 7, 4, 6)]

3

[{1}, (2; 3, 6, 4, 7, 5, 8)] [{7}, (1; 2, 6, 5, 3, 4, 8)] [(2, 3, 6), (1; 2, 4, 3, 7, 5, 8)] [(3, 5, 7), (1; 2, 5, 8, 3, 4, 7)]
[{4}, (1; 2, 6, 3, 8, 5, 7)] [(1, 2, 3), (4; 1, 7, 2, 6, 3, 8)] [(2, 3, 7), (1; 2, 5, 7, 4, 2, 6)]
[{5}, (1; 2, 6, 3, 8, 4, 7)] [(2, 3, 4), (1; 3, 6, 4, 8, 5, 7)] [(3, 4, 6), (1; 2, 3, 8, 5, 7, 4)]
[{6}, (1; 2, 5, 3, 7, 4, 8)] [(2, 3, 5), (1; 3, 6, 4, 8, 5, 7)] [(3, 4, 7), (1; 2, 4, 8, 3, 5, 7)]

4

[{1}, (2; 3, 7, 5, 6, 4, 8)] [(1, 2, 3), (4; 1, 6, 2, 8, 3, 7)] [(2, 3, 5), (1; 2, 6, 4, 7, 3, 8)] [(2, 5, 7), (1; 2, 6, 5, 3, 4, 8)]
[{3}, (1; 2, 6, 5, 7, 4, 8)] [(1, 2, 4), (3; 1, 5, 2, 7, 4, 8)] [(2, 3, 7), (1; 2, 4, 6, 5, 4, 8)] [(3, 4, 7), (1; 2, 4, 6, 5, 3, 8)]
[{5}, (1; 2, 6, 4, 8, 3, 7)] [(1, 2, 6), (3; 1, 5, 2, 8, 4, 7)] [(2, 4, 6), (1; 2, 7, 4, 3, 5, 8)]
[{6}, (1; 2, 5, 3, 7, 4, 8)] [(1, 2, 7), (3; 1, 4, 7, 5, 2, 8)] [(2, 4, 7), (1; 2, 6, 5, 7, 3, 8)]
[{7}, (1; 2, 6, 5, 3, 4, 8)] [(2, 3, 4), (1; 2, 7, 5, 6, 4, 8)] [(2, 5, 6), (1; 2, 7, 5, 3, 4, 8)]

Table 4. Red-Blue Coloring Codes of Graphs Hi − e for i ∈ [1, 4]
i Hi − e ̸→ (2K2,W7)

1
[e = (12), {7}] [e = (25), {1}] [e = (34), (1, 2, 3)] [e = (37), (1, 2, 4)]
[e = (23), {1}] [e = (27), {1}] [e = (35), (1, 2, 4)] [e = (57), (1, 2, 7)]

2 [e = (12), {3}] [e = (23), {1})] [e = (25), {1}] [e = (34), (1, 2, 8)] [e = (3, 5), {1}]

3
[e = (12), {8}] [e = (25), {1}] [e = (27), {1}] [e = (47), (1, 2, 3)]
[e = (24), {1}] [e = (26), {1}] [e = (46), (1, 2, 3)] [e = (57), {1}]

4
[e = (12), {8}] [e = (24), {1}] [e = (27), {1}] [e = (35), (1, 2, 4)] [e = (46), {1}]
[e = (23), {1}] [e = (26), {1}] [e = (34), (1, 2, 5)] [e = (37), (1, 2, 7)] [e = (47), (1, 2, 7)]
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By Proposition 2.2, K4×2 is only the graph in R̂(2K2,W7) with maximum degree 6. Thus, we
only need to prove that Hi for i ∈ [1, 4] are the only graphs with eight vertices in R̂(2K2,W7)
with maximum degree 7. Let vi ∈ V (K8) for i ∈ [1, 8]. Define the graphs Hi,j = K8 − E(H8,i,j),
where the data from the set of edges H8,i,j is shown in Table 5 for i ∈ [3, 7] and some j.

Table 5. The Set of Edges E8,i,j for i ∈ [3, 7] and some j
E(H8,7,1) = {45, 56, 57, 58, 67, 68, 78} E(H8,6,9) = {56, 57, 58, 67, 68, 78} E(H8,4,1) = {57, 58, 67, 68}
E(H8,7,2) = {35, 45, 57, 58, 67, 68, 78} E(H8,6,10) = {36, 45, 57, 67, 68, 89} E(H8,4,2) = {46, 56, 67, 78}
E(H8,7,3) = {35, 45, 56, 57, 58, 67, 68} E(H8,6,11) = {35, 45, 58, 67, 68, 89} E(H8,4,3) = {35, 45, 67, 68}
E(H8,7,4) = {36, 45, 56, 57, 58, 67, 78} E(H8,5,1) = {45, 57, 58, 67, 68} E(H8,4,4) = {45, 58, 67, 68}
E(H8,7,5) = {36, 45, 56, 57, 58, 67, 68} E(H8,5,2) = {36, 45, 56, 67, 78} E(H8,4,5) = {56, 67, 68, 78}
E(H8,7,6) = {36, 45, 57, 58, 67, 68, 78} E(H8,5,3) = {35, 45, 57, 67, 78} E(H8,4,6) = {34, 57, 58, 67}
E(H8,7,7) = {34, 56, 57, 58, 67, 68, 78} E(H8,5,4) = {36, 45, 57, 68, 78} E(H8,4,7) = {35, 45, 59, 67}
E(H8,6,1) = {45, 56, 57, 58, 67, 68} E(H8,5,5) = {45, 57, 58, 67, 78} E(H8,4,8) = {45, 67, 68, 78}
E(H8,6,2) = {35, 45, 57, 58, 67, 68} E(H8,5,6) = {46, 56, 67, 68, 78} E(H8,4,9) = {35, 45, 56, 57}
E(H8,6,3) = {36, 45, 56, 67, 68, 78} E(H8,5,7) = {35, 45, 57, 58, 67} E(H8,3,1) = {36, 46, 56}
E(H8,6,4) = {35, 45, 56, 57, 58, 67} E(H8,5,8) = {35, 45, 56, 57, 58} E(H8,3,2) = {34, 45, 56}
E(H8,6,5) = {35, 45, 57, 58, 67, 78} E(H8,5,9) = {57, 58, 67, 68, 78} E(H8,3,3) = {45, 56, 78}
E(H8,6,6) = {36, 45, 57, 58, 67, 68} E(H8,5,10) = {34, 57, 58, 67, 68} E(H8,3,4) = {34, 56, 78}
E(H8,6,7) = {45, 57, 58, 67, 68, 78} E(H8,5,11) = {35, 45, 58, 67, 68} E(H8,3,5) = {45, 46, 56}
E(H8,6,8) = {34, 57, 58, 67, 68, 78} E(H8,5,12) = {35, 45, 67, 68, 78}

Let HR
y = {K8 − Ey | K8 − Ey ∈ R̂(2K2,W7)}. By Lemma 2.3, since |E(K8 − Ey)| ≥ 21,

then y ≤ 7. In the following cases, we will prove that Hi for i ∈ [1, 4] are the only graphs with
eight vertices in R̂(2K2,W7) with maximum degree 7.

