Electronic Journal of Graph Theory and Applications

The competition numbers of Johnson graphs with diameter four

Kijung Kim
Department of Mathematics, Pusan National University, Busan 46241, Republic of Korea
knukkj@pusan.ac.kr

Abstract

In 2010, Kim, Park and Sano studied the competition numbers of Johnson graphs. They gave the competition numbers of $J(n, 2)$ and $J(n, 3)$. In this note, we consider the competition number of $J(n, 4)$.

Keywords: competition graph, competition number, Johnson graph

Mathematics Subject Classification : 05C69, 05C75
DOI:10.5614/ejgta.2017.5.2.7

1. Introduction

The notion of a competition graph was introduced by Cohen [1] as a means of determining the smallest dimension of ecological phase space. The competition graph $C(D)$ of a digraph D is a simple undirected graph which has the same vertex set as D and an edge between vertices x and y if and only if there exists a vertex $u \in D$ such that (x, u) and (y, u) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of an acyclic digraph. Roberts [7] defined the competition number $k(G)$ of a graph G to be the smallest number k such that G together with k isolated vertices is the competition graph of an acyclic digraph. Opsut [4] showed that the computation of the competition number of a graph is an NP-hard problem. In the study of competition graphs, it has been one of important problems to determine the competition numbers for various graph classes. In [3], Kim, Park and Sano studied the competition numbers of Johnson graphs. In particular, they gave the following results.

[^0]Theorem 1.1 (See [3]). For $n \geq 4$, we have $k(J(n, 2))=2$.
Theorem 1.2 (See [3]). For $n \geq 6$, we have $k(J(n, 3))=4$.
They also asked about the exact value of the competition number of $J(n, 4)$. In this note, we give a partial answer to the question. Our result is the following.

Theorem 1.3. For $n \geq 8$, we have $k(J(n, 4)) \in\{7,8,9\}$.

2. Preliminaries

Throughout this note, we use the notations given in [3]. We denote an n-set $\{1, \ldots, n\}$ by $[n]$ and the set of all d-subsets of n-set by $\binom{[n]}{d}$. The Johnson graph $J(n, d)$ is an undirected graph whose vertex set is $\left\{v_{X} \left\lvert\, X \in\binom{[n]}{d}\right.\right\}$, and two vertices $v_{X_{1}}$ and $v_{X_{2}}$ are adjacent if and only if $\left|X_{1} \cap X_{2}\right|=d-1$. Since $J(n, d)$ is isomorphic to $J(n, n-d)$, we always assume $n \geq 2 d$.

For a digraph D, a sequence v_{1}, \ldots, v_{n} of the vertex set $V(D)$ is called an acyclic ordering of D if $\left(v_{i}, v_{j}\right) \in A(D)$ implies $i<j$. It is well known that a digraph D is acyclic if and only if there exists an acyclic ordering of D.

For a digraph D and a vertex v of D, we define the out-neighborhood $P_{D}(v)$ of v in D to be the set $\{w \in V(D) \mid(v, w) \in A(D)\}$. A vertex in the out-neighborhood of a vertex v in a digraph D is called a prey of v in D.

For a graph G and a vertex v of G, we define the neighborhood $N_{G}(v)$ of v in G to be the set $\{u \in V(G) \mid u v \in E(G)\}$. We also use $N_{G}(v)$ to stand for the subgraph induced by its vertices.

For a clique S of a graph G and an edge e of G, we say e is covered by S if both of the endpoints of e are contained in S. An edge clique cover of a graph G is a family of cliques such that each edge of G is covered by some clique in the family. The edge clique cover number $\theta_{E}(G)$ of a graph G is the minimum size of an edge clique cover of G. An edge clique cover of G is called a minimum edge clique cover of G if its size is equal to $\theta_{E}(G)$. A vertex clique cover of a graph G is a family of cliques such that each vertex of G is contained in some clique in the family. The vertex clique cover number $\theta_{V}(G)$ of a graph G is the minimum size of a vertex clique cover of G.

