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Abstract

In 2010, Kim, Park and Sano studied the competition numbers of Johnson graphs. They gave the
competition numbers of J(n, 2) and J(n, 3). In this note, we consider the competition number of
J(n, 4).
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1. Introduction

The notion of a competition graph was introduced by Cohen [1] as a means of determining the
smallest dimension of ecological phase space. The competition graph C(D) of a digraph D is a
simple undirected graph which has the same vertex set as D and an edge between vertices x and y
if and only if there exists a vertex u ∈ D such that (x, u) and (y, u) are arcs ofD. For any graphG,
G together with sufficiently many isolated vertices is the competition graph of an acyclic digraph.
Roberts [7] defined the competition number k(G) of a graph G to be the smallest number k such
that G together with k isolated vertices is the competition graph of an acyclic digraph. Opsut [4]
showed that the computation of the competition number of a graph is an NP-hard problem. In the
study of competition graphs, it has been one of important problems to determine the competition
numbers for various graph classes. In [3], Kim, Park and Sano studied the competition numbers of
Johnson graphs. In particular, they gave the following results.
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Theorem 1.1 (See [3]). For n ≥ 4, we have k(J(n, 2)) = 2.

Theorem 1.2 (See [3]). For n ≥ 6, we have k(J(n, 3)) = 4.

They also asked about the exact value of the competition number of J(n, 4). In this note, we
give a partial answer to the question. Our result is the following.

Theorem 1.3. For n ≥ 8, we have k(J(n, 4)) ∈ {7, 8, 9}.

2. Preliminaries

Throughout this note, we use the notations given in [3]. We denote an n-set {1, . . . , n} by [n]
and the set of all d-subsets of n-set by

(
[n]
d

)
. The Johnson graph J(n, d) is an undirected graph

whose vertex set is {vX | X ∈
(
[n]
d

)
}, and two vertices vX1 and vX2 are adjacent if and only if

|X1 ∩X2| = d− 1. Since J(n, d) is isomorphic to J(n, n− d), we always assume n ≥ 2d.
For a digraph D, a sequence v1, . . . , vn of the vertex set V (D) is called an acyclic ordering of

D if (vi, vj) ∈ A(D) implies i < j. It is well known that a digraph D is acyclic if and only if there
exists an acyclic ordering of D.

For a digraph D and a vertex v of D, we define the out-neighborhood PD(v) of v in D to be
the set {w ∈ V (D) | (v, w) ∈ A(D)}. A vertex in the out-neighborhood of a vertex v in a digraph
D is called a prey of v in D.

For a graph G and a vertex v of G, we define the neighborhood NG(v) of v in G to be the set
{u ∈ V (G) | uv ∈ E(G)}. We also use NG(v) to stand for the subgraph induced by its vertices.

For a clique S of a graphG and an edge e ofG, we say e is covered by S if both of the endpoints
of e are contained in S. An edge clique cover of a graph G is a family of cliques such that each
edge of G is covered by some clique in the family. The edge clique cover number θE(G) of a
graph G is the minimum size of an edge clique cover of G. An edge clique cover of G is called a
minimum edge clique cover of G if its size is equal to θE(G). A vertex clique cover of a graph G is
a family of cliques such that each vertex of G is contained in some clique in the family. The vertex
clique cover number θV (G) of a graph G is the minimum size of a vertex clique cover of G.

A minimum edge clique cover of J(n, d) is given in [3] as follows. For each Y ∈
(

[n]
d−1

)
, we

define
SY = {vX | X = Y ∪ {j} for j ∈ [n] \ Y }.

Then {SY | Y ∈
(

[n]
d−1

)
} is the collection of cliques of maximum size. We denote it by Fn

d . Note
that Fn

d is an edge clique cover of J(n, d).

Lemma 2.1 (See Section 3 of [3]). We have θE(J(n, d)) =
(

n
d−1

)
, and Fn

d is a minimum edge
clique cover of J(n, d).

3. Main results

In this section, we give a lower bound for the competition number of J(n, d) and an upper
bound for the competition number of J(n, 4).