Case 1. K8 − E7.
By Theorem 2.2 for every H7

R ∈ HR
7, H7

R ⊃ B7,1,i for some i ∈ [1, 3]. All possible
graphs K8 − E7 ⊃ B7,1,i are represented by the graphs H7,j for j ∈ [1, 7]. According to
Proposition 2.3 (i), (ii), and Lemma 2.2 (ii), respectively, H7,j , H7,6, and H7,7 do not belong
to R(2K2,W7), for j ∈ [1, 5]. Thus, HR

7 = ∅. Therefore, there are no graphs obtained by
removing any seven edges from K8 that belonging to R̂(2K2,W7).

Case 2. K8 − E6.
All possible graphs H7,t+e for t ∈ [1, 7] that are not isomorphic to H1 and H2 are represented
by the graphs H6,j for j ∈ [1, 11]. According to Proposition 2.3 (i), (ii), Lemma 2.2 (i), and
Proposition 2.4 (ii), respectively H6,j1 , H6,6, H6,j2 , and H6,j3 do not belong to R(2K2,W7),
for j1 ∈ [1, 5], j2 ∈ [7, 9], and j3 ∈ [10, 11]. Thus, HR

6 = {H1, H2}. Therefore, removing
any six edges from the graph K8 only produces the graphs H1 and H2 as a member of
R̂(2K2,W7).

Case 3. K8 − E5.
All possible graphs H6,t + e for t ∈ [1, 11] that are not isomorphic to H3 and H4 are repre-
sented by the graphs H5,j for j ∈ [1, 12]. Consider H5,j ⊃ H1 and H5,5 ⊃ H2 for j ∈ [1, 4].

By Observation 2.2 (i), H5,t1 ̸∈ R̂(2K2,W7) for t1 ∈ [1, 5]. According to Proposition 2.3
(i), Lemma 2.2 (i), Proposition 2.4 (i), and (iii), respectively H5,k1 , H5,9, H5,10, and H5,k2

do not belong to R(2K2,W7), for k1 ∈ [6, 8] and k2 ∈ [11, 12]. Thus, HR
5 = {H3, H4}.

Therefore, removing any five edges from the graph K8 only produces the graphs H3 and H4

as a member of R̂(2K2,W7).

Case 4. K8 − E4.
All possible graphs H5,t + e for t ∈ [6, 12] are represented by the graphs H4,j for j ∈ [1, 9].

334



www.ejgta.org

On Ramsey (2K2,Wn)-minimal graphs of smallest order | M. R. Fajri et al.

Consider H4,j1 ⊃ H1, H4,4 ⊃ H2, H4,5 ⊃ H3, and H4,j2 ⊃ H4 for j1 ∈ [1, 3] and j2 ∈ [6, 8].

By Observation 2.2 (i), H4,t1 ̸∈ R̂(2K2,W7) for t1 ∈ [1, 8]. By Proposition 2.3 (i), H4,9 ̸∈
R̂(2K2,W7). Thus, HR

4 = ∅. Therefore, there are no graphs obtained by removing any four
edges from K8 that belonging to R̂(2K2,W7).

Case 5. K8 − E3.
All possible graphs H4,9 + e are represented by the graphs H3,i for i ∈ [1, 5]. Since H3,i ⊃
H3, then H3,i ̸∈ R̂(2K2,W7). Thus, HR

3 = ∅. Therefore, there are no graphs obtained by
removing any three edges from K8 that belonging to R̂(2K2,W7).

Case 6. K8 − Et for t ≤ 2.
Since H3,i + e ⊃ H3, by Observation 2.2 (i), HR

t = ∅ for t ≤ 2. Therefore, there are no
graphs obtained from removing at most two edges from K8 as a member of R̂(2K2,W7).

Based on cases 1 − 6 above, the graphs with maximum degree 7 in R̂(2K2,W7) are only Hi for
i ∈ [1, 4]. Thus, we have proven that the graphs in R̂(2K2,W7) are precisely K5×2 and Hi for
i ∈ [1, 4].

The graphs Fi for i ∈ [1, 10] are shown in Figure 4.

Figure 4. Fi for i ∈ [1, 10]

In the following Theorem 2.6, we obtain the characterization of the member R̂(2K2,W8).

Theorem 2.6. The graphs with nine vertices in R̂(2K2,W8) are precisely Fi for i ∈ [1, 10].

Proof. The red-blue coloring codes of Fi and Fi − e for i ∈ [1, 10], respectively, as shown in
Table 6 and 7. Thus, Fi ∈ R̂(2K2,W8).
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Table 6. Red-Blue Coloring Codes of Graphs Fi for i ∈ [1, 10]
i Fi → (2K2,W8)

1

[{1}, (2; 3, 6, 5, 4, 9, 7, 8)] [(1, 2, 7), (3; 1, 6, 2, 5, 9, 7, 8)] [(1, 4, 9), (3; 1, 6, 5, 9, 2, 8, 7)] [(3, 6, 9), (1; 2, 4, 9, 5, 3, 7, 8)]
[{3}, (2; 1, 6, 5, 4, 9, 7, 8)] [(1, 2, 6), (3; 1, 7, 9, 6, 5, 2, 8)] [(1, 5, 9), (2; 1, 3, 5, 4, 9, 7, 8)] [(3, 7, 9), (1; 1, 5, 9, 6, 3, 8, 7)]
[{4}, (1; 2, 3, 5, 6, 9, 7, 8)] [(1, 2, 8), (9; 1, 6, 2, 4, 5, 3, 7)] [(1, 5, 6), (2; 1, 4, 5, 3, 6, 9, 7)] [(4, 5, 9), (2; 1, 5, 3, 8, 7, 9, 6)]
[{5}, (2; 1, 4, 9, 7, 8, 3, 6)] [(1, 2, 9), (3; 1, 5, 2, 6, 9, 7, 8)] [(1, 6, 9), (2; 3, 6, 5, 4, 9, 7, 8)] [(5, 6, 9), (2; 1, 3, 5, 4, 9, 7, 8)]
[{6}, (2; 1, 7, 8, 3, 5, 4, 9)] [(1, 3, 9), (2; 1, 5, 3, 6, 9, 7, 8)] [(3, 4, 9), (1; 2, 5, 4, 9, 6, 3, 7)]

2

[{1}, (2; 3, 8, 6, 4, 7, 5, 9)] [(1, 2, 3), (4; 1, 6, 8, 3, 7, 2, 9)] [(2, 3, 4), (1; 2, 5, 7, 4, 8, 3, 9)] [(2.6.8), (1; 2, 5, 7, 4, 8, 3, 9)]
[{3}, (2; 1, 6, 8, 4, 7, 5, 9)] [(1, 2, 4), (3; 1, 7, 5, 2, 8, 4, 9)] [(2, 3, 7), (1; 2, 8, 4, 7, 5, 3, 9)] [(3, 4, 7), (1; 2, 6, 4, 8, 3, 5, 9)]
[{4}, (2; 1, 6, 8, 3, 7, 5, 9)] [(1, 2, 5), (4; 1, 7, 3, 9, 2, 6, 8)] [(2, 4, 6), (1; 2, 8, 4, 7, 5, 3, 9)] [(3, 4, 8), (1; 2, 6, 4, 7, 5, 3, 9)]
[{5}, (4; 1, 7, 2, 6, 8, 3, 9)] [(1, 2, 6), (3; 1, 5, 7, 2, 9, 4, 8)] [(2, 4, 7), (1; 2, 3, 8, 6, 4, 9, 5)] [(3, 5, 7), (1; 2, 5, 9, 3, 8, 4, 6)]
[{6}, (3; 1, 8, 2, 4, 7, 5, 9)] [(1, 2, 7), (3; 1, 8, 4, 7, 5, 2, 9)] [(2, 4, 8), (1; 2, 7, 4, 6, 8, 3, 9)] [(4, 6, 8), (1; 2, 8, 3, 4, 7, 5, 9)]
[{7}, (2; 1, 4, 6, 8, 3, 5, 9)] [(1, 2, 8), (4; 1, 6, 8, 3, 7, 2, 9)] [(2, 5, 7), (1; 2, 6, 4, 8, 3, 5, 9)]
[{8}, (2; 1, 6, 4, 9, 3, 5, 7)] [(2, 3, 5), (4; 1, 7, 3, 8, 6, 2, 9)] [(2, 5, 9), (1; 2, 7, 5, 3, 4, 6, 8)]
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i Fi → (2K2,W8)

