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Abstract

Let GG be a simple and finite graph of order p and size q. The graph G is said to be edge magic
total, for short EMT, if there is a bijection A : V(G) U E(G) — {1,2,...,p + ¢} such that
all edge sums A\(x) + A(zy) + A(y), vy € E(G), are the same. If all edge sums are pairwise
distinct, then G is called edge antimagic total (EAT). Let ¢ be a positive integer that satisfies
(tgl) <gqg< (t§2). The graph G is said to have an ascending subgraph decomposition (ASD) if
G can be decomposed into ¢ subgraphs Hy, H,, ..., H; without isolated vertices such that H; is
isomorphic to a proper subgraph of H;, for 1 < i < ¢t — 1. A graph that admits an ascending
subgraph decomposition is called an ASD graph. An ASD graph G is said to be ASD-antimagic
if there exists a bijection f : V(G) U E(G) — {1,2,...,p + ¢} such that all subgraph weights
w(H;) = > cvimy f(V) + Xeepm, f(€),1 < i < ¢, are distinct. In this paper, we provide
constructions of ASD-antimagic graphs arising from EMT or EAT graphs.
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1. Introduction

Throughout this paper, G = (V, F) denotes a finite simple graph with nonempty vertex set
V(G) and nonempty edge set F(G). In 1970, Kotzig and Rosa [14] introduced the notion of a
magic total labeling as follows. A bijection A : V(G) U E(G) — {1,2,...,|V(G)| + |E(G)|} is
called an edge magic total labeling (EMTL) of G if there exists a constant k such that for any edge
xy of GG, the edge sum of xy, also called the edge weight, is

Ax) + AMzy) + My) = k.

If all the edge sums are distinct, then A is called an edge antimagic total labeling (EATL) of G.
Furthermore, if the edge sums form an arithmetic sequence with the smallest sum « and difference
d, then \ is called an (a, d)-edge antimagic total labeling ((a, d)-EATL) of G, see [19]. Moreover,
if A\(V(G)) ={1,2,...,|V(G)|}, then A is called a super EMTL or a super EATL. Figure 1 shows
a super EMTL and a super EATL of the cycle Cs.

®@ | ® ® ! ®
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Figure 1. (a) A super EMTL of Cj5. (b) A super (10, 2)-EATL of Cs.

In the last three years, many studies have been conducted on EMTL, EATL, and their appli-
cations. The results include the construction of super EMTL [7], the super EMTL of graphs with
certain degree sequences [10], and the application of EMTL in machine learning [8] and RSA
algorithms [12], while the application of EATL for RSA algorithms has been discussed in [13].

Since an edge can be seen as a K5 subgraph, the notion of EMTL and EATL can then be
generalized by considering the sum of labels in any subgraph. Let ¢ be a positive integer and
H={H; CG,i=1,2,...,t} be a collection of ¢ subgraphs of the graph G, where all H;’s are
isomorphic to a graph H. The graph G is said to admit an H-decomposition if every edge in F(G)
belongs to exactly one H; in ‘H, see [9].

For a graph G that admits an H-decomposition, a bijection f : V(G)UE(G) — {1,2,...,|V(G)|+
|E(G)|} is called an H-magic total labeling of G if the weight of every subgraph H;, denoted as
w(H;), is a constant, where w(H;) is the sum of all vertex and edge labels in H;, i = 1,2,...,t.
If all weights are distinct, then the labeling f is called an H-antimagic total labeling of GG. Fur-
thermore, if the weights form an arithmetic progression starting from a with difference d, then f
is called an (a, d)-H-antimagic total labeling of G, see [11]. Further, we call an H-(anti)magic
graph for a graph admitting /-(anti)magic total labeling.
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Many studies have been conducted on the H-(anti)magic total labelings and their applications.
The results include the H -antimagic total labeling of the comb product graphs [1], the construction
of (a,d)-H-antimagic total labelings using the EATL of smaller graphs [6], forbidden subgraphs
of H-magic graphs [16], and the application of H-magic total labeling in combinatorial design
[20].