Lemma 3.1 (See Lemma 3 of [3]). We have θV (NJ(n,d)(x)) = d.
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Lemma 3.2 (See Theorem 4 of [3]). For any two adjacent vertices vX1 and vX2 of J(n, d), we
have |PD(vX1) \ PD(vX2)| ≥ d− 1.

Theorem 3.1. For n ≥ 2d ≥ 8, we have k(J(n, d)) ≥ 2d− 1.

Proof. We denote k(J(n, d)) by k. Then there exists an acyclic digraph D such that C(D) =
J(n, d) ∪ Ik, where Ik = {z1, z2, . . . , zk} is a set of isolated vertices.

Let x1, x2, . . . , x(nd), z1, z2, . . . , zk be an acyclic ordering of D. Put v1 = x(nd)
, v2 = x(nd)−1

and

v3 = x(nd)−2
. It follows from Lemma 3.1 that θV (NJ(n,d)(xi)) = d for 1 ≤ i ≤

(
n
d

)
. So, vi has at

least d distinct prey in D, that is,
|PD(vi)| ≥ d. (1)

Since x1, x2, . . . , x(nd), z1, z2, . . . , zk is an acyclic ordering of D, we have

PD(v1) ∪ PD(v2) ∪ PD(v3) ⊆ Ik ∪ {v1, v2}. (2)

First of all, we assume that v1 and v2 are not adjacent in J(n, d). Then v1 and v2 do not have a
common prey in D, that is,

PD(v1) ∩ PD(v2) = ∅. (3)

It follows from (1), (2) and (3) that

k + 1 ≥ |PD(v1) ∪ PD(v2)| = |PD(v1)|+ |PD(v2)| ≥ 2d.

So, we have k ≥ 2d− 1.
Next, we assume that v1 and v2 are adjacent in J(n, d). Then v1 and v2 have at least one

common prey in D, that is,
|PD(v1) ∩ PD(v2)| ≥ 1. (4)

Now we divide our consideration into four cases:

1. v1 and v3 are not adjacent, and v2 and v3 are not adjacent;
2. v1 and v3 are adjacent, and v2 and v3 are not adjacent;
3. v1 and v3 are not adjacent, and v2 and v3 are adjacent;
4. v1 and v3 are adjacent, and v2 and v3 are adjacent.

In the first case, we have

k + 2 ≥ |PD(v1) ∪ PD(v2) ∪ PD(v3)| (by (2))

= |PD(v3)|+ |PD(v1) \ PD(v2)|+ |PD(v2) \ PD(v1)|+ |PD(v1) ∩ PD(v2)|
≥ d+ d− 1 + d− 1 + 1 (by (1), Lemma 3.2 and (4))

= 3d− 1.

So, we have k ≥ 3d− 3.
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In the second case, we have

k + 2 ≥ |PD(v1) ∪ PD(v2) ∪ PD(v3)| (by (2))

= |PD(v3) \ PD(v1)|+ |PD(v2) \ PD(v1)|+ |PD(v1) \ PD(v2)|+ |PD(v1) ∩ PD(v2)|
≥ d− 1 + d− 1 + d− 1 + 1 (by Lemma 3.2 and (4))

= 3d− 2.

So, we have k ≥ 3d− 4.
In the third case, we have

k + 2 ≥ |PD(v1) ∪ PD(v2) ∪ PD(v3)| (by (2))

= |PD(v3) \ PD(v2)|+ |PD(v1) \ PD(v2)|+ |PD(v2) \ PD(v1)|+ |PD(v1) ∩ PD(v2)|
≥ d− 1 + d− 1 + d− 1 + 1 (by Lemma 3.2 and (4))

= 3d− 2.

So, we have k ≥ 3d− 4.
In the fourth case, we have

k + 2 ≥ |PD(v1) ∪ PD(v2) ∪ PD(v3)| (by (2))

≥ |PD(v3) \ PD(v2)|+ |PD(v2) \ PD(v1)|+ |PD(v1) \ PD(v3)|
= d− 1 + d− 1 + d− 1 (by Lemma 3.2)

= 3d− 3.

So, we have k ≥ 3d− 5.
Since d ≥ 4, it holds 3d− 5 ≥ 2d− 1. Therefore, we have k(J(n, d)) ≥ 2d− 1.