3

[{1}, (2; 3, 8, 7, 4, 6, 5, 9)] [(1, 2, 3), (4; 1, 6, 2, 7, 6, 3, 8)] [(2, 3, 5), (4; 1, 6, 2, 7, 8, 3, 9)] [(2, 5, 6), (1; 2, 7, 3, 5, 9, 4, 8)]
[{3}, (2; 1, 8, 7, 4, 6, 5, 9)] [(1, 2, 4), (3; 1, 5, 2, 9, 4, 7, 8)] [(2, 3, 7), (1; 2, 6, 4, 7, 8, 3, 9)] [(2, 5, 9), (1; 2, 6, 5, 3, 7, 4, 8)]
[{4}, (1; 2, 6, 5, 9, 3, 8, 7)] [(1, 2, 5), (4; 1, 6, 2, 8, 7, 3, 9)] [(2, 3, 8), (1; 2, 5, 3, 7, 8, 4, 9)] [(2, 7, 8), (1; 2, 3, 7, 4, 9, 5, 6)]
[{5}, (1; 2, 5, 4, 9, 2, 8, 7)] [(1, 2, 6), (3; 1, 5, 2, 9, 4, 7, 8)] [(2, 3, 9), (1; 2, 4, 7, 8, 3, 5, 6)] [(3, 4, 7), (1; 2, 5, 6, 4, 9, 3, 8)]
[{6}, (3; 1, 8, 7, 4, 2, 5, 9)] [(1, 2, 7), (4; 1, 6, 2, 8, 7, 3, 9)] [(2, 4, 6), (1; 2, 8, 4, 7, 3, 5, 9)] [(3, 4, 8), (1; 2, 5, 6, 4, 7, 3, 9)]
[{7}, (1; 2, 5, 9, 3, 8, 4, 6)] [(1, 2, 8), (3; 1, 5, 2, 7, 8, 4, 9)] [(2, 4, 7), (1; 2, 6, 4, 8, 3, 5, 9)] [(3, 4, 9), (1; 2, 8, 7, 4, 7, 6, 9)]
[{8}, (1; 2, 6, 5, 3, 9, 4, 7)] [(1, 2, 9), (3; 1, 5, 9, 4, 2, 7, 8)] [(2, 4, 8), (1; 2, 6, 5, 9, 3, 8, 7)] [(3, 7, 8), (1; 2, 7, 4, 6, 5, 3, 9)]
[{9}, (1; 2, 7, 4, 6, 5, 3, 8)] [(2, 3, 4), (1; 2, 7, 3, 5, 6, 4, 9)] [(2, 4, 9), (1; 2, 6, 5, 9, 3, 8, 7)] [(4, 7, 8), (1; 2, 8, 3, 5, 6, 4, 9)]

4

[{2}, (1; 3, 5, 9, 6, 4, 7, 8)] [(1, 2, 3), (4; 1, 6, 2, 8, 7, 3, 9)] [(2, 3, 7), (1; 2, 8, 7, 4, 3, 5, 9)] [(3, 4, 7), (1; 2, 6, 9, 5, 3, 8, 7)]
[{4}, (1; 2, 6, 9, 5, 3, 7, 8)] [(1, 2, 5), (4; 1, 7, 8, 3, 2, 6, 9)] [(2, 3, 9), (1; 2, 6, 9, 5, 3, 7, 8)] [(3, 4, 9), (1; 2, 6, 9, 5, 3, 7, 8)]
[{6}, (1; 2, 8, 7, 4, 3, 5, 9)] [(1, 2, 7), (3; 1, 5, 9, 2, 4, 7, 8)] [(2, 4, 9), (1; 2, 8, 7, 3, 4, 6, 9)] [(3, 7, 8), (1; 2, 6, 9, 5, 3, 4, 7)]
[{8}, (1; 2, 6, 4, 7, 3, 5, 9)] [(1, 2, 9), (3; 1, 5, 9, 6, 4, 7, 8)] [(2, 5, 9), (4; 1, 8, 7, 3, 2, 6, 9)]
[{9}, (1; 2, 5, 3, 8, 7, 5, 6)] [(2, 3, 5), (1; 2, 7, 8, 3, 4, 6, 9)] [(2, 7, 8), (1; 2, 5, 3, 7, 4, 9, 6)]

5

[{1}, (2; 3, 5, 6, 4, 7, 8, 9)] [{8}, (1; 2, 7, 4, 6, 5, 3, 9)] [(1, 2, 8), (3; 1, 5, 2, 4, 7, 8, 9)] [(2, 3, 8), (4; 1, 6, 2, 9, 3, 7, 8)]
[{3}, (2; 1, 5, 6, 4, 7, 8, 9)] [(1, 2, 3), (4; 1, 6, 2, 7, 3, 8, 9)] [(2, 3, 4), (1; 2, 6, 4, 7, 8, 3, 9)] [(3, 4, 7), (1; 2, 4, 6, 5, 3, 8, 7)]
[{6}, (3; 1, 5, 2, 4, 7, 8, 9)] [(1, 2, 5), (4; 1, 6, 2, 3, 7, 8, 9)] [(2, 3, 5), (4; 1, 6, 2, 7, 3, 8, 9)] [(3, 4, 8), (1; 1, 6, 5, 3, 7, 8, 9)]
[{7}, (1; 2, 6, 5, 3, 4, 8, 9)] [(1, 2, 7), (3; 1, 5, 2, 4, 7, 8, 9)] [(2, 3, 7), (4; 1, 6, 2, 9, 3, 8, 7)] [(3, 7, 8), (1; 2, 3, 5, 6, 4, 8, 9)]

