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Abstract
A broadcast on a connected graph G is a function f : V (G) → {0, 1, ..., diam(G)} such that
f(v) ≤ e(v) (the eccentricity of v) for all v ∈ V . If dG(u, v) ≥ f(u)+f(v) for any pair of vertices
u, v with f(u) > 0 and f(v) > 0, the broadcast is said to be boundary independent.

We show that the maximum weight αbn(G) of a boundary independent broadcast can be bounded
in terms of the independence number α(G), and prove that the maximum boundary independent
broadcast problem is NP-hard. We investigate bounds on αbn(T ) when T is a tree in terms of its
order and the number of vertices of degree at least 3, and determine a sharp upper bound on αbn(T )
when T is a caterpillar, giving αbn(T ) exactly for certain families of caterpillars. We conclude by
describing a polynomial-time algorithm to determine αbn(T ) for a given tree T .
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1. Introduction

There are several methods by which the concept of independent sets may be generalized to
broadcast independence. If we require that no broadcasting vertex hears another, we obtain the defi-
nition of cost independent broadcasts introduced by Erwin in [6], which we refer to as hearing inde-
pendent, abbreviated h-independent. The definition of boundary independent (or bn-independent)
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broadcasts, in which no broadcasts overlap on edges, was introduced by Neilson [16] and Mynhardt
and Neilson [13] as an alternative to hearing independence.

The maximum cost of a boundary independent broadcast on a given graph G is referred to
as its boundary independence number, denoted αbn(G). For a given integer k ≥ 0, the problem
of determining whether αbn(G) ≥ k is called the maximum bn-independent broadcast problem.
The hearing independence number αh(G) and the maximum h-independent broadcast problem are
defined similarly.

As any boundary independent broadcast is hearing independent, it follows from the defi-
nitions that αbn(G) ≤ αh(G) for all graphs G. In [13], Mynhardt and Neilson showed that
αh(G)/αbn(G) < 2, and that this bound is asymptotically best possible. They posed the prob-
lem of investigating the ratio αbn(G)/α(G) in [15].

Problem 1.1. Is it true that αbn(G) < 2α(G) for any graph G?

It was shown in [13] that αbn(G) ≤ n − 1 for all graphs G of order n, with equality if and
only if G is a path or a generalized spider, a tree with exactly one vertex of degree greater than 2.
It is easily observed that α(G) ≤ n− δ(G), where δ(G) denotes the minimum degree among the
vertices of G. In [14], Mynhardt and Neilson asked whether a similar inequality existed for the
maximum boundary independence number.

Problem 1.2. Show that αbn(G) ≤ n− δ(G) for any graph G of order n.

For any tree T , the bound in Problem 1.2 follows immediately from the bound αbn(T ) ≤ n− 1
and the fact that δ(T ) = 1.

Broadcast definitions and known results are presented in Section 2. In Section 3, we show that
αbn(G) < 2α(G) for all G, solving Problem 1.1. We further resolve Problem 1.2 by showing that
αbn(G) ≤ n− δ(G) for any graph G.

In Section 4, by considering a transformation from independent sets to boundary independent
broadcasts on graphs, we observe that determining whether αbn(G) ≥ k for a given integer k is
NP-Complete. In Section 5, we investigate the maximum boundary independence number of trees
and determine αbn(G) exactly for families of caterpillars.

We continue our study of maximum boundary independence broadcasts in trees in Section 6.
Using a method similar to the proof technique employed by Bessy and Rautenbach in [1], we
derive an O(n9) time algorithm to determine αbn(T ) for a given tree T .

Open problems and directions for further research are discussed in Section 7.

2. Definitions and Background

Erwin [6] defined a broadcast on a nontrivial connected graph G as a function f : V (G) →
{0, 1, ..., diam(G)} such that f(v) is at most the eccentricity e(v) for all vertices v. We say a vertex
v is broadcasting if f(v) ≥ 1, and that f(v) is the strength of f from v. The cost or weight of f is
σ(f) =

∑
v∈V (G) f(v).