Another way of decomposing a graph was introduced by Alavi et al. in [2], where all subgraphs
are not isomorphic to each other. Let GG be a graph of size ¢ that satisfies (tgl) <gqg< ("22). The
graph G is said to have an ascending subgraph decomposition (ASD) if G can be decomposed into
t subgraphs Hy, Ho, ..., H;, all without isolated vertices, such that H; is isomorphic to a proper
subgraph of H;,, for 1 < i <t — 1. In this case, we say that the graph is an ascending subgraph
decomposable (ASD) graph. Hence, there exists a unique ¢ for each ¢, and so the number of
ascending subgraphs is restricted. However, there may be more than one way to decompose the
graph. In the same article, the following conjecture was proposed.

Conjecture 1.1. [2] Every graph of positive size has an ascending subgraph decomposition.

There are many families of graphs that have already been proven to be ASD (see [15]), but, in
general, Conjecture 1.1 remains open.

Motivated by the concept of //-magic and [ -antimagic total labelings where all weights are
counted in subgraphs that are isomorphic to each other, this paper deals with the existence of magic
and antimagic labelings on ASD graphs, where a pair of subgraphs is not isomorphic. Recently,
ASD-based magic and antimagic labelings were introduced by Pancahayani, Simanjuntak, and
Uttunggadewa [17, 18]. The formal definitions for such labelings can be seen below.

Definition 1.1. [17] Let G be an ASD graph and H = {Hy, Hs,...,H,} be a collection of t
ascending subgraphs of G. Let [ : V(G) U E(G) — {1,2,...,|V(G)| + |E(G)|} be a bijection
of G. If there exists a constant k such that w(H;) = k, for everyi € {1,2,... t}, then f is called
an ASD-magic labeling of G.

Definition 1.2. [18] Let G be an ASD graph and H = {Hy, Hs, ..., H,} be a collection of t
ascending subgraphs of G. Let f : V(G)U E(G) — {1,2,...,|V(G)| + |E(G)|} be a bijection
on G. If there exist H and f such that w(H;) # w(H;) for every 1 < i < j <, then G is called
to admit an ASD-antimagic labeling. If the vertices are labeled with the smallest numbers, i.e.,
fV(@Q)) ={1,2,...,|V(G)|}, then G is said to admit a super ASD-antimagic labeling. If  is a
super ASD-antimagic labeling and all weights form an arithmetics progression with the first term
a and difference d, then f is called a super (a, d)-ASD-antimagic labeling.

Pancahayani, Simanjuntak, and Uttunggadewa [17] characterized some ASD-magic graphs
such as stars, paths, and cycles. Pancahayani, Simanjuntak, and Uttunggadewa [18] also obtained
an upper bound for d in (a, d)-ASD-antimagic graphs and constructed (a, d)-ASD-antimagic la-
belings for some product graphs. In Figure 2, examples of ASD-magic and super ASD-antimagic
graphs are presented.

In this paper, we construct ASD-antimagic graphs from a "connector” graph that admits an edge
magic total labeling (Section 2). We conclude by showing that some super (a, d)-edge antimagic
total labelings of stars, paths, and cycles are also super ASD-antimagic labelings (Section 3).
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Py : k=710 Cho :
(5)171819101461014 1112123134145 w(Hy) = 34
Il6 20 15 /IU(Hg,) = 67
O w(Hy) =109
13812157 3 2 1 9 10199 18 8 17 7 16 6
Hy=P H3=PFP, Hy=PF; Hi=P Hy=P H3=P Hi=PF;
(a) (b)

Figure 2. (a) An ASD-magic labeling on Pjg. (b) A super ASD-antimagic labeling on C}.

2. Constructions based on an EMT graph

In this section, we construct ASD-antimagic graphs from a special EMT graph called a con-
nector. The construction involves a subdivision of an edge, defined as follows. A subdivision of an
edge uv in G is the insertion of new k vertices wy, wa, . . . , Wy in uv accompanied by the joining of
the original edge endpoints with the new vertices to form new edges uwi, wyws, . . . , Wi_1 Wk, WEV.

Definition 2.1. Let G* be a connector, with E(G*) = {ey,ea,...,e:}. Define G as a family of
graphs constructed from G* by substituting some edges e; with subgraphs G*|e;] obtained from at
least one of the following procedures:

A) subdivision of e;, or
B) identifying one end vertex of e; with a certain vertex of a connected graph,
in such a way that the following hold

i) for every i, i = 1,2,...,t, either |V(G*[e;])| + |E(G*[e;])] = 2i + 1 or |[V(G*[e;])| +
|E(G*[e;])| = 2i + 3, and

ii) G*[e;] is isomorphic to a proper subgraph of G*[e;j|, for1 <i < j <t.