6

[{1}, (2; 3, 8, 4, 7, 5, 6, 9)] [{9}, (1; 2, 4, 6, 5, 7, 3, 8)] [(1, 2, 8), (3; 1, 5, 6, 4, 7, 2, 9)] [(3, 4, 9), (1; 2, 3, 8, 4, 7, 5, 6)]
[{4}, (1; 2, 8, 3, 7, 5, 6, 9)] [(1, 2, 3), (4; 1, 8, 2, 7, 3, 6, 9)] [(1, 2, 9), (3; 1, 4, 6, 5, 7, 2, 8)] [(3, 5, 6), (1; 2, 3, 9, 6, 4, 7, 5)]
[{5}, (4; 1, 8, 2, 7, 3, 6, 9)] [(1, 2, 4), (3; 1, 5, 6, 4, 7, 2, 8)] [(1, 5, 6), (2; 1, 3, 5, 7, 4, 6, 9)] [(3, 5, 7), (4; 1, 7, 2, 8, 3, 6, 9)]
[{6}, (1; 2, 5, 7, 4, 8, 3, 9)] [(1, 2, 5), (3; 1, 7, 5, 6, 2, 4, 8)] [(3, 4, 6), (1; 2, 3, 8, 4, 7, 5, 6)] [(3, 6, 9), (1; 2, 6, 5, 3, 7, 4, 9)]
[{7}, (1; 2, 8, 4, 6, 5, 3, 9)] [(1, 2, 6), (3; 1, 5, 6, 9, 2, 4, 8)] [(3, 4, 7), (1; 2, 3, 9, 4, 6, 5, 7)] [(4, 6, 9), (1; 2, 3, 8, 4, 7, 5, 6)]
[{8}, (1; 2, 4, 6, 5, 7, 3, 9)] [(1, 2, 7), (3; 1, 4, 7, 5, 6, 2, 8)] [(3, 4, 8), (1; 2, 3, 9, 6, 5, 7, 4)]

7

[{3}, (1; 2, 5, 6, 9, 7, 4, 8)] [{9}, (3; 1, 5, 6, 4, 7, 2, 8)] [(2, 3, 8), (1; 2, 5, 6, 4, 7, 3, 9)] [(3, 5, 6), (1; 2, 6, 9, 4, 7, 3, 8)]
[{4}, (3; 1, 5, 6, 9, 7, 2, 8)] [(1, 2, 3), (4; 1, 8, 3, 6, 2, 7, 9)] [(2, 3, 9), (1; 2, 5, 6, 3, 4, 9, 7)] [(3, 6, 9), (1; 2, 6, 5, 3, 4, 9, 7)]
[{5}, (4; 1, 7, 9, 6, 3, 2, 8)] [(2, 3, 4), (1; 2, 7, 4, 6, 5, 3, 8)] [(3, 4, 6), (1; 2, 5, 3, 7, 4, 9, 6)] [(3, 7, 9), (1; 2, 7, 4, 6, 5, 3, 8)]
[{6}, (3; 1, 5, 2, 8, 4, 9, 7)] [(2, 3, 5), (1; 2, 8, 4, 7, 3, 6, 9)] [(3, 4, 7), (1; 2, 6, 4, 8, 3, 9, 7)] [(4, 6, 9), (1; 2, 4, 7, 9, 3, 5, 6)]
[{7}, (3; 1, 5, 2, 8, 4, 9, 6)] [(2, 3, 6), (1; 2, 7, 4, 6, 5, 3, 8)] [(3, 4, 8), (1; 2, 5, 6, 4, 7, 3, 9)] [(4, 7, 9), (1; 2, 5, 6, 9, 3, 4, 8)]
[{8}, (3; 1, 7, 4, 6, 5, 2, 9)] [(2, 3, 7), (1; 2, 5, 3, 6, 4, 7, 9)] [(3, 4, 9), (1; 2, 7, 4, 6, 5, 3, 8)]

8

[{2}, (1; 3, 6, 5, 7, 4, 8, 9)] [(1, 2, 4), (3; 1, 8, 2, 7, 6, 4, 9)] [(2, 4, 8), (1; 2, 7, 6, 4, 3, 8, 9)] [(3, 4, 6), (1; 2, 6, 7, 4, 8, 3, 9)]
[{4}, (1; 2, 5, 6, 7, 3, 9, 8)] [(1, 2, 5), (3; 1, 8, 4, 7, 6, 2, 9)] [(2, 5, 6), (1; 2, 7, 6, 4, 8, 3, 9)] [(3, 4, 8), (1; 2, 3, 6, 7, 4, 9, 8)]
[{5}, (1; 2, 3, 7, 6, 4, 8, 7)] [(1, 2, 7), (3; 1, 6, 7, 4, 8, 2, 9)] [(2, 5, 7), (1; 2, 4, 6, 7, 3, 9, 8)] [(4, 6, 7), (1; 2, 5, 6, 3, 4, 8, 9)]
[{7}, (1; 2, 3, 9, 8, 4, 7, 6)] [(1, 2, 9), (3; 1, 7, 6, 2, 4, 9, 8)] [(2, 6, 7), (1; 2, 5, 6, 4, 7, 3, 8)] [(4, 8, 9), (1; 2, 5, 6, 7, 4, 3, 8)]
[{9}, (1; 2, 3, 9, 8, 4, 6, 5)] [(2, 4, 6), (1; 2, 5, 6, 3, 7, 4, 8)] [(2, 8, 9), (1; 2, 3, 8, 4, 7, 6, 5)] [(5, 6, 7), (1; 2, 7, 3, 6, 4, 9, 8)]

9

[{2}, (1; 3, 8, 5, 6, 7, 4, 9)] [(1, 2, 3), (4; 1, 6, 7, 4, 8, 2, 9)] [(2, 3, 6), (1; 2, 5, 6, 7, 3, 8, 9)] [(2, 6, 7), (1; 2, 5, 6, 3, 4, 8, 9)]
[{4}, (1; 2, 5, 6, 7, 3, 8, 9)] [(1, 2, 5), (4; 1, 6, 7, 4, 8, 2, 9)] [(2, 3, 7), (1; 3, 6, 7, 4, 8, 3, 9)] [(3, 4, 6), (1; 2, 6, 7, 4, 8, 3, 9)]
[{5}, (1; 2, 1, 6, 7, 3, 8, 9)] [(1, 2, 6), (4; 1, 3, 6, 7, 2, 8, 9)] [(2, 4, 6), (1; 2, 3, 8, 4, 7, 6, 5)] [(3, 4, 7), (1; 2, 3, 9, 8, 5, 6, 7)]
[{6}, (1; 2, 5, 8, 9, 3, 4, 7)] [(1, 2, 7), (4; 1, 3, 7, 6, 2, 8, 9)] [(2, 4, 7), (1; 2, 8, 3, 7, 6, 4, 9)] [(4, 6, 7), (1; 2, 7, 3, 6, 5, 8, 9)]
[{7}, (1; 2, 5, 6, 3, 4, 8, 9)] [(2, 3, 4), (1; 2, 5, 6, 7, 3, 8, 9)] [(2, 5, 6), (1; 2, 8, 3, 7, 6, 4, 9)]

10

[{1}, (2; 3, 4, 7, 5, 6, 9, 8)] [{8}, (1; 2, 3, 4, 7, 9, 6, 5)] [(1, 2, 8), (9; 1, 3, 8, 4, 6, 2, 7)] [(2, 5, 6), (1; 2, 4, 8, 9, 6, 3, 7)]
[{3}, (1; 2, 4, 6, 5, 7, 9, 8)] [(1, 2, 3), (9; 1, 6, 2, 7, 3, 4, 8)] [(2, 3, 4), (1; 2, 7, 5, 6, 3, 9, 8)] [(2, 4, 8), (1; 2, 6, 5, 7, 3, 8, 9)]
[{5}, (3; 1, 7, 2, 6, 4, 8, 9)] [(1, 2, 5), (9; 1, 7, 4, 3, 6, 2, 8)] [(2, 3, 6), (1; 2, 8, 4, 7, 5, 6, 9)] [(3, 4, 6), (1; 3, 8, 4, 7, 5, 6, 9)]
[{6}, (1; 2, 3, 9, 8, 4, 7, 5)] [(1, 2, 6), (9; 1, 3, 6, 4, 7, 2, 8)] [(2, 3, 8), (1; 3, 6, 5, 7, 4, 8, 9)] [(3, 4, 8), (1; 2, 6, 5, 7, 4, 9, 8)]

