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Abstract

Let G be a simple and finite graph of order p and size q. The graph G is said to be edge magic
total, for short EMT, if there is a bijection λ : V (G) ∪ E(G) → {1, 2, . . . , p + q} such that
all edge sums λ(x) + λ(xy) + λ(y), xy ∈ E(G), are the same. If all edge sums are pairwise
distinct, then G is called edge antimagic total (EAT). Let t be a positive integer that satisfies(
t+1
2

)
≤ q <

(
t+2
2

)
. The graph G is said to have an ascending subgraph decomposition (ASD) if

G can be decomposed into t subgraphs H1, H2, . . . , Ht without isolated vertices such that Hi is
isomorphic to a proper subgraph of Hi+1 for 1 ≤ i ≤ t − 1. A graph that admits an ascending
subgraph decomposition is called an ASD graph. An ASD graph G is said to be ASD-antimagic
if there exists a bijection f : V (G) ∪ E(G) → {1, 2, . . . , p + q} such that all subgraph weights
w(Hi) =

∑
v∈V (Hi)

f(v) +
∑

e∈E(Hi)
f(e), 1 ≤ i ≤ t, are distinct. In this paper, we provide

constructions of ASD-antimagic graphs arising from EMT or EAT graphs.
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1. Introduction

Throughout this paper, G = (V,E) denotes a finite simple graph with nonempty vertex set
V (G) and nonempty edge set E(G). In 1970, Kotzig and Rosa [14] introduced the notion of a
magic total labeling as follows. A bijection λ : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} is
called an edge magic total labeling (EMTL) of G if there exists a constant k such that for any edge
xy of G, the edge sum of xy, also called the edge weight, is

λ(x) + λ(xy) + λ(y) = k.

If all the edge sums are distinct, then λ is called an edge antimagic total labeling (EATL) of G.
Furthermore, if the edge sums form an arithmetic sequence with the smallest sum a and difference
d, then λ is called an (a, d)-edge antimagic total labeling ((a, d)-EATL) of G, see [19]. Moreover,
if λ(V (G)) = {1, 2, . . . , |V (G)|}, then λ is called a super EMTL or a super EATL. Figure 1 shows
a super EMTL and a super EATL of the cycle C5.
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Figure 1. (a) A super EMTL of C5. (b) A super (10, 2)-EATL of C5.

In the last three years, many studies have been conducted on EMTL, EATL, and their appli-
cations. The results include the construction of super EMTL [7], the super EMTL of graphs with
certain degree sequences [10], and the application of EMTL in machine learning [8] and RSA
algorithms [12], while the application of EATL for RSA algorithms has been discussed in [13].

Since an edge can be seen as a K2 subgraph, the notion of EMTL and EATL can then be
generalized by considering the sum of labels in any subgraph. Let t be a positive integer and
H = {Hi ⊆ G, i = 1, 2, . . . , t} be a collection of t subgraphs of the graph G, where all Hi’s are
isomorphic to a graph H . The graph G is said to admit an H-decomposition if every edge in E(G)
belongs to exactly one Hi in H, see [9].

For a graph G that admits an H-decomposition, a bijection f : V (G)∪E(G) → {1, 2, . . . , |V (G)|+
|E(G)|} is called an H-magic total labeling of G if the weight of every subgraph Hi, denoted as
w(Hi), is a constant, where w(Hi) is the sum of all vertex and edge labels in Hi, i = 1, 2, . . . , t.
If all weights are distinct, then the labeling f is called an H-antimagic total labeling of G. Fur-
thermore, if the weights form an arithmetic progression starting from a with difference d, then f
is called an (a, d)-H-antimagic total labeling of G, see [11]. Further, we call an H-(anti)magic
graph for a graph admitting H-(anti)magic total labeling.
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Many studies have been conducted on the H-(anti)magic total labelings and their applications.
The results include the H-antimagic total labeling of the comb product graphs [1], the construction
of (a, d)-H-antimagic total labelings using the EATL of smaller graphs [6], forbidden subgraphs
of H-magic graphs [16], and the application of H-magic total labeling in combinatorial design
[20].