Now we give an order≺ on the vertex set of J(n, d) as follows. Take two distinct elements vX1

and vX2 in {vX | X ∈
(
[n]
d

)
}. Let X1 = {i1, . . . , id} and X2 = {j1, . . . , jd}, where i1 < · · · < id

and j1 < · · · < jd. Then we define vX1 ≺ vX2 if there exists t ∈ {1, . . . , d} such that is = js for
1 ≤ s ≤ t− 1 and it < jt.

Theorem 3.2. For n ≥ 8, we have k(J(n, 4)) ≤ 9.

Proof. We define a digraph D as follows:

V (D) = V (J(n, 4)) ∪ I9
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where I9 = {z1, . . . , z9}, and

A(D) =
n−4⋃
i=1

n−3⋃
j=i+1

n−2⋃
k=j+1

{(x, v{i,j,k+1,k+2}) | x ∈ S{i,j,k} ∈ Fn
4 }

∪
n−4⋃
i=1

n−3⋃
j=i+1

{(x, v{i,j+1,j+2,j+3}) | x ∈ S{i,j,n−1} ∈ Fn
4 }

∪
n−5⋃
i=1

n−4⋃
j=i+1

{(x, v{i,j+1,j+2,j+4}) | x ∈ S{i,j,n} ∈ Fn
4 }

∪
n−4⋃
i=1

{(x, v{i+1,i+2,i+3,i+4}) | x ∈ S{i,n−3,n} ∈ Fn
4 }

∪
n−6⋃
i=1

{(x, v{i+1,i+2,i+3,i+6}) | x ∈ S{i,n−1,n} ∈ Fn
4 }

∪ {(x, z8) | x ∈ S{n−5,n−1,n} ∈ Fn
4 }

∪
n−6⋃
i=1

{(x, v{i+1,i+2,i+4,i+6}) | x ∈ S{i,n−2,n} ∈ Fn
4 }

∪ {(x, z9) | x ∈ S{n−5,n−2,n} ∈ Fn
4 }

∪
n−5⋃
i=1

{(x, v{i+1,i+2,i+3,i+5}) | x ∈ S{i,n−2,n−1} ∈ Fn
4 }

∪
3⋃

i=1

{(x, zi) | x ∈ S{n−5+i,n−1,n} ∈ Fn
4 }

∪
2⋃

i=1

{(x, zi+3) | x ∈ S{n−5+i,n−2,n} ∈ Fn
4 }

∪
2⋃

i=1

{(x, zi+5) | x ∈ S{n−5+i,n−2,n−1} ∈ Fn
4 }.

It is easy to see that

Fn
4 = {S{i,j,k} | i = 1, . . . , n− 4; j = i+ 1, . . . , n− 3; k = j + 1, . . . , n− 2}
∪ {S{i,j,n−1}, S{i,j,n} | i = 1, . . . , n− 4; j = i+ 1, . . . , n− 3}
∪ {S{i,n−1,n}, S{i,n−2,n}, S{i,n−2,n−1} | i = 1, . . . , n− 5}
∪ {S{n−4,n−1,n}, S{n−3,n−1,n}, S{n−2,n−1,n}}
∪ {S{n−4,n−2,n}, S{n−3,n−2,n}} ∪ {S{n−4,n−2,n−1}, S{n−3,n−2,n−1}}.

By the definition of ≺, for x in the cliques in Fn
4 one can check that (x, y) ∈ A(D) if and

only if either x = vX and y = VY with X ≺ Y , or x = vX and y = zi with X ∈ S{n−4,n−1,n} ∪

245



www.ejgta.org

The competition numbers of Johnson graphs with diameter four | Kijung Kim

S{n−3,n−1,n}∪S{n−2,n−1,n}∪S{n−4,n−2,n}∪S{n−3,n−2,n}∪S{n−4,n−2,n−1}∪S{n−3,n−2,n−1}∪S{n−5,n−1,n}∪
S{n−5,n−2,n} and 1 ≤ i ≤ 9. Thus, we have C(D) = J(n, 4) ∪ I9. This completes the proof.

By Theorems 3.1 and 3.2, we have Theorem 1.3.
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