Given a broadcast f on G and a broadcasting vertex v, a vertex u hears f from v if dG(u, v) ≤
f(v). We define the f -neighbourhood of v, denoted by Nf (v), as the set of all vertices which hear
f from v (including v itself).
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The f -private neighbourhood of v, denoted by PNf (v), consists of those vertices that hear
f only from v. The f -boundary of v is Bf (v) = {u ∈ Nf (v) | d(u, v) = f(v)}. The f -private
boundary PBf (v) is defined analogously. In particular, PBf (v) = PNf (v) ∩ Bf (v). If u ∈
Nf (v)\Bf (v), v is said to overdominate u by k, where k = f(v)− dG(u, v). A vertex which does
not broadcast or hear f from any broadcasting vertex is undominated.

Throughout this paper, we partition the set of broadcasting vertices V +
f into

V 1
f = {v ∈ V (G) | f(v) = 1} and V ++

f = {v ∈ V (G) | f(v) > 1}. We denote the set of
undominated vertices by Uf . A broadcast f is dominating if Uf = ∅. The broadcast domination
number, γb(G), is the minimum weight of such a broadcast. An overview of broadcast domination
in graphs is given by Henning, MacGillivray, and Yang in [8].

We say an edge e = uv hears f or is covered by w ∈ V +
f if u, v ∈ Nf (w) and at least one

endpoint does not lie on the f -boundary of w. If no such vertex w exists, then e is uncovered. The
set of uncovered edges is denoted UE

f .
An independent set on a graph G is a set of pairwise nonadjacent vertices. The minimum

cardinality of a maximal independent set, called the independent domination number of G, is
denoted i(G). A broadcast f is hearing independent if x /∈ Nf (v) for any x, v ∈ V +

f . It is
boundary independent if Nf (v)\Bf (v) ⊆ PNf (v) for all v ∈ V +

f .

v1 uv2 w1 w2

Figure 1: A boundary independent broadcast f on a tree. Vertices v1 and v2 broadcast at strengths 1 and 2, respectively.
The vertex v2 overdominates u by 1, whereas w1 and w2 are undominated.

Although efficient broadcast domination was shown to be solvable in polynomial time for every
graph in [7], the complexity of hearing independence was unknown even for trees until an efficient
algorithm was found by Bessy and Rautenbach in [1].

Theorem 2.1. [1] For any tree T of order n, αh(T ) can be determined in O(n9) time.

Hearing independence was further studied by Bessy and Rautenbach [2, 3] and by Dunbar et al.
[5]. The more recent study of boundary independent broadcasts was continued by Mynhardt and
Neilson in [12, 14, 15] and by Marchessault and Mynhardt in [11]. For terminology and general
concepts in graphs theory not defined in this paper, see Chartrand, Lesniak, and Zhang [4].

3. Upper and Lower Bounds on αbn(G)

Our focus in this section is to establish bounds on αbn(G) for general graphs, and determine
parameters comparable to αbn to place the parameter within a chain of inequalities.
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In [3], Bessy and Rautenbach found that αh(G) < 4α(G), adapting a proof technique used
by Neilson [16] to show that αh(G) < 2αbn(G). Mynhardt and Neilson further studied the ratio
αbn(G)
α(G)

in [15] and asked whether it can be shown that αbn(G)
α(G)

< 2 for all graphs G.

Theorem 3.1. For any graph G, αbn(G) < 2α(G).

Proof. Let f be an αbn-broadcast on G. If V +
f = V 1

f , V +
f is an independent set, so assume there

exists v such that f(v) ≥ 2. Let u ∈ Bf (v) and consider a subgraph Tu consisting of u and unique
geodesics from u to each vertex in S = {x ∈ V +

f : u ∈ Bf (x)}, the set of all broadcasting vertices
heard by u (if u ∈ PBf (v), S = {v}). Since no edge can be covered by two different broadcasts,
Tu is an induced path or spider, hence |V (Tu)| = 1 +

∑
w∈S

f(w).

Consider a proper two-coloring of Tu and define a new boundary independent broadcast by
deleting all broadcasts from the leaves of Tu and adding strength-one broadcasts from each vertex
in the color set of highest cardinality (if they have equal cardinality, select one arbitrarily).

Since broadcasts overlap only on boundaries, the broadcasting vertices of the resulting bn-
independent broadcast form an independent set of cardinality at least |V (Tu)|/2. Repeating the
process until no vertices broadcasting at strength greater than 1 remain yields an independent set
on G. Since |V (Tu)| <

∑
w∈S

f(w), it follows that αbn(G)/2 < α(G).