Another way of decomposing a graph was introduced by Alavi et al. in [2], where all subgraphs
are not isomorphic to each other. Let G be a graph of size q that satisfies

(
t+1
2

)
≤ q <

(
t+2
2

)
. The

graph G is said to have an ascending subgraph decomposition (ASD) if G can be decomposed into
t subgraphs H1, H2, . . . , Ht, all without isolated vertices, such that Hi is isomorphic to a proper
subgraph of Hi+1, for 1 ≤ i ≤ t− 1. In this case, we say that the graph is an ascending subgraph
decomposable (ASD) graph. Hence, there exists a unique t for each q, and so the number of
ascending subgraphs is restricted. However, there may be more than one way to decompose the
graph. In the same article, the following conjecture was proposed.

Conjecture 1.1. [2] Every graph of positive size has an ascending subgraph decomposition.

There are many families of graphs that have already been proven to be ASD (see [15]), but, in
general, Conjecture 1.1 remains open.

Motivated by the concept of H-magic and H-antimagic total labelings where all weights are
counted in subgraphs that are isomorphic to each other, this paper deals with the existence of magic
and antimagic labelings on ASD graphs, where a pair of subgraphs is not isomorphic. Recently,
ASD-based magic and antimagic labelings were introduced by Pancahayani, Simanjuntak, and
Uttunggadewa [17, 18]. The formal definitions for such labelings can be seen below.

Definition 1.1. [17] Let G be an ASD graph and H = {H1, H2, . . . , Ht} be a collection of t
ascending subgraphs of G. Let f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} be a bijection
of G. If there exists a constant k such that w(Hi) = k, for every i ∈ {1, 2, . . . , t}, then f is called
an ASD-magic labeling of G.

Definition 1.2. [18] Let G be an ASD graph and H = {H1, H2, . . . , Ht} be a collection of t
ascending subgraphs of G. Let f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} be a bijection
on G. If there exist H and f such that w(Hi) ̸= w(Hj) for every 1 ≤ i < j ≤ t, then G is called
to admit an ASD-antimagic labeling. If the vertices are labeled with the smallest numbers, i.e.,
f(V (G)) = {1, 2, . . . , |V (G)|}, then G is said to admit a super ASD-antimagic labeling. If f is a
super ASD-antimagic labeling and all weights form an arithmetics progression with the first term
a and difference d, then f is called a super (a, d)-ASD-antimagic labeling.

Pancahayani, Simanjuntak, and Uttunggadewa [17] characterized some ASD-magic graphs
such as stars, paths, and cycles. Pancahayani, Simanjuntak, and Uttunggadewa [18] also obtained
an upper bound for d in (a, d)-ASD-antimagic graphs and constructed (a, d)-ASD-antimagic la-
belings for some product graphs. In Figure 2, examples of ASD-magic and super ASD-antimagic
graphs are presented.

In this paper, we construct ASD-antimagic graphs from a ”connector” graph that admits an edge
magic total labeling (Section 2). We conclude by showing that some super (a, d)-edge antimagic
total labelings of stars, paths, and cycles are also super ASD-antimagic labelings (Section 3).
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Figure 2. (a) An ASD-magic labeling on P10. (b) A super ASD-antimagic labeling on C10.

2. Constructions based on an EMT graph

In this section, we construct ASD-antimagic graphs from a special EMT graph called a con-
nector. The construction involves a subdivision of an edge, defined as follows. A subdivision of an
edge uv in G is the insertion of new k vertices w1, w2, . . . , wk in uv accompanied by the joining of
the original edge endpoints with the new vertices to form new edges uw1, w1w2, . . . , wk−1wk, wkv.

Definition 2.1. Let G∗ be a connector, with E(G∗) = {e1, e2, . . . , et}. Define G as a family of
graphs constructed from G∗ by substituting some edges ei with subgraphs G∗[ei] obtained from at
least one of the following procedures:

A) subdivision of ei, or

B) identifying one end vertex of ei with a certain vertex of a connected graph,

in such a way that the following hold

i) for every i, i = 1, 2, . . . , t, either |V (G∗[ei])| + |E(G∗[ei])| = 2i + 1 or |V (G∗[ei])| +
|E(G∗[ei])| = 2i+ 3, and

ii) G∗[ei] is isomorphic to a proper subgraph of G∗[ej], for 1 ≤ i < j ≤ t.

From Definition 2.1 it is obvious that for each G∗, the corresponding G is an infinite family of
graphs. Moreover, the following observation holds.

Observation 2.1. Every graph G in G is ASD.

Figure 3 shows an example of a connector graph G∗ that is isomorphic to a cycle C3 and three
ASD graphs in the corresponding G. Note that G1 and G2 are ASD graphs, where |V (G∗[ei])| +
|E(G∗[ei])| = 2i + 1 for i = 1, 2, 3. The graph G3 is an ASD graph, where |V (G∗[ei])| +
|E(G∗[ei])| = 2i+ 3 for each i = 1, 2, 3.