Table 7. Red-Blue Coloring Codes of Graphs Fi − e for i ∈ [1, 10]
i Fi − e ̸→ (2K2,W8)

1
[e = (12), {6}] [e = (15), {2}] [e = (39), (1, 2, 6)] [e = (56), {3}] [e = (69), (1, 2, 3)] [e = (78), (1, 2, 7)]
[e = (13), {9}] [e = (16), {2}] [e = (45), {2}] [e = (59), (1, 2, 3)]
[e = (14), {2}] [e = (19), (1, 2, 3)] [e = (49), (1, 2, 3)]

2
[e = (12), {4}] [e = (25), {1}] [e = (28), {1}] [e = (38), (1, 2, 4)] [e = (48), (1, 2, 4)] [e = (68), {1}]
[e = (23), {1}] [e = (26), {1}] [e = (35), (1, 2, 4)] [e = (46), (1, 2, 4)] [e = (57), (1, 2, 7)]
[e = (24), {1}] [e = (27), {1}] [e = (37), (1, 2, 4)] [e = (47), (1, 2, 4)] [e = (59), (1, 2, 4)]

3

[e = (12), {3}] [e = (16), {2}] [e = (34), (1, 2, 4)] [e = (46), (1, 2, 3)] [e = (56), {2}]
[e = (13), {2}] [e = (17), {2}] [e = (37), (1, 2, 4)] [e = (47), (1, 2, 7)] [e = (59), (1, 2, 9)]
[e = (14), {2}] [e = (18), {2}] [e = (38), (1, 2, 4)] [e = (48), (1, 2, 8)] [e = (78), (1, 2, 7)]
[e = (15), {2}] [e = (19), {2}] [e = (39), (1, 2, 4)] [e = (49), (1, 2, 9)]

4
[e = (12), {3}] [e = (25), {1}] [e = (29), {1}] [e = (35), (1, 2, 4)] [e = (39), (1, 2, 4)] [e = (78), {1}]
[e = (23), {1}] [e = (27), {1}] [e = (34), (1, 2, 6)] [e = (37), (1, 2, 4)] [e = (59), {1}]

5
[e = (12), {4}] [e = (26), {1}] [e = (28), {1}] [e = (35), (1, 2, 4)] [e = (38), (1, 2, 4)] [e = (78), (1, 2, 7)]
[e = (23), {1}] [e = (27), {1}] [e = (34), (1, 2, 6)] [e = (37), (1, 2, 4)] [e = (56), {1}]
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i Fi − e ̸→ (2K2,W8)

6
[e = (23), {1}] [e = (36), (1, 2, 8)] [e = (39), (1, 2, 8)] [e = (48), (1, 2, 3)] [e = (57), {1}]

[e = (34), (1, 2, 8)] [e = (37), (1, 2, 8)] [e = (46), (1, 2, 3)] [e = (49), (1, 2, 3)] [e = (59), {1}]
[e = (35), (1, 2, 8)] [e = (38), {1}] [e = (47), (1, 2, 3)] [e = (56), {1}]

7
[e = (23), {1}] [e = (36), (1, 2, 8)] [e = (39), (1, 2, 8)] [e = (48), (1, 2, 3)] [e = (69), {1}]

[e = (34), (1, 2, 3)] [e = (37), (1, 2, 8)] [e = (46), (1, 2, 3)] [e = (49), (1, 2, 3)] [e = (79), {1}]
[e = (35), (1, 2, 8)] [e = (38), (1, 2, 5)] [e = (47), (1, 2, 3)] [e = (56), {1}]

8
[e = (12), {3}] [e = (25), {1}] [e = (28), {1}] [e = (36), (1, 2, 4)] [e = (56), {7}] [e = (89), {1}]
[e = (23), {1}] [e = (26), {1}] [e = (34), (1, 2, 3)] [e = (38), (1, 2, 4)] [e = (67), (1, 2, 6)]

9
[e = (12), {3}] [e = (25), {1}] [e = (27), {1}] [e = (46), (1, 2, 3)] [e = (56), {8}]
[e = (23), {1}] [e = (26), {1}] [e = (34), (1, 2, 3)] [e = (47), (1, 2, 3)] [e = (67), (1, 2, 7)]

10
[e = (12), {6}] [e = (25), {1}] [e = (28), {1}] [e = (36), (1, 2, 6)] [e = (56), {7}]
[e = (23), {1}] [e = (26), {1}] [e = (34), (1, 2, 9)] [e = (38), (1, 2, 8)]

By Proposition 2.2, there is no graph belonging to R̂(2K2,W8) with maximum degree 7. Thus,
we only need to prove that Fi for i ∈ [1, 10] are the only graphs with eight vertices in R̂(2K2,W8)
with maximum degree 8. Let vi ∈ V (K9) for i ∈ [1, 9]. Define the graphs Fi,j = K9 − E(F9,i,j),
where the data from the set of edges F9,i,j is shown in Table 8 for i ∈ [5, 11] and some j.