A minimum edge clique cover of $J(n, d)$ is given in [3] as follows. For each $Y \in\binom{[n]}{d-1}$, we define

$$
S_{Y}=\left\{v_{X} \mid X=Y \cup\{j\} \text { for } j \in[n] \backslash Y\right\} .
$$

Then $\left\{S_{Y} \left\lvert\, Y \in\binom{[n]}{d-1}\right.\right\}$ is the collection of cliques of maximum size. We denote it by \mathcal{F}_{d}^{n}. Note that \mathcal{F}_{d}^{n} is an edge clique cover of $J(n, d)$.

Lemma 2.1 (See Section 3 of [3]). We have $\theta_{E}(J(n, d))=\binom{n}{d-1}$, and \mathcal{F}_{d}^{n} is a minimum edge clique cover of $J(n, d)$.

3. Main results

In this section, we give a lower bound for the competition number of $J(n, d)$ and an upper bound for the competition number of $J(n, 4)$.

Lemma 3.1 (See Lemma 3 of [3]). We have $\theta_{V}\left(N_{J(n, d)}(x)\right)=d$.

Lemma 3.2 (See Theorem 4 of [3]). For any two adjacent vertices $v_{X_{1}}$ and $v_{X_{2}}$ of $J(n, d)$, we have $\left|P_{D}\left(v_{X_{1}}\right) \backslash P_{D}\left(v_{X_{2}}\right)\right| \geq d-1$.

Theorem 3.1. For $n \geq 2 d \geq 8$, we have $k(J(n, d)) \geq 2 d-1$.
Proof. We denote $k(J(n, d))$ by k. Then there exists an acyclic digraph D such that $C(D)=$ $J(n, d) \cup I_{k}$, where $I_{k}=\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$ is a set of isolated vertices.

Let $x_{1}, x_{2}, \ldots, x_{\binom{n}{d}}, z_{1}, z_{2}, \ldots, z_{k}$ be an acyclic ordering of D. Put $v_{1}=x_{\binom{n}{d}}, v_{2}=x_{\binom{n}{d}-1}$ and $v_{3}=x_{\binom{n}{d}-2}$. It follows from Lemma 3.1 that $\theta_{V}\left(N_{J(n, d)}\left(x_{i}\right)\right)=d$ for $1 \leq i \leq\binom{ n}{d}$. So, v_{i} has at least d distinct prey in D, that is,

$$
\begin{equation*}
\left|P_{D}\left(v_{i}\right)\right| \geq d \tag{1}
\end{equation*}
$$

Since $x_{1}, x_{2}, \ldots, x_{\binom{n}{d}}, z_{1}, z_{2}, \ldots, z_{k}$ is an acyclic ordering of D, we have

$$
\begin{equation*}
P_{D}\left(v_{1}\right) \cup P_{D}\left(v_{2}\right) \cup P_{D}\left(v_{3}\right) \subseteq I_{k} \cup\left\{v_{1}, v_{2}\right\} . \tag{2}
\end{equation*}
$$

First of all, we assume that v_{1} and v_{2} are not adjacent in $J(n, d)$. Then v_{1} and v_{2} do not have a common prey in D, that is,

$$
\begin{equation*}
P_{D}\left(v_{1}\right) \cap P_{D}\left(v_{2}\right)=\emptyset . \tag{3}
\end{equation*}
$$

It follows from (1), (2) and (3) that

$$
k+1 \geq\left|P_{D}\left(v_{1}\right) \cup P_{D}\left(v_{2}\right)\right|=\left|P_{D}\left(v_{1}\right)\right|+\left|P_{D}\left(v_{2}\right)\right| \geq 2 d
$$