It turns out that all graphs in G are not only ASD, but also ASD-antimagic when the corre-
sponding connector G∗ is EMT. To simplify the notation, denote the sum of the order of a graph G
and its size by σ(G), that is σ(G) = |V (G)|+ |E(G)|.
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G∗ ∼= C3
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Figure 3. (a) A connector graph G∗ isomorphic to a cycle C3. (b) The graph G1 derived from G∗ by subdividing e2
and e3. (c) The graph G2 derived from G∗ by identifying u1 with P2 and u3 with K1,2. (d) The graph G3 derived
from G∗ by subdividing e1, identifying u2 with K1,2, subdividing e3, and identifying e3 with K1,2.

Theorem 2.1. If G∗ is EMT, then every G in G is ASD-antimagic.

Proof. Let f be an EMTL of G∗.
For the case when σ(G∗[ei]) = 2i+1 for every i ≥ 1, the label set for G∗[e1] is {f(e1), f(u1), f(v1)},

and for i ≥ 2, the label set for G∗[ei] is {f(ei), f(ui), f(vi)}∪{σ(G∗)+
∑i−1

j=1 [σ(G
∗[ej])− 3]+m |

1 ≤ m ≤ σ(G∗[ei])− 3}.
For the case when σ(G∗[ei]) = 2i+3 for every i ≥ 1, the label set for G∗[e1] is {f(e1), f(u1), f(v1)}∪

{σ(G∗)+m | 1 ≤ m ≤ σ(G∗[e1])−3}, and for i ≥ 2, the label set for G∗[ei] is {f(ei), f(ui), f(vi)}∪
{σ(G∗) +

∑i−1
j=1 [σ(G

∗[ej])− 3] +m | 1 ≤ m ≤ σ(G∗[ei])− 3}.

Figure 4 provides labelings for the graphs in Figure 3 such that the connector graphs G∗ ∼= C3

is EMT, and G1, G2, G3 are ASD-antimagic.
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Figure 4. (a) An EMTL on G∗, (b) An ASD-antimagic labeling on G1, (c) An ASD-antimagic labeling on G2, (d) An
ASD-antimagic labeling on G3.

3. Constructions based on a super (a, d)-EAT graph

In this section, we construct ASD-antimagic labelings from (a, d)-EATLs of paths, stars, and
cycles. In our constructions, an ascending sequence with particular properties is needed, and thus
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the following lemma.

Lemma 3.1. Let t and q be two positive integers, where
(
t+1
2

)
≤ q <

(
t+2
2

)
. There exists an

ascending sequence {bi}ti=1 of length t where
∑t

i=1 bi = q.

Proof. If q =
(
t+1
2

)
, we have q =

∑t
i=1 i. If

(
t+1
2

)
< q <

(
t+2
2

)
, q can be written as q =∑t−1

i=1 i+ (q −
(
t
2

)
). Both cases give us the required ascending sequence.

We also need to define a decomposition of an (a, d)-EAT graph such that the weights of its
subgraphs form an ascending sequence. In this definition, we need the notion of an edge-induced
subgraph of a graph. Suppose E ′ is a nonempty subset of E(G). The subgraph of G whose vertex
set is the set of end vertices of edges in E ′ and whose edge set is E ′ is called the subgraph of G
induced by E ′, denoted by G[E ′] [5].

Definition 3.1. Let G admit an (a, d)-EATL f and b1, b2, . . . , bt be an ascending sequence of po-
sitive integers. An ascending weight decomposition (AWD) of G is a decomposition of G into
subgraphs H1, H2, . . . Ht, where |E(Hi)| = bi, 1 ≤ i ≤ t, as a result of the following steps:

1. Denote by ei the edge with w(ei) = a+(i−1)d, where w(e) is the weight of an edge e under
f .

2. Define E(H1) = {em | 1 ≤ m ≤ b1} and, for i ≥ 2, E(Hi) = {em |
∑i−1

j=1 bj < m ≤∑i−1
j=1 bj + bi}.

3. For 1 ≤ i ≤ t, define Hi as a subgraph induced by the edge set E(Hi), that is, Hi =
G[E(Hi)].

Now, we are ready to construct super ASD-antimagic labelings for a super (a, d)-EAT graph
G, where G is either the star K1,n, the path Pn, or the cycle Cn through the following steps.