Table 8. The set of edges E9,i,j for i ∈ [5, 11] and some j
E(F9,1,11) = {35, 45, 57, 58, 59, 67, 68, 69, 78, 78, 89} E(F9,4,8) = {36, 45, 56, 57, 67, 68, 78, 89} E(F9,18,7) = {35, 45, 59, 67, 78, 79, 89}
E(F9,2,11) = {34, 45, 56, 57, 58, 59, 67, 68, 69, 78, 79} E(F9,5,8) = {36, 45, 57, 58, 68, 69, 79, 89} E(F9,19,7) = {35, 45, 58, 67, 68, 78, 89}
E(F9,3,11) = {36, 45, 56, 57, 58, 67, 68, 69, 78, 79, 89} E(F9,6,8) = {36, 45, 56, 57, 58, 67, 69, 89} E(F9,20,7) = {36, 45, 56, 57, 67, 78, 79}
E(F9,4,11) = {36, 46, 56, 57, 58, 59, 67, 68, 69, 78, 79} E(F9,7,8) = {36, 45, 57, 58, 67, 68, 78, 89} E(F9,21,7) = {35, 45, 58, 59, 68, 78, 89}
E(F9,5,11) = {36, 45, 57, 58, 59, 67, 68, 69, 78, 79, 89} E(F9,8,8) = {36, 45, 56, 57, 67, 69, 78, 89} E(F9,22,7) = {36, 45, 68, 69, 78, 79, 89}
E(F9,6,11) = {34, 56, 57, 58, 59, 67, 68, 69, 78, 79, 89} E(F9,9,8) = {36, 45, 56, 57, 58, 68, 69, 78} E(F9,23,7) = {45, 59, 67, 68, 78, 79, 89}
E(F9,7,11) = {45, 56, 57, 58, 59, 67, 68, 69, 78, 79, 89} E(F9,10,8) = {45, 58, 59, 67, 68, 69, 78, 79} E(F9,24,7) = {35, 45, 59, 67, 68, 78, 89}
E(F9,1,10) = {45, 56, 57, 58, 59, 67, 68, 69, 78, 79} E(F9,13,8) = {36, 45, 56, 58, 67, 78, 79, 89} E(F9,25,7) = {36, 45, 56, 67, 78, 79, 89}
E(F9,2,10) = {36, 45, 56, 58, 67, 68, 69, 78, 79, 89} E(F9,11,8) = {45, 58, 59, 67, 68, 69, 78, 79} E(F9,26,7) = {36, 45, 58, 67, 69, 78, 89}
E(F9,3,10) = {36, 45, 56, 58, 59, 67, 68, 69, 78, 79} E(F9,12,8) = {36, 45, 57, 68, 69, 78, 79, 89} E(F9,27,7) = {36, 45, 58, 69, 78, 79, 89}
E(F9,4,10) = {36, 45, 56, 57, 59, 67, 68, 69, 78, 79} E(F9,14,8) = {36, 45, 57, 58, 67, 68, 79, 89} E(F9,28,7) = {36, 45, 57, 68, 69, 78, 89}
E(F9,5,10) = {36, 45, 56, 57, 58, 59, 67, 68, 69, 78} E(F9,15,8) = {36, 45, 57, 58, 67, 68, 69, 89} E(F9,29,7) = {36, 45, 67, 68, 69, 79, 89}
E(F9,6,10) = {35, 45, 57, 58, 59, 67, 68, 69, 78, 79} E(F9,16,8) = {36, 45, 58, 67, 68, 69, 79, 89} E(F9,30,7) = {45, 57, 58, 59, 67, 68, 69}
E(F9,7,10) = {35, 45, 57, 58, 59, 67, 68, 78, 79, 89} E(F9,17,8) = {36, 45, 57, 58, 59, 67, 68, 69} E(F9,31,7) = {36, 45, 58, 67, 68, 69, 79}
E(F9,8,10) = {35, 45, 56, 57, 58, 59, 68, 69, 78, 79} E(F9,18,8) = {36, 45, 57, 58, 67, 68, 69, 78} E(F9,32,7) = {58, 59, 67, 68, 69, 78, 79}
E(F9,9,10) = {35, 45, 56, 57, 58, 59, 67, 68, 78, 79} E(F9,19,8) = {36, 45, 56, 58, 67, 68, 69, 78} E(F9,33,7) = {45, 56, 67, 68, 69, 79, 89}
E(F9,10,10) = {36, 45, 57, 58, 59, 67, 68, 69, 78, 89} E(F9,20,8) = {36, 45, 56, 57, 58, 67, 68, 69} E(F9,34,7) = {45, 56, 57, 67, 78, 79, 89}
E(F9,11,10) = {56, 57, 58, 59, 67, 68, 69, 78, 79, 89} E(F9,21,8) = {45, 56, 57, 58, 59, 67, 68, 69} E(F9,35,7) = {45, 56, 58, 67, 68, 69, 79}
E(F9,12,10) = {34, 57, 58, 59, 67, 68, 69, 78, 79, 89} E(F9,22,8) = {45, 56, 57, 58, 59, 67, 68, 79} E(F9,36,7) = {45, 56, 58, 67, 68, 69, 79}
E(F9,13,10) = {45, 57, 58, 59, 67, 68, 69, 78, 79, 89} E(F9,23,8) = {36, 45, 56, 67, 68, 69, 79, 89} E(F9,37,7) = {35, 45, 59, 68, 69, 78, 79}
E(F9,14,10) = {36, 45, 56, 57, 58, 67, 68, 78, 79, 89} E(F9,24,8) = {36, 45, 56, 57, 67, 68, 69, 78} E(F9,38,7) = {35, 45, 59, 68, 69, 78, 79}
E(F9,15,10) = {36, 45, 57, 58, 67, 68, 69, 78, 79, 89} E(F9,25,8) = {35, 45, 57, 58, 59, 68, 69, 79} E(F9,39,7) = {35, 45, 58, 59, 67, 78, 89}
E(F9,16,10) = {35, 45, 58, 59, 67, 68, 69, 78, 79, 89} E(F9,26,8) = {35, 45, 57, 58, 59, 78, 79, 89} E(F9,40,7) = {45, 57, 58, 67, 69, 78, 89}
E(F9,17,10) = {36, 45, 56, 57, 58, 67, 69, 78, 79, 89} E(F9,27,8) = {35, 45, 56, 57, 58, 59, 68, 79} E(F9,41,7) = {35, 45, 57, 58, 59, 67, 68}
E(F9,18,10) = {36, 45, 56, 57, 58, 68, 69, 78, 79, 89} E(F9,28,8) = {35, 45, 57, 58, 59, 67, 68, 78} E(F9,42,7) = {35, 45, 56, 58, 59, 67, 89}