As αbn(G) ≤ αh(G) for any graph G, Bessy and Rautenbach’s bound now follows easily from
Neilson’s result and Theorem 3.1.

Corollary 3.2. For any graph G, αh(G) < 4α(G).

Let δ(G) denote the minimum degree of G. It is easy to see that α(G) ≤ n− δ(G), as the
inclusion of any vertex to an independent set excludes its neighbours. We determine the analogous
result for maximum boundary independence, thereby solving an open problem posed in [14].

Theorem 3.3. For any graph G of order n, αbn(G) ≤ n− δ(G).

Proof. The result is clear if |V (G)| = 1, so assume the theorem holds for all graphs G such that
|V (G)| ≤ n − 1 and consider a graph G of order n. Let f be an αbn-broadcast on G with |V 1

f |
maximum. For any v ∈ V ++

f , PBf (v) = ∅, otherwise a new boundary independent broadcast of
equal weight could be constructed by reducing f(v) by 1, and broadcasting at strength 1 from a
vertex in the f -private boundary of v.

For some v ∈ V +
f , consider the graph G′ = G−PNf (v) of order n′, and let fG′ be f restricted

to G′. By induction, σ(fG′) ≤ αbn(G
′) ≤ n′ − δ(G′), hence αbn(G) = σ(fG′) + f(v) ≤ f(v) +

n′ − δ(G′).
Consider a vertex u of minimum degree in G′. First, suppose u ∈ Bf (v) and let k = |PNf (v)∩

NG(u)|. Let P be a u−v geodesic in G. Since P has length f(v) and u is adjacent to k−1 vertices
in PNf (v)−V (P ), we have that k−1+f(v) ≤ |PNf (v)|. In particular, if k+f(v) = |PNf (v)|+1,
then either PNf (v) consists of a path on f(v) vertices (and thus d(v) = 1), or f(v) = 2 and
dG(v) = k. In either case, since u hears more than one broadcasting vertex under f , δ(G) < dG(u).
Thus,

αbn(G) ≤ f(v) + n′ − δ(G′) ≤ f(v) + n′ − dG(u) + k ≤ n+ 1− dG(u) ≤ n− δ(G).
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Otherwise, if k + f(v) ≤ |PNf (v)|,

αbn(G) ≤ f(v) + n′ − dG(u) + k ≤ n− δ(G).

Finally, if u /∈ Bf (v), then dG(u) = dG′(u), hence δ(G) ≤ δ(G′) and αbn(G) ≤ n − δ(G′) ≤
n− δ(G) as desired.

4. The Hardness of Determining αbn(G)

Given a graph G and a positive integer k, we may verify that a broadcast f on G of cost at least k
is boundary independent in polynomial time by checking that f(u)+f(v) ≤ dG(u, v) for every pair
of distinct broadcasting vertices u, v ∈ V +

f . It follows that the maximum bn-independent broadcast
problem is in NP. We proceed to show that the problem is NP-complete by a transformation from
the independent set problem on G, which was shown to be NP-complete by Karp [10], to the
maximum bn-independent broadcast problem on a corresponding graph CG.

The corona G
⊙

H of graphs G and H is constructed from G and n = |V (G)| copies of H by
joining the ith vertex in G by edges to every vertex in the ith copy of H . Let CG = G

⊙
K1.

Figure 2: The construction of the corona K4

⊙
K1.

Proposition 4.1. Let G be a connected graph on n ≥ 2 vertices and let CG = G
⊙

K1. Then
αbn(CG) = n+ α(G).

Proof. Let l1, ..., ln be a labeling of the leaves of CG, and let v1, ..., vn be a labeling of the remaining
vertices such that li is adjacent to vi for all i. Let S ⊆ {v1, ..., vn} be a maximum independent set
on the subgraph of CG corresponding to G.

Define a broadcast f on CG by

f(u) =


2, if u = li for some i and vi ∈ S,

1, if u = li for some i and vi /∈ S,

0, otherwise.