Algorithm 1 Super ASD-antimagic labeling for an (a, d)-EAT graph
1. Apply Lemma 3.1, to find an ascending sequence {bi}ti=1 of size t, where

(
t+1
2

)
≤ |E(G)| <(

t+2
2

)
such that

∑t
i=1 bi = |E(G)|.

2. Apply AWD to G and obtain t subgraphs H1, H2, . . . , Ht, with |E(Hi)| = bi.
3. Show that w(Hi) < w(Hi+1), for 1 ≤ i ≤ t− 1.

We shall utilize the following super (a, d)-EAT labelings for stars, paths, and cycles to obtain
their super ASD-antimagic labelings.

Theorem 3.1. [19] The star K1,n has a super (a, d)-EATL if and only if one of the following
conditions is satisfied

i) d ∈ {0, 1, 2} and n ≥ 1,

ii) d = 3 and 1 ≤ n ≤ 2.
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Theorem 3.2. [4] The path Pn, n ≥ 2, has a super (a, d)-EAT labeling if and only if d ∈
{0, 1, 2, 3}.

Theorem 3.3. [3] The cycle Cn has a super (a, d)-EATL if and only if one of the following condi-
tions is satisfied

i) d ∈ {0, 2} and n ≥ 3 is odd,

ii) d = 1 and n ≥ 3.

The following super ASD-antimagic labelings for stars, paths, and cycles are constructed by
applying the steps in Algorithm 1 to graphs with super (a, d)-EAT labelings in Theorems 3.1, 3.2,
and 3.3.

Theorem 3.4. For n ≥ 1, the star K1,n is super ASD-antimagic.

Proof. Let V (K1,n) = {v, vi | 1 ≤ i ≤ n}, where v is the vertex of degree n and vis are leaves,
while E(K1,n) = {ei | 1 ≤ i ≤ n}. The super (a, d)-EATL of K1,n f from the proof of Theorem
3.1 is defined as f(v) = 1, f(vi) = i + 1, 1 ≤ i ≤ n, and f(ei) = n + 1 + i. Applying Step 2 in
Algorithm 1, we obtain Hi

∼= K1,bi , and so w(Hi) < w(Hi+1), for 1 ≤ i ≤ t− 1. Therefore, f is
also a super ASD-antimagic labeling of K1,n.

K1,8 :

1

2 3

4

567

8

9

17
16

15 14 13
12

1110
H1

∼= K1,1; w(H1)=13

H2
∼= K1,2; w(H2)=31

H3
∼= K1,5; w(H3)=111

Figure 5. A super (13, 2)-EATL and a super ASD-antimagic labeling on K1,8.

Figure 5 provides an example of a super (13, 2)-EATL of a star K1,8. With the same labeling,
K1,8 is also super ASD-antimagic with ascending subgraphs H1

∼= K1,1, H2
∼= K1,2, and H3

∼=
K1,5 and weights w(H1) = 13, w(H2) = 31, w(H3) = 111, respectively.

Theorem 3.5. For n ≥ 2, the path Pn is super ASD-antimagic.

Proof. Let Pn : v1 − e1 − v2 − e2 − · · · − en−1 − vn. The super (a, d)-EATL f for Pn from the
proof of Theorem 3.2 is defined as f(vi) = i and f(ei) = n + i. Applying Step 2 in Algorithm 1,
we obtain Hi

∼= Pbi+1. Thus, w(Hi) < w(Hi+1), for 1 ≤ i ≤ t − 1. Therefore, f is also a super
ASD-antimagic labeling of Pn.

Figure 6 illustrates an example of a super (13, 3)-EATL of path P9. With the same labeling, P9

is also super ASD-antimagic with ascending subgraphs H1
∼= P2, H2

∼= P3, and H3
∼= P6 with

weights w(H1) = 13, w(H2) = 32, w(H3) = 114, respectively.
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1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17

H1
∼= P2, w(H1) = 13

H2
∼= P3, w(H2) = 32

H3
∼= P6, w(H3) = 114

Figure 6. A super (13, 3)-EATL and a super ASD-antimagic labeling on P9.

Theorem 3.6. For n ≥ 3, the cycle Cn is super ASD-antimagic.