So, we have $k \geq 2 d-1$.
Next, we assume that v_{1} and v_{2} are adjacent in $J(n, d)$. Then v_{1} and v_{2} have at least one common prey in D, that is,

$$
\begin{equation*}
\left|P_{D}\left(v_{1}\right) \cap P_{D}\left(v_{2}\right)\right| \geq 1 \tag{4}
\end{equation*}
$$

Now we divide our consideration into four cases:

1. v_{1} and v_{3} are not adjacent, and v_{2} and v_{3} are not adjacent;
2. v_{1} and v_{3} are adjacent, and v_{2} and v_{3} are not adjacent;
3. v_{1} and v_{3} are not adjacent, and v_{2} and v_{3} are adjacent;
4. v_{1} and v_{3} are adjacent, and v_{2} and v_{3} are adjacent.

In the first case, we have

$$
\begin{aligned}
k+2 & \geq\left|P_{D}\left(v_{1}\right) \cup P_{D}\left(v_{2}\right) \cup P_{D}\left(v_{3}\right)\right| \quad(\text { by }(2)) \\
& =\left|P_{D}\left(v_{3}\right)\right|+\left|P_{D}\left(v_{1}\right) \backslash P_{D}\left(v_{2}\right)\right|+\left|P_{D}\left(v_{2}\right) \backslash P_{D}\left(v_{1}\right)\right|+\left|P_{D}\left(v_{1}\right) \cap P_{D}\left(v_{2}\right)\right| \\
& \geq d+d-1+d-1+1 \quad(\text { by }(1), \text { Lemma } 3.2 \text { and }(4)) \\
& =3 d-1 .
\end{aligned}
$$

So, we have $k \geq 3 d-3$.

In the second case, we have

$$
\begin{aligned}
k+2 & \geq\left|P_{D}\left(v_{1}\right) \cup P_{D}\left(v_{2}\right) \cup P_{D}\left(v_{3}\right)\right| \quad(\text { by }(2)) \\
& =\left|P_{D}\left(v_{3}\right) \backslash P_{D}\left(v_{1}\right)\right|+\left|P_{D}\left(v_{2}\right) \backslash P_{D}\left(v_{1}\right)\right|+\left|P_{D}\left(v_{1}\right) \backslash P_{D}\left(v_{2}\right)\right|+\left|P_{D}\left(v_{1}\right) \cap P_{D}\left(v_{2}\right)\right| \\
& \geq d-1+d-1+d-1+1 \quad(\text { by Lemma } 3.2 \text { and }(4)) \\
& =3 d-2 .
\end{aligned}
$$

So, we have $k \geq 3 d-4$.
In the third case, we have

$$
\begin{aligned}
k+2 & \geq\left|P_{D}\left(v_{1}\right) \cup P_{D}\left(v_{2}\right) \cup P_{D}\left(v_{3}\right)\right| \quad(\text { by }(2)) \\
& =\left|P_{D}\left(v_{3}\right) \backslash P_{D}\left(v_{2}\right)\right|+\left|P_{D}\left(v_{1}\right) \backslash P_{D}\left(v_{2}\right)\right|+\left|P_{D}\left(v_{2}\right) \backslash P_{D}\left(v_{1}\right)\right|+\left|P_{D}\left(v_{1}\right) \cap P_{D}\left(v_{2}\right)\right| \\
& \geq d-1+d-1+d-1+1 \quad(\text { by Lemma 3.2 and }(4)) \\
& =3 d-2 .
\end{aligned}
$$

So, we have $k \geq 3 d-4$.
In the fourth case, we have

$$
\begin{aligned}
k+2 & \geq\left|P_{D}\left(v_{1}\right) \cup P_{D}\left(v_{2}\right) \cup P_{D}\left(v_{3}\right)\right| \quad(\text { by }(2)) \\
& \geq\left|P_{D}\left(v_{3}\right) \backslash P_{D}\left(v_{2}\right)\right|+\left|P_{D}\left(v_{2}\right) \backslash P_{D}\left(v_{1}\right)\right|+\left|P_{D}\left(v_{1}\right) \backslash P_{D}\left(v_{3}\right)\right| \\
& =d-1+d-1+d-1 \quad(\text { by Lemma 3.2 }) \\
& =3 d-3 .
\end{aligned}
$$