Then
∑

u f(u) = n+ α(G). Since only leaves broadcast, and since dCG
(li, lj) ≤ f(li) + f(lj) for

any pair of leaves li ̸= lj , f is boundary independent. Therefore αbn(CG) ≥ n+ α(G).
To show that αbn(CG) ≤ n + α(G), let f be an αbn-broadcast on CG. If a vertex vi is broad-

casting, the bn-independent broadcast f ′ on CG defined by f ′(li) = f(vi) + 1, f ′(vi) = 0, and
f ′(u) = f(u) otherwise has greater cost than f , a contradiction. It follows that V +

f ⊆ {l1, ..., ln}.
Suppose some leaf li broadcasts at strength k ≥ 3 under f . Since f(li) ≤ e(li), there exist

at least k − 2 leaves which hear li from a distance greater than 2. Define a new maximum bn-
independent broadcast f ′ by
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f ′(li) =


f(li), if f(li) ∈ {1, 2},
2, if f(li) = k > 2,

1, if f(li) = 0.

and consider R ⊆ {v1, ..., vn}, where vi ∈ R if and only if f ′(li) = 2. Two vertices adjacent to
leaves broadcasting at strength 2 cannot be adjacent, hence R is an independent set on the subgraph
of CG corresponding to G. Since every leaf broadcasts at strength 1 or 2 under f ′, we have that
|R| = αbn(CG)− n. Therefore αbn(CG) ≤ n+ |R| ≤ n+ α(G).

Corollary 4.2. Let G be a graph and k a positive integer. The problem of deciding whether
αbn(G) ≥ k is NP-complete.

Proof. We have already observed that the maximum bn-independent broadcast problem is NP. As
the transformation described in Proposition 4.1 can be carried out in polynomial time, the problem
is NP-complete.

It follows that for any graph class C for which G ∈ C implies CG ∈ C, if the independent set
problem is known to be NP-complete for all graphs in C, then so is the maximum bn-independent
set problem.

Graph classes for which the independent set problem is known to be NP-complete are listed
in [17]. In particular, the maximum bn-independent set problem is NP-complete for planar and
toroidal graphs, graphs with maximum degree ∆ ∈ {3, 4, 5, 6}, triangle-free and Cn-free graphs
for n ∈ {4, 5, 6}, Kn-free graphs for n ∈ {4, 6, 7}, and house-free graphs.

5. Trees

Let T be a tree. Its branch-leaf representation BL(T ), also known as the homeomorphic reduc-
tion of T , is obtained by successively removing a vertex of degree 2 and adding an edge between its
two neighbours until no such vertices remain. Deleting all leaves yields the branch representation
of T , denoted B(T ).

T BL(T ) B(T )

v vv

Figure 3: The branch-leaf representation and branch representation of a tree T .

We partition the vertices of T into sets BT , LT , and τT , where BT denotes the set of branch
vertices of T , LT the set of leaves, and τT the set of vertices of degree 2, called the trunks of T .
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We further define a subset RT of BT consisting of branch vertices adjacent to at most one leaf in
BL(T ). In other words, a branch vertex b belongs to RT if there exists at most one leaf l ∈ LT

such that for every b′ ∈ BT − {b}, the unique b′ − l path contains b. In Figure 3 above, |BT | = 3
and RT = {v}.

Maximum boundary independent broadcasts on trees were studied by Neilson in [16], who
determined that αbn(T ) ≤ n − |BT | + |RT | for any tree T with BT ̸= ∅. Neilson asked whether
this upper bound could be improved to αbn(T ) ≤ n − |BT | + α(T [RT ]), where T [RT ] is the
subgraph of T induced by RT .

A caterpillar is a tree with a diametrical path D such that every vertex lies on D or is adjacent
to a vertex on D. We proceed to show that αbn(C) ≤ n − |BC | + α(C[RC ]) for all caterpillars
C, and determine αbn(C) exactly for certain subclasses of caterpillars. Observe that if C is a
caterpillar, C[RC ] is a path or a forest of paths.

The following lemma will be useful throughout this section.

Lemma 5.1. [16] If f is an αbn-broadcast on a tree T , no leaf of T hears a broadcast from any
non-leaf vertex.

In particular, if f is a maximum boundary independent broadcast on a caterpillar, only leaves
and trunks broadcast.