Proof. Let Cn : v1 − e1 − v2 − e2 − · · · − en−1 − vn − en − v1. The super (a, d)-EATL f for Cn

from the proof of Theorem 3.3 is defined as f(vi) = i, and f(ei) = 2n + 1 − i. Applying Step 2
in Algorithm 1, we obtain Hi

∼= Pbi+1, and so w(Hi) < w(Hi+1), for 1 ≤ i ≤ t− 1. Therefore, f
is also a super ASD-antimagic labeling of Cn.

C8 :
v1 v8

v7

v6v5v4

v3

v2 e1

e2

e3

e4 e5

e6

e7

e8 12

3

4 5 6

7

816

15

14

13 12

11

10

9 q = n = 8, t = 3
{bi}3i=1 = 1, 2, 5

H1
∼= P2; w(H1) = 18

H2
∼= P3; w(H2) = 37

H3
∼= P6; w(H3) = 93

Figure 7. A super (18, 1)-EATL and a super ASD-antimagic labeling on C8.

Figure 7 gives an example of a super (18, 1)-EATL on C8. This labeling is also a super ASD-
antimagic with H1

∼= P2, H2
∼= P3, and H3

∼= P6.
Note that for stars (Theorem 3.4), we can use any super (a, d)-EATL of stars to obtain a super

ASD-antimagic labeling, since the subgraphs obtained from AWD is obviously ASD. However,
for paths (Theorem 3.5) and cycles (Theorem 3.6), we have to use particular (a, d)-EATLs of paths
and cycles in order to ensure that the subgraphs obtained from AWD are ASD. In general, we can
not apply AWD to arbitrary (a, d)-EATL of a graph to obtain a super ASD-antimagic labeling since
it may not result in an ASD. As an example, consider Figure 8, where we have a (27, 3)-EATL of
a caterpillar T . Applying AWD to T , we obtain subgraphs H1, H2, . . . , H6 which are not ASD,
since H4 is not isomorphic to a proper subgraph of H5.

Hence, we ask whether there exist methods other than AWD to obtain a super ASD-antimagic
labeling from a super (a, d)-EATL and propose the following open question.

Problem 1. Does a super (a, d)-EATL of a graph G always result in a super ASD-antimagic
labeling of G?

We conclude this section by considering ASD-antimagic labelings of complete graphs. Alavi
et. al. [2] proved that for a complete graph Kn, there is a natural ASD into stars, that is, Hi

∼= K1,i,
for 1 ≤ i ≤ n− 1.

Theorem 3.7. For n ≥ 2, the complete graph Kn is super ASD-antimagic.
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T : 2
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41

22

45

25 4 27 29 8 34 36 12 38 42 20 44
1 5 15 19 23

26

3

30

7

31

9

32

11

33

13

37

17

43

21

w(H1) = 27; w(H2) = 59; w(H3) = 107;w(H4) = 174;w(H5) = 261;w(H6) = 447

Figure 8. A super (27, 3)-EATL on a caterpillar that is not ASD-antimagic labeling.

Proof. Decompose Kn into stars, that is Hi
∼= K1,i for 1 ≤ i ≤ t. Label the vertices using

{1, 2, . . . , n}. For i = 1, we set the label for H1 as f(H1) = {1, 2, n + 1}, so we have w(H1) =
n + 4. Next, for 2 ≤ i ≤ t, we set the label for Hi as f(Hi) = {r | 1 ≤ r ≤ i + 1} ∪ {s |
n+1+

(
i
2

)
≤ s ≤ n+

(
i+1
2

)
}. Hence, we obtain w(Hi) =

(
i+2
2

)
+ i(n+1)+

(
i
2

)
(i+1). Therefore,

Kn admits a super ASD-antimagic labeling.

K6 :
6

1

2

3

4

5

7

89
10
11
12

16
15 14 13

1718192021

H1
∼= K1,1; w(H1) = 10

H2
∼= K1,2; w(H2) = 23

H3
∼= K1,3; w(H3) = 43

H4
∼= K1,4; w(H4) = 73

H5
∼= K1,5; w(H5) = 116

Figure 9. A super ASD-antimagic labeling on K6.

Finally, we note that if a graph admits an ASD, it is reasonable to think that it also admits an
ASD-antimagic labeling. However, a general proof might be difficult to obtain. Therefore, we
boldly propose the following.

Conjecture 3.1. All ASD graphs are ASD-antimagic.

Recall Conjecture 1.1, where Alavi et al. conjectured that ”All graphs of positive size are
ASD”. Combining with Conjecture 3.1, we obtain the following.

Conjecture 3.2. All graphs of positive size are ASD-antimagic.
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