E(F9,1,9) = {36, 45, 56, 57, 58, 67, 68, 69, 78} E(F9,29,8) = {35, 45, 56, 57, 58, 59, 67, 68} E(F9,43,7) = {35, 45, 56, 57, 59, 67, 68}
E(F9,2,9) = {36, 45, 56, 67, 68, 69, 78, 79, 89} E(F9,30,8) = {36, 57, 67, 68, 69, 78, 79, 89} E(F9,44,7) = {35, 45, 56, 57, 58, 59, 67}
E(F9,3,9) = {36, 45, 56, 57, 58, 67, 68, 69, 89} E(F9,31,8) = {58, 59, 67, 68, 69, 78, 79, 89} E(F9,45,7) = {45, 56, 57, 58, 59, 68, 79}
E(F9,4,9) = {35, 45, 56, 57, 58, 59, 67, 68, 78} E(F9,32,8) = {45, 58, 59, 68, 69, 78, 79, 89} E(F9,46,7) = {36, 56, 67, 68, 69, 79, 89}
E(F9,5,9) = {36, 56, 57, 58, 67, 68, 69, 79, 89} E(F9,33,8) = {34, 58, 59, 68, 69, 78, 79, 89} E(F9,47,7) = {58, 59, 68, 69, 78, 79, 89}
E(F9,6,9) = {36, 45, 56, 58, 67, 68, 69, 79, 89} E(F9,34,8) = {34, 58, 59, 67, 68, 69, 78, 79} E(F9,48,7) = {34, 58, 59, 67, 69, 79, 89}
E(F9,7,9) = {45, 56, 57, 58, 59, 67, 68, 69, 79} E(F9,35,8) = {34, 58, 59, 67, 68, 69, 79, 89} E(F9,49,7) = {35, 58, 59, 67, 68, 69, 78}
E(F9,8,9) = {45, 56, 57, 58, 59, 67, 69, 78, 79} E(F9,36,8) = {36, 45, 58, 67, 68, 69, 78, 89} E(F9,50,7) = {36, 45, 57, 67, 78, 79, 89}
E(F9,9,9) = {35, 45, 56, 57, 58, 59, 68, 69, 79} E(F9,37,8) = {36, 45, 58, 68, 69, 78, 79, 89} E(F9,51,7) = {36, 45, 57, 67, 78, 79, 89}
E(F9,10,9) = {35, 45, 57, 58, 59, 67, 68, 78, 79} E(F9,38,8) = {36, 45, 57, 58, 68, 69, 78, 89} E(F9,52,7) = {35, 45, 67, 68, 78, 79, 89}
E(F9,11,9) = {35, 45, 57, 58, 59, 68, 69, 78, 79} E(F9,39,8) = {36, 45, 56, 57, 67, 78, 79, 89} E(F9,53,7) = {45, 67, 68, 69, 78, 79, 89}
E(F9,12,9) = {35, 45, 57, 58, 59, 67, 78, 79, 89} E(F9,40,8) = {36, 45, 56, 57, 58, 69, 78, 89} E(F9,54,7) = {56, 67, 68, 69, 78, 79, 89}
E(F9,13,9) = {45, 56, 57, 58, 59, 68, 69, 78, 79} E(F9,41,8) = {35, 45, 58, 67, 68, 78, 79, 89} E(F9,1,6) = {36, 56, 68, 69, 79, 89}
E(F9,14,9) = {36, 56, 58, 67, 68, 69, 78, 79, 89} E(F9,42,8) = {34, 45, 59, 68, 69, 78, 79, 89} E(F9,2,6) = {45, 56, 58, 59, 67, 89}
E(F9,15,9) = {36, 45, 56, 57, 58, 59, 67, 68, 69} E(F9,43,8) = {35, 45, 58, 59, 67, 68, 78, 89} E(F9,3,6) = {36, 45, 57, 67, 79, 89}
E(F9,16,9) = {36, 56, 57, 58, 67, 68, 69, 78, 89} E(F9,44,8) = {35, 36, 69, 67, 68, 78, 79, 89} E(F9,4,6) = {56, 59, 67, 68, 78, 89}
E(F9,17,9) = {36, 45, 56, 58, 67, 68, 69, 78, 89} E(F9,45,8) = {35, 45, 58, 59, 67, 68, 78, 79} E(F9,5,6) = {36, 56, 67, 68, 79, 89}
E(F9,18,9) = {57, 58, 59, 67, 68, 69, 78, 79, 89} E(F9,46,8) = {45, 56, 67, 68, 69, 78, 79, 89} E(F9,6,6) = {34, 59, 67, 68, 78, 89}
E(F9,19,9) = {45, 58, 59, 67, 68, 69, 78, 79, 89} E(F9,47,8) = {36, 45, 67, 68, 69, 78, 79, 89} E(F9,7,6) = {35, 45, 68, 78, 79, 89}
E(F9,20,9) = {45, 57, 58, 59, 67, 68, 78, 79, 89} E(F9,48,8) = {36, 58, 67, 68, 69, 78, 79, 89} E(F9,8,6) = {36, 45, 57, 67, 78, 79}
E(F9,21,9) = {46, 56, 57, 58, 67, 68, 78, 79, 89} E(F9,49,8) = {35, 45, 67, 68, 69, 78, 79, 89} E(F9,9,6) = {34, 56, 59, 68, 78, 89}
E(F9,22,9) = {45, 56, 58, 67, 68, 69, 78, 79, 89} E(F9,50,8) = {45, 59, 67, 68, 69, 78, 79, 89} E(F9,10,6) = {34, 56, 67, 68, 78, 89}
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E(F9,23,9) = {45, 56, 57, 59, 67, 68, 69, 78, 79} E(F9,51,8) = {36, 45, 56, 57, 67, 68, 78, 89} E(F9,11,6) = {56, 68, 69, 78, 79, 89}
E(F9,24,9) = {34, 58, 59, 67, 68, 69, 78, 79, 89} E(F9,52,8) = {57, 58, 59, 67, 68, 69, 78, 89} E(F9,12,6) = {56, 67, 68, 69, 78, 79}
E(F9,25,9) = {35, 45, 58, 59, 68, 69, 78, 79, 89} E(F9,1,7) = {58, 59, 67, 68, 69, 78, 89} E(F9,13,6) = {58, 59, 67, 69, 79, 89}
E(F9,26,9) = {34, 57, 58, 59, 67, 68, 69, 79, 89} E(F9,2,7) = {45, 58, 59, 68, 69, 78, 79} E(F9,14,6) = {45, 68, 69, 78, 79, 89}
E(F9,27,9) = {36, 45, 57, 58, 67, 68, 69, 78, 89} E(F9,3,7) = {45, 58, 59, 67, 68, 78, 79} E(F9,15,6) = {58, 59, 68.69.78.89}
E(F9,28,9) = {36, 45, 58, 67, 68, 69, 78, 79, 89} E(F9,4,7) = {45, 57, 58, 59, 67, 68, 79} E(F9,16,6) = {35, 45, 67, 68, 79, 89}
E(F9,29,9) = {36, 45, 57, 58, 68, 69, 78, 79, 89} E(F9,5,7) = {45, 56, 58, 67, 68, 78, 79} E(F9,17,6) = {35, 45, 58, 59, 67, 89}
E(F9,30,9) = {36, 45, 57, 58, 67, 68, 78, 79, 89} E(F9,6,7) = {45, 56, 58, 59, 67, 68, 69} E(F9,18,6) = {35, 45, 58, 59, 67, 68}
E(F9,31,9) = {36, 45, 56, 57, 58, 68, 69, 78, 89} E(F9,7,7) = {36, 48, 68, 69, 78, 79, 89} E(F9,19,6) = {35, 45, 56, 59, 67, 68}
E(F9,32,9) = {36, 45, 56, 57, 67, 69, 78, 79, 89} E(F9,8,7) = {36, 56, 68, 69, 78, 79, 89} E(F9,20,6) = {35, 45, 56, 58, 59, 89}
E(F9,33,9) = {36, 45, 56, 58, 67, 68, 78, 79, 89} E(F9,9,7) = {36, 45, 57, 58, 67, 68, 89} E(F9,21,6) = {35, 45, 57, 58, 59, 67}
E(F9,34,9) = {35, 45, 59, 67, 68, 69, 78, 79, 89} E(F9,10,7) = {36, 45, 56, 57, 69, 78, 89} E(F9,22,6) = {35, 45, 56, 57, 58, 59}
E(F9,35,9) = {35, 45, 58, 59, 67, 68, 78, 79, 89} E(F9,11,7) = {36, 45, 56, 67, 68, 79, 89} E(F9,23,6) = {67, 68, 69, 78, 79, 89}
E(F9,36,9) = {35, 45, 58, 59, 67, 68, 69, 78, 79} E(F9,12,7) = {36, 45, 57, 67, 69, 78, 89} E(F9,1,5) = {68, 69, 78, 79, 89}
E(F9,37,9) = {45, 57, 58, 59, 67, 68, 69, 78, 89} E(F9,13,7) = {36, 45, 56, 58, 67, 78, 89} E(F9,2,5) = {35, 45, 58, 59, 89}
E(F9,38,9) = {36, 45, 56, 57, 58, 67, 68, 78, 89} E(F9,14,7) = {36, 45, 56, 58, 67, 69, 79} E(F9,3,5) = {35, 45, 56, 58, 89}
E(F9,1,8) = {45, 57, 58, 59, 67, 69, 78, 89} E(F9,15,7) = {37, 45, 56, 58, 67, 78, 79} E(F9,4,5) = {35, 45, 58, 59, 67}
E(F9,2,8) = {45, 57, 58, 59, 67, 68, 69, 79} E(F9,16,7) = {36, 45, 56, 57, 67, 79, 89} E(F9,5,5) = {34, 35, 56, 58, 59}
E(F9,3,8) = {45, 56, 58, 67, 68, 69, 79, 89} E(F9,17,7) = {36, 45, 56, 67, 68, 78, 89}

Let FR
y = {K9 − Ey|Ey = {e1, e2, . . . , ey} ∈ E(K9) and K9 − Ey ∈ R̂(2K2,W8)}. By

Lemma 2.3, since |E(K9 − Ey)| ≥ 25, then y ≤ 11. In the following cases, we will prove that Fi

for i ∈ [1, 10] are the only graphs with eight vertices in R̂(2K2,W8) with maximum degree 8.