Given a caterpillar C, its spine is an (arbitrarily chosen) diametrical path. Label the leaves of C
as l1, ..., lm such that l1 and lm are the endpoints the spine and for all i ≤ j, dC(l1, li) ≤ dC(l1, lj).
Call l2, ..., lm−1 the inner leaves of C.

Lemma 5.2. Let f be an αbn-broadcast on a caterpillar C such that |V 1
f | is maximized. Then

l1, lm ∈ V +
f .

Proof. Suppose not. If l1 ∈ Nf (v) for some v ∈ V +
f , define a new broadcast f ′ by f ′(v) =

f(v − 1), f ′(l1) = 1, and f ′(w) = f(w) for all w ̸= v, l1. If some vertex u does not hear f ′,
broadcasting at strength 1 from u produces a boundary independent broadcast of greater cost than
f , a contradiction. Therefore f ′ is an αbn-broadcast on C. By Lemma 5.1, v is a leaf, hence
dC(l1, v) ≥ 2 and so v /∈ V 1

f . But then |V 1
f ′ | > |V 1

f |, a contradiction.
It follows that l1 ∈ V +

f . Similarly, lm ∈ V +
f .

Theorem 5.3. If C is a caterpillar, then αbn(C) ≤ n− |BC |+ α(C[RC ]).

Proof. Let f be an αbn-broadcast on C such that |V 1
f | is maximized, and let li be an inner leaf of

C adjacent to a branch vertex bi. If f(li) ≥ 3, then since l1 and lm are broadcasting, li covers at
least 2(f(li)− 1) edges on the spine.

If f(li) is odd, let f ′ be a broadcast defined by f ′(li) = 1, f ′(v) = 1 for all v at an even distance
from li, and f ′(v) = f(v) for all v /∈ Nf [li].

If f(li) is even, define f ′ by f ′(li) = 2, f ′(v) = 1 for all v at odd distance at least 3 from li,
and f ′(v) = f(v) for all v /∈ Nf [li].

Figure 4 illustrates the construction of f ′.
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43

1

111 1

2

f f

f ′ f ′

Figure 4: The odd and even cases.

It follows that f ′ is a boundary independent broadcast on C such that σ(f ′) = σ(f) and |V 1
f ′ | >

|V 1
f |, a contradiction. Thus, f(li) ≤ 2 for each inner leaf li. Since f is boundary independent, the

set of branch vertices adjacent to leaves that broadcast at strength 2 must form an independent set.
By Lemma 5.1, no branch vertices broadcast under f . Let C ′ denote the subgraph of C induced

by removing all inner leaves and branch vertices, and let fC′ denote the restriction of f to C ′. Since
fC′ is boundary independent,

σ(fC′) ≤ αbn(C
′) ≤ |V (C ′)| − δ(C ′) = |V (C ′)| − 1.

Taking the sum over all broadcasting vertices, we find that

αbn(C) ≤ (|V (C ′)| − 1) + (LC − 2) + α(C[RC ]) ≤ n− |BC |+ α(C[RC ]).

Corollary 5.4. Let C be a caterpillar with |V (C)| ≥ 3.

i. If τC = ∅, then αbn(C) = |LC |+ α(C[RC ]).

ii. If C has no two adjacent trunks and no vertices of degree 3, then αbn(C) = |LC |+ |τC |.

Proof. Suppose τC = ∅, so that every vertex of C is either a branch vertex or a leaf. By Theorem
5.3, αbn(C) ≤ n−|BC |+α(C[RC ]) = |LC |+α(C[RC ]). Observe that C[RC ] is a forest of paths,
and let S be a maximum independent set of C[RC ]. Define a broadcast f on C by

f(v) =


2 if v ∈ LT and v is adjacent to a vertex in S
1 if v ∈ LT and v is not adjacent to a vertex in S
0 if v /∈ LT .