From Definition 2.1 it is obvious that for each G*, the corresponding G is an infinite family of
graphs. Moreover, the following observation holds.

Observation 2.1. Every graph GG in G is ASD.

Figure 3 shows an example of a connector graph G that is isomorphic to a cycle C5 and three
ASD graphs in the corresponding G. Note that G; and G5 are ASD graphs, where |V (G*[e;])] +
|E(G*[e;])] = 2i+ 1 for i = 1,2,3. The graph G3 is an ASD graph, where |V (G*[e;])| +
|E(G*[e;])| = 2i + 3 foreachi = 1,2, 3.

It turns out that all graphs in G are not only ASD, but also ASD-antimagic when the corre-
sponding connector G* is EMT. To simplify the notation, denote the sum of the order of a graph G
and its size by o(G), thatis o(G) = |V(G)| + |E(G)|.
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G*§03 Gleg GQEQ G3Eg
U1q (75} Uy
€1 €2 G* [61] G* [62} G* [61]
us U2 Uz O
€3 U3 G*[es) s G*[es)
(@) (b) (©

Figure 3. (a) A connector graph G* isomorphic to a cycle C'5. (b) The graph G derived from G* by subdividing e5
and e3. (c) The graph G derived from G* by identifying u; with P> and ug with K5 ». (d) The graph Gz derived
from G by subdividing e, identifying uy with K 5, subdividing e3, and identifying e3 with K 5.

Theorem 2.1. If G* is EMT, then every GG in G is ASD-antimagic.

Proof. Let f be an EMTL of G*.

For the case when o (G*[e;]) = 2i+1forevery i > 1, the label set for G*[e;]is { f(e1), f(u1), f(v1)},
and for ¢ > 2, the label set for G*[e;] is { f(e;), f(u;), f(vi)}U{o(G*)+Z;;11 [0(G*[e;]) — 3]+m |
1 <m < o(G*[e]) — 3}

For the case when o (G*[e;]) = 2i+3 forevery ¢ > 1, the label set for G*[eq] is { f(e1), f(u1), f(v1) }U
{o(G*)+m | 1 <m < 0(G*[e1])—3}, and fori > 2, the label set for G*[e;] is { f(e;), f(us), f(vi) }U
[0(G) + X o(GPle]) — 3+ m | 1< m < o(G"[ed) — 3). .

Figure 4 provides labelings for the graphs in Figure 3 such that the connector graphs G* = (5
is EMT, and (G4, G5, G5 are ASD-antimagic.

G* = Cg GQ € g
1
5 6
3E——>2
W(H)=9 w(Hy)=51 w(H,)=9 w(Hs)=51 w(H,)=24w(Hs)=102
ik w(Hy)=24 w(Hay)=24 w(Hy)=51
(a) (b) () (d)

Figure 4. (a) An EMTL on G*, (b) An ASD-antimagic labeling on GG1, (c) An ASD-antimagic labeling on G, (d) An
ASD-antimagic labeling on G.

3. Constructions based on a super (a, d)-EAT graph

In this section, we construct ASD-antimagic labelings from (a, d)-EATLs of paths, stars, and
cycles. In our constructions, an ascending sequence with particular properties is needed, and thus
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the following lemma.

Lemma 3.1. Let t and q be two positive integers, where (tgl) < g < (t;Q). There exists an

ascending sequence {b;}!_, of length t where "\_ b; = q.

Proof. 1If ¢ = (tgl), we have ¢ = 22:1 1. If (tgl) < q < (tf), q can be written as ¢ =

Zf;i i+ (q— (;) ). Both cases give us the required ascending sequence. [l

We also need to define a decomposition of an (a, d)-EAT graph such that the weights of its
subgraphs form an ascending sequence. In this definition, we need the notion of an edge-induced
subgraph of a graph. Suppose £’ is a nonempty subset of £((G). The subgraph of G whose vertex
set is the set of end vertices of edges in £’ and whose edge set is F’ is called the subgraph of G
induced by E', denoted by G[E'] [5].