Case 1. K9 − E11.
By Theorem 2.2 for every F 11

R ∈ FR
11, F 11

R ⊇ B8,1,i for some i ∈ [1, 3]. All possible
graphs K9 − E11 ⊇ B8,1,i are represented by the graphs F11,j for j ∈ [1, 7]. According
to Proposition 2.3, and Lemma 2.2 (ii), respectively, F11,j1 , and F11,j2 do not belong to
R(2K2,W8), for j1 ∈ [1, 5] and j2 ∈ [6, 7]. Thus, FR

11 = ∅. Therefore, there are no graphs
obtained by removing any eleven edges from K9 that belonging to R̂(2K2,W8).

Case 2. K9 − E10.
All possible graphs F11,t + e for t ∈ [1, 7] are represented by the graphs F10,j for j ∈
[1, 18]. According to Proposition 2.3, Lemma 2.2 (i), and Proposition 2.4 (ii), respectively,
F10,j1 , F10,j2 , and F10,j3 do not belong to R̂(2K2,W8), for j1 ∈ [1, 10], j2 ∈ [11, 16], and
j3 ∈ [17, 18]. Thus, FR

10 = ∅. Therefore, there are no graphs obtained by removing any ten
edges from K9 that belonging to R̂(2K2,W8).

Case 3. K9 − E9.
All possible graphs F10,t + e for t ∈ [1, 18] are represented by the graphs F9,j for j ∈
[1, 38]. According to Proposition 2.3 (i), Lemma 2.2 (i), and Proposition 2.4, respectively,
F9,j1 , F9,j2 , and F9,36 do not belong to R(2K2,W8), for j1 ∈ [1, 26], and j2 ∈ [27, 35]. Next,
since F9,37−v1−v2, F9,38−v1−v2 ̸⊇ Wn, by Observation 2.1 (i) F9,37, F9,38 ̸∈ R̂(2K2,W8).
Thus, HR

6 = {Fi|i ∈ [1, 5]}. Therefore, removing any nine edges from the graph K9 only
produces the graphs Fi for i ∈ [1, 5] as members of R̂(2K2,W8).

Case 4. K9 − E8.
All possible graphs F9,t + e for t ∈ [1, 38] are represented by the graphs F8,j for j ∈ [1, 52].
Consider F8,j1 ⊃ F1, F8,j2 ⊃ F2, F8,j3 ⊃ F3, and F8,j4 ⊃ F5 for j1 ∈ [1, 9], j2 ∈
[10, 13], j3 ∈ [14, 16], and j4 ∈ [17, 18]. By Observation 2.2 (i), F8,t1 ̸∈ R̂(2K2,W8) for
t1 ∈ [1, 18]. According to Proposition 2.3 (i), Lemma 2.2, and Proposition 2.4, respectively,
F8,k1 , F8,k2 , and F8,k3 do not belong to R(2K2,W8), for k1 ∈ [19, 30], k2 ∈ [31, 33]∪ [46, 50],
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and k3 ∈ [34, 45]. Afterward, since F8,51 − v1 − v2, F8,52 − v1 − v2 ̸⊇ Wn, by Observa-
tion 2.1 (i) F8,51, F8,52 ̸∈ R̂(2K2,W8). Thus, HR

8 = {Fi|i ∈ [6, 9]}. Therefore, removing
any eight edges from the graph K9 only produces the graphs Fi for i ∈ [6, 9] as members of
R̂(2K2,W8).

Case 5. K9 − E7.
All possible graphs F8,t+ e for t ∈ [19, 52] are represented by the graphs F7,j for j ∈ [1, 54].
Consider F7,j1 ⊃ F1, F7,j2 ⊃ F2, F7,j3 ⊃ F3, F7,j4 ⊃ F6, F7,j5 ⊃ F7, F7,37 ⊃ F8, and
F7,j6 ⊃ F9 for j1 ∈ [1, 21], j2 ∈ [22, 28], j3 ∈ [29, 32], j4 ∈ [33, 35], and j5 ∈ [38, 40].

By Observation 2.2 (i), F7,t1 ̸∈ R̂(2K2,W8) for t1 ∈ [1, 40]. According to Proposition 2.3
(i), Lemma 2.2, and Proposition 2.4, respectively, F7,k1 , F7,k2 , and F7,k3 do not belong to
R(2K2,W8), for k1 ∈ [41, 46], k2 ∈ {47, 53, 54}, and k3 ∈ [48, 52]. Thus, HR

8 = {F10}.
Therefore, removing any seven edges from the graph K9 only produces the graph F10 as a
member of R̂(2K2,W8).

Case 6. K9 − E6.
All possible graphs F7,t+ e for t ∈ [41, 54] are represented by the graphs F6,j for j ∈ [1, 23].
Consider F6,j1 ⊃ F1, F6,j2 ⊃ F2, F6,9 ⊃ F3, F6,10 ⊃ F4, F6,j3 ⊃ F6, F6,j4 ⊃ F7, F6,j5 ⊃
F8, F6,17 ⊃ F9, and F6,j6 ⊃ F10 for j1 ∈ [1, 3], j2 ∈ [4, 8], j3 ∈ [11, 12], j4 ∈ [13, 14],

j5 ∈ [15, 16], and j6 ∈ [18, 20]. By Observation 2.2 (i), F6,t1 ̸∈ R̂(2K2,W8) for t1 ∈ [1, 20].
Next, According to Proposition 2.3 (i), and Lemma 2.2 (ii), respectively, F6,j and F6,23 do
not belong to R(2K2,W8), for j ∈ [20, 22].
By Theorem 2.2, F6,t2 ̸∈ R̂(2K2,W8) for t2 ∈ [20, 23]. Thus, HR

4 = ∅. Therefore, there are
no graphs obtained by removing any six edges from K9 that belonging to R̂(2K2,W8).

Case 7. K9 − E5.
All possible graphs F7,t + e for t ∈ [20, 23] are represented by the graphs F5,j for j ∈ [1, 5].
Consider F5,1 ⊃ F6, F5,2 ⊃ F9, and F5,j ⊃ F3 for j ∈ [3, 4]. By Observation 2.2 (i),
H5,t3 ̸∈ R̂(2K2,W8) for t3 ∈ [1, 4]. Next, by Proposition 2.4 (ii), F5,5 ̸∈ R̂(2K2,W8).
Thus, FR

5 = ∅. Therefore, there are no graphs obtained by removing any five edges from
K9 that belonging to R̂(2K2,W8).

Case 8. K9 − Et for t ≤ 4.
Since F5,5 + e ⊃ F9, by Observation 2.2 (i), FR

t = ∅ for t ≤ 4. Therefore, there are no
graphs obtained from removing at most four edges from K9 as a member of R̂(2K2,W8).

Based on cases 1 − 8 above, the graphs with maximum degree 8 in R̂(2K2,W8) are only Fi for
i ∈ [1, 10]. Thus, we have proven that the graphs with nine vertices in R̂(2K2,W8) are precisely
Fi for i ∈ [1, 10].
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