As only leaves broadcast, two broadcasts from li and lj may overlap only if one or both vertices
broadcast at strength 2. Suppose they do. Without loss of generality, assume f(li) = 2. Let bi be
the neighbour of li in S. But then since bi has only one leaf, f(lj) = 2 and bj ∈ S, hence
d(li, lj) ≥ 4. It follows that f is a boundary independent broadcast on C. Thus, σ(f) = |LC | +
α(C[RC ]) ≤ αbn(C).
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Suppose instead that C has no two adjacent trunks and no vertices of degree 3. Since RC = ∅,
αbn(C) ≤ n− |BC |+ α(C[RC ]) = |LC |+ τC by Theorem 5.3. Define a broadcast f on C by

f(v) =

{
1 if v ∈ LC or v ∈ τC
0 otherwise.

By definition, no two broadcasting vertices are adjacent. It follows that f is a boundary inde-
pendent broadcast, hence σ(f) = |LC |+ |τC | ≤ αbn(C).

6. A polynomial time algorithm for trees

In Section 4, we found that the problem of determining the cost of a bn-independent broadcast
on a general graph G is NP-complete. However, the complexity of boundary independence in trees
is unknown.

In [1], Bessy and Rautenbach proved that the hearing independence number αh(T ) can be
determined for a tree T in O(n9) time. In this chapter, we show that their algorithm can be modified
to determine the boundary independence number αbn(T ) in O(n9) time.

A rooted tree (T, r) is a tree in which a distinguished vertex r serves as a point of reference for
all vertices of T . A vertex v is said to be a descendant of u if u lies along the unique r− v path, in
which case u is an ancestor of v. The descendants adjacent to u are known as the children of u.

6.1. Definitions and Notation
Let T be a tree of order n ≥ 3 in which an arbitrary non-leaf vertex r is chosen to be the root.

For each u ∈ V (T ), fix an arbitrary linear order on its children. If v1, ..., vk are the children of u
in this linear order, define Tu,i as the subtree of T induced by u and all vertices w such that the
unique u− w paths contains one of v1, ..., vi (see Figure 5). In addition, define Tu,0 as the subtree
consisting only of the vertex u. If cT (u) denotes the number of children of u in T rooted at r, then,
in total, there are at most∑

u∈V (T )

(cT (u) + 1) = deg(r) + 1 +
∑

u∈V (T )\{r}

deg(u) = 2n− 1 = O(n) (1)

such subtrees Tu,i. (Note that if u is a leaf, then cT (u) = 0 and the only subtree counted is
Tu,0 = {u}).
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r

v1

u

v2 v3

Tu,2

Tu,3

Figure 5: A tree T rooted at r and a vertex u with three children.

Bessy and Rautenbach’s algorithm, based on dynamic programming, successively considers
subtrees Tu,i such that the vertices u are ordered by nonincreasing distance from the root r.

Given a boundary independent broadcast f on T , its restriction to Tu,i satisfies the following
conditions:

(C1) f(x) ≤ eT (x) for all x ∈ V (Tu,i)

(C2) dT (x, y) ≥ f(x) + f(y) for every two distinct broadcasting vertices x, y ∈ V (Tu,i).

As in [1], we find that if f(y) > 0 for some y ∈ V (T\Tu,i), then y imposes upper bounds
on f(x) for all x ∈ V (Tu,i). Specifically, by C2, if dT (x, y) ≤ f(y), then x ∈ Nf (y) and hence
f(x) = 0. If f(y) < dT (x, y), then f(x) ≤ dT (x, y)− f(y).

We may express this upper bound as a function gp,q(dT (u, x)) as follows. First, consider a
function ht : Z → N0 such that ht(d) = max{0, d− t}.

For a vertex y ∈ V +
f , let q = f(y), p = f(y) − dT (u, y), and define gp,q : Z → N0 by

gp,q(d) = max{0, d−p}. Note that gp,q is equivalent to ht under the restriction t = f(y)−dT (u, y),
and so we have the bound f(x) ≤ gp,q(dT (u, x)).

In other words, for each vertex x such that the unique x− y path passes through u, the function
gp,q(d) with d = dT (u, x) establishes an upper bound on f(x) as shown in Figure 6.

d

1

gp,q(d)

p p+ 1

Figure 6: When dT (u, x) ≥ f(y) − dT (u, y), the upper bound on f(x) imposed by gp,q(d) increases linearly as a
function of d.
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Define integers pin, qin and yin as follows. If V +
f \V (Tu,i) is empty, let pin = −n and qin = 1.