Definition 3.1. Ler G admit an (a,d)-EATL f and by, b, . .., b, be an ascending sequence of po-
sitive integers. An ascending weight decomposition (AWD) of G is a decomposition of G into
subgraphs Hy, Hs, ... Hy, where |E(H;)| = b;, 1 < i <, as a result of the following steps:

1. Denote by e; the edge with w(e;) = a+ (i — 1)d, where w(e) is the weight of an edge e under
f.

2. Define E(Hy) = {em | 1 < m < b1} and, fori > 2, E(H;) = {en | 22;11 by <m <
> b+ bil.

3. For 1 < 1 < t, define H; as a subgraph induced by the edge set E(H;), that is, H; =
G[E(H,)].

Now, we are ready to construct super ASD-antimagic labelings for a super (a, d)-EAT graph
G, where G is either the star K ,,, the path P, or the cycle (), through the following steps.

Algorithm 1 Super ASD-antimagic labeling for an (a, d)-EAT graph

1. Apply Lemma 3.1, to find an ascending sequence {b;}'_; of size ¢, where (tgl) < |E(G)] <
("+?) such that °°_, b; = |E(G)|.

2. Apply AWD to G and obtain ¢ subgraphs Hy, Ho, ..., H;, with |E(H;)| = b;.

3. Show that w(H;) < w(H;yq),forl <<t —1.

We shall utilize the following super (a, d)-EAT labelings for stars, paths, and cycles to obtain
their super ASD-antimagic labelings.

Theorem 3.1. [19] The star K, ,, has a super (a,d)-EATL if and only if one of the following
conditions is satisfied

i) de{0,1,2} andn > 1,

ii) d=3and1 <n <2.
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Theorem 3.2. [4] The path P,, n > 2, has a super (a,d)-EAT labeling if and only if d €
{0,1,2,3}.

Theorem 3.3. [3] The cycle C,, has a super (a,d)-EATL if and only if one of the following condi-
tions is satisfied

i) d € {0,2} andn > 3 is odd,
ii) d=1andn > 3.

The following super ASD-antimagic labelings for stars, paths, and cycles are constructed by
applying the steps in Algorithm 1 to graphs with super (a, d)-EAT labelings in Theorems 3.1, 3.2,
and 3.3.

Theorem 3.4. For n > 1, the star K, ,, is super ASD-antimagic.

Proof. Let V(K1) = {v,v; | 1 < i < n}, where v is the vertex of degree n and v;s are leaves,
while E(K;,) = {e; | 1 <i < n}. The super (a,d)-EATL of K, ,, f from the proof of Theorem
3.1isdefined as f(v) =1, f(v;) =i+ 1,1 <i <n,and f(e;) = n+ 1+ i. Applying Step 2 in
Algorithm 1, we obtain H; = K ,,, and so w(H;) < w(H;;1), for 1 <i <t — 1. Therefore, f is
also a super ASD-antimagic labeling of K ,,. [

H1 = [(1’1; U,’(H1>:]3
H2 = KLQ; w(H2)=31

H3 = K1’5; w(H3):111

Figure 5. A super (13, 2)-EATL and a super ASD-antimagic labeling on K7 g.

Figure 5 provides an example of a super (13, 2)-EATL of a star /; g. With the same labeling,

K g is also super ASD-antimagic with ascending subgraphs I, = K ;, Hy = K, and H3 =
K, 5 and weights w(H;) = 13, w(H,) = 31, w(Hs) = 111, respectively.

Theorem 3.5. For n > 2, the path P, is super ASD-antimagic.

Proof. Let P, : v1 —e; — vy — €3 — -+ — e,_1 — U,. The super (a,d)-EATL f for P, from the
proof of Theorem 3.2 is defined as f(v;) = i and f(e;) = n + 7. Applying Step 2 in Algorithm 1,
we obtain H; = Py, ;. Thus, w(H;) < w(H;41), for 1 <i <t — 1. Therefore, f is also a super
ASD-antimagic labeling of F,. [

Figure 6 illustrates an example of a super (13, 3)-EATL of path P,. With the same labeling, P,
is also super ASD-antimagic with ascending subgraphs H; = P,, Hy = Ps, and Hs = F; with
weights w(H;) = 13, w(Hs) = 32, w(Hs) = 114, respectively.
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H1 = P2, U,'(Hl> =13
H2 = P3, W(HQ) = 32
H3 = P6, W(Hg) =114

2 3 4 5 6 7 8 (9)
10 11 12 13 14 15 16 17

1
O
Figure 6. A super (13, 3)-EATL and a super ASD-antimagic labeling on Pj.

Theorem 3.6. For n > 3, the cycle C,, is super ASD-antimagic.