So, we have $k \geq 3 d-5$.
Since $d \geq 4$, it holds $3 d-5 \geq 2 d-1$. Therefore, we have $k(J(n, d)) \geq 2 d-1$.
Now we give an order \prec on the vertex set of $J(n, d)$ as follows. Take two distinct elements $v_{X_{1}}$ and $v_{X_{2}}$ in $\left\{v_{X} \left\lvert\, X \in\binom{[n]}{d}\right.\right\}$. Let $X_{1}=\left\{i_{1}, \ldots, i_{d}\right\}$ and $X_{2}=\left\{j_{1}, \ldots, j_{d}\right\}$, where $i_{1}<\cdots<i_{d}$ and $j_{1}<\cdots<j_{d}$. Then we define $v_{X_{1}} \prec v_{X_{2}}$ if there exists $t \in\{1, \ldots, d\}$ such that $i_{s}=j_{s}$ for $1 \leq s \leq t-1$ and $i_{t}<j_{t}$.

Theorem 3.2. For $n \geq 8$, we have $k(J(n, 4)) \leq 9$.
Proof. We define a digraph D as follows:

$$
V(D)=V(J(n, 4)) \cup I_{9}
$$

where $I_{9}=\left\{z_{1}, \ldots, z_{9}\right\}$, and

$$
\begin{aligned}
A(D) & =\bigcup_{i=1}^{n-4} \bigcup_{j=i+1}^{n-3} \bigcup_{k=j+1}^{n-2}\left\{\left(x, v_{\{i, j, k+1, k+2\}}\right) \mid x \in S_{\{i, j, k\}} \in \mathcal{F}_{4}^{n}\right\} \\
& \cup \bigcup_{i=1}^{n-4} \bigcup_{j=i+1}^{n-3}\left\{\left(x, v_{\{i, j+1, j+2, j+3\}}\right) \mid x \in S_{\{i, j, n-1\}} \in \mathcal{F}_{4}^{n}\right\} \\
& \cup \bigcup_{i=1}^{n-5} \bigcup_{j=i+1}^{n-4}\left\{\left(x, v_{\{i, j+1, j+2, j+4\}}\right) \mid x \in S_{\{i, j, n\}} \in \mathcal{F}_{4}^{n}\right\} \\
& \cup \bigcup_{i=1}^{n-4}\left\{\left(x, v_{\{i+1, i+2, i+3, i+4\}}\right) \mid x \in S_{\{i, n-3, n\}} \in \mathcal{F}_{4}^{n}\right\} \\
& \cup \bigcup_{i=1}^{n-6}\left\{\left(x, v_{\{i+1, i+2, i+3, i+6\}}\right) \mid x \in S_{\{i, n-1, n\}} \in \mathcal{F}_{4}^{n}\right\} \\
& \cup\left\{\left(x, z_{8}\right) \mid x \in S_{\{n-5, n-1, n\}} \in \mathcal{F}_{4}^{n}\right\} \\
& \cup \bigcup_{i=1}^{n-6}\left\{\left(x, v_{\{i+1, i+2, i+4, i+6\}}\right) \mid x \in S_{\{i, n-2, n\}} \in \mathcal{F}_{4}^{n}\right\} \\
& \cup\left\{\left(x, z_{9}\right) \mid x \in S_{\{n-5, n-2, n\}} \in \mathcal{F}_{4}^{n}\right\} \\
& \cup \bigcup_{i=1}^{n-5}\left\{\left(x, v_{\{i+1, i+2, i+3, i+5\}}\right) \mid x \in S_{\{i, n-2, n-1\}} \in \mathcal{F}_{4}^{n}\right\} \\
& \cup \bigcup_{i=1}^{3}\left\{\left(x, z_{i}\right) \mid x \in S_{\{n-5+i, n-1, n\}} \in \mathcal{F}_{4}^{n}\right\} \\
& \cup \bigcup_{i=1}^{2}\left\{\left(x, z_{i+3}\right) \mid x \in S_{\{n-5+i, n-2, n\}} \in \mathcal{F}_{4}^{n}\right\} \\
& \cup \bigcup_{i=1}^{2}\left\{\left(x, z_{i+5}\right) \mid x \in S_{\{n-5+i, n-2, n-1\}} \in \mathcal{F}_{4}^{n}\right\} .
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
& \mathcal{F}_{4}^{n}=\left\{S_{\{i, j, k\}} \mid i=1, \ldots, n-4 ; j=i+1, \ldots, n-3 ; k=j+1, \ldots, n-2\right\} \\
& \cup\left\{S_{\{i, j, n-1\}}, S_{\{i, j, n\}} \mid i=1, \ldots, n-4 ; j=i+1, \ldots, n-3\right\} \\
& \cup\left\{S_{\{i, n-1, n\}}, S_{\{i, n-2, n\}}, S_{\{i, n-2, n-1\}} \mid i=1, \ldots, n-5\right\} \\
& \cup\left\{S_{\{n-4, n-1, n\}}, S_{\{n-3, n-1, n\}}, S_{\{n-2, n-1, n\}}\right\} \\
& \cup\left\{S_{\{n-4, n-2, n\}}, S_{\{n-3, n-2, n\}}\right\} \cup\left\{S_{\{n-4, n-2, n-1\}}, S_{\{n-3, n-2, n-1\}}\right\} .
\end{aligned}
$$