Proof. LetC,, vy —eg —vg —eg — -+ —€,_1 — U, — €, — v1. The super (a, d)-EATL f for C,
from the proof of Theorem 3.3 is defined as f(v;) = i, and f(e;) = 2n + 1 — i. Applying Step 2
in Algorithm 1, we obtain H; = P, .1, and so w(H;) < w(H;;1), for 1 <i <t — 1. Therefore, f
is also a super ASD-antimagic labeling of C,. [

vy €1 V] eg Ug 2161 9 8 g=n==81=3

Cs {bi}e, =1,2,5
€2 er 15 10
(%] U7 :> 3 7 Hl = P2, /ZU(HI) = 18
€3 €6 14 11 Hy= Py w(Hy) =37
H3 = P6; ’LU(Hg) =93
U4 €4 Us €5 Vg 4135126

Figure 7. A super (18, 1)-EATL and a super ASD-antimagic labeling on Csg.

Figure 7 gives an example of a super (18, 1)-EATL on Cy. This labeling is also a super ASD-
antimagic with H, = P, Hy = P3, and H3 = F;.

Note that for stars (Theorem 3.4), we can use any super (a, d)-EATL of stars to obtain a super
ASD-antimagic labeling, since the subgraphs obtained from AWD is obviously ASD. However,
for paths (Theorem 3.5) and cycles (Theorem 3.6), we have to use particular (a, d)-EATLs of paths
and cycles in order to ensure that the subgraphs obtained from AWD are ASD. In general, we can
not apply AWD to arbitrary (a, d)-EATL of a graph to obtain a super ASD-antimagic labeling since
it may not result in an ASD. As an example, consider Figure 8, where we have a (27, 3)-EATL of
a caterpillar 7. Applying AWD to 7', we obtain subgraphs H,, H,, ..., Hg which are not ASD,
since H, is not isomorphic to a proper subgraph of Hs.

Hence, we ask whether there exist methods other than AWD to obtain a super ASD-antimagic
labeling from a super (a, d)-EATL and propose the following open question.

Problem 1. Does a super (a,d)-EATL of a graph G always result in a super ASD-antimagic
labeling of G?

We conclude this section by considering ASD-antimagic labelings of complete graphs. Alavi
et. al. [2] proved that for a complete graph K, there is a natural ASD into stars, that is, H; = K ;,
forl1 <i:<n-—1.

Theorem 3.7. For n > 2, the complete graph K,, is super ASD-antimagic.
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T 2 6 10 14Q 160 18 22
24 28 35 390 Al 45
254 27 29 8 34 36 12 38 42 2044
1 5 15 19 23
26 307 31 32 °33 37 43
3 70 90 110 130 17 21
w(Hy) =27, w(Hy) =59; w(H;)=107; w(Hy) = 261;w(Hg) = 447

Figure 8. A super (27, 3)-EATL on a caterpillar that is not ASD-antimagic labeling.

Proof. Decompose K, into stars, that is H; = K;, for 1 < ¢ < ¢. Label the vertices using
{1,2,...,n}. Fori = 1, we set the label for H; as f(H;) = {1,2,n + 1}, so we have w(H;) =
n + 4. Next, for 2 < i < ¢, we set the label for H; as f(H;) = {r | 1 < r < i+ 1} U{s |
n+1+(2) <s<n+("5")}. Hence, we obtain w(H;) = ("1?) +i(n+1)+ (1) (i+1). Therefore,
K,, admits a super ASD-antimagic labeling. [

H] = [(171; ’U,r'(Hl) =10
H2 = KLQ; w(HQ) =23

H4 = K174; w(H4) =173
H5 = K175; 'lU(H5) =116

Figure 9. A super ASD-antimagic labeling on K.

Finally, we note that if a graph admits an ASD, it is reasonable to think that it also admits an
ASD-antimagic labeling. However, a general proof might be difficult to obtain. Therefore, we
boldly propose the following.

Conjecture 3.1. All ASD graphs are ASD-antimagic.

Recall Conjecture 1.1, where Alavi et al. conjectured that ”All graphs of positive size are
ASD”. Combining with Conjecture 3.1, we obtain the following.

Conjecture 3.2. All graphs of positive size are ASD-antimagic.
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