By the definition of \prec, for x in the cliques in \mathcal{F}_{4}^{n} one can check that $(x, y) \in A(D)$ if and only if either $x=v_{X}$ and $y=V_{Y}$ with $X \prec Y$, or $x=v_{X}$ and $y=z_{i}$ with $X \in S_{\{n-4, n-1, n\}} \cup$
$S_{\{n-3, n-1, n\}} \cup S_{\{n-2, n-1, n\}} \cup S_{\{n-4, n-2, n\}} \cup S_{\{n-3, n-2, n\}} \cup S_{\{n-4, n-2, n-1\}} \cup S_{\{n-3, n-2, n-1\}} \cup S_{\{n-5, n-1, n\}} \cup$ $S_{\{n-5, n-2, n\}}$ and $1 \leq i \leq 9$. Thus, we have $C(D)=J(n, 4) \cup I_{9}$. This completes the proof.

By Theorems 3.1 and 3.2, we have Theorem 1.3.

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2017R1D1A3B03031349).

References

[1] J.E. Cohen, Interval graphs and food webs: a finding and a problem, Document 17696-PR, RAND Corporation, Santa Monica, CA, 1968.
[2] R.D. Dutton and R.C. Brigham, A characterization of competition graphs, Discrete Appl. Math. 6 (1983), 315-317.
[3] S.-R. Kim, B. Park and Y. Sano, The competition numbers of Johnson graphs, Discussiones Mathematicae Graph Theory 30 (2010), 449-459.
[4] R.J. Opsut, On the computation of the competition number of a graph, SIAM J. Algebraic Discrete Methods 3 (4) (1982), 420-428.
[5] B. Park and Y. Sano, The competition numbers of Hamming graphs with diameter at most three, J. Korean Math. Soc. 48 (4) (2011), 691-702.
[6] B. Parkand Y. Sano, The competition numbers of ternary Hamming graphs, Appl. Math. Lett. 24 (2011), 1608-1613.
[7] F.S. Roberts, Food webs, competition graphs, and the boxicity of ecological phase space, Theory and applications of graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976), pp. 477-490. Lecture Notes in Math., Vol. 642, Springer, Berlin, 1978.

[^0]: Received: 22 December 2015, Revised: 22 August 2017, Accepted: 8 September 2017.