Otherwise, let pin = max{p = f(y) − dT (u, y) : y ∈ V +
f \V (Tu,i)}. Let yin ∈ V +

f \V (Tu,i) be
a vertex for which this maximum holds. If yin overdominates u, then, by bn-independence, yin
is the unique such vertex; otherwise, there may be more than one such vertex and we choose yin
arbitrarily. Let qin = f(yin). Note that

(pin, qin) =

{
(−n, 1) if V +

f ∩ V (T \ Tu,i) = ∅
(f(yin)− dT (u, yin), f(yin)) otherwise.

(2)

Since dT (u, yin) ≥ 0, it follows that pin ≤ qin in either case.
Among all broadcasting vertices in T\Tu,i, yin imposes the strictest upper bound on f(x) for

all x ∈ Tu,i. That is, for all x ∈ V (Tu,i) and all q = f(y), where y ∈ V +
f \V (Tu,i), we have that

f(x) ≤ gpin,qin(dT (u, x)) ≤ gp,q(dT (u, x)).
The existence of pin and qin implies that bounds on f(x) for all x ∈ V (Tu,i) can be encoded with

just these two values. Symmetrically, the upper bounds on the possible values of f on the vertices
of T\Tu,i that are imposed by broadcasting vertices in Tu,i, again expressed as a function of the
distance from u in T , can be encoded with two integers pout and qout. That is, if V +

f ∩V (Tu,i) = ∅,
let pout = −n and qout = 1; otherwise, let pout = max{p : y ∈ V +

f ∩ V (Tu,i)}, and choose yout
similar to yin. Then

(pout, qout) =

{
(−n, 1) if V +

f ∩ V (Tu,i) = ∅
(f(yout)− dT (u, yout), f(yout)) otherwise,

(3)

and pout ≤ qout in either case.
For all O(n4) possible choices for pin, pout, qin, qout with −n ≤ pin, pout ≤ n and 1 ≤

qin, qout ≤ n, the algorithm determines the maximum contribution
∑

x∈V (Tu,i)

f(x) satisfying:

(C3) f(x) ≤ gpin,qin(dT (u, x)) for every vertex x of Tu,i.

(C4) If f(y) > 0 for some vertex y of Tu,i, then gpout,qout(d) ≤ gf(y)−dT (u,y),f(y)(d) for every
positive integer d.

6.2. The Algorithm
The following lemma shows we can check C4 in linear time for a given vertex y.

Lemma 6.1. If t, f and dist are integers such that −n ≤ t ≤ n and f, dist ∈ [n], then ht(d) ≤
hf−dist(d) for every positive integer d if and only if dist ≥ max{f, f − t}.

Proof. Suppose t ≤ 0. Since d is positive, d ≥ t+ 1, hence ht(d) = d− t. Moreover,

hf−dist(d) =

{
0, if d ≤ f − dist,
d− f + dist, if d ≥ f − dist + 1.

Therefore, ht(d) ≤ hf−dist(d) if and only if
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(i) d ≥ f − dist + 1, and
(ii) d− t ≤ d− f + dist

for all positive integers d. With d = 1, (i) becomes dist ≥ f . Therefore, (i) and (ii) together are
equivalent to dist ≥ max{f, f − t}.

Suppose instead that t ≥ 1. When d ≥ t + 1, ht(d) is positive, in which case we once again
have that d ≥ f − dist + 1 and d− t ≤ d− f + dist. Since we require that ht(d) ≤ hf−dist(d) for
every positive integer d, we again see that dist ≥ f and dist ≥ f − t, and the lemma follows.

We can thus check C4 using Lemma 6.1 with t = pout, f = f(y) and dist= dT (u, y).
Given u ∈ V (T ) and i ∈ [k]0, let pin, pout, qin, qout be integers with −n ≤ pin, pout ≤ n and

1 ≤ qin, qout ≤ n. A function

f : V (Tu,i) → N0 is ((pin, qin), (pout, qout))-compatible

if conditions C1, C2, C3, and C4 hold under f . Let αbn(Tu,i, (pin, qin), (pout, qout)) be the maximum
weight of such a function.

Lemma 6.2. For any non-leaf root r of T , αbn(T ) = αbn(Tr,cT (r), (−n, 1), (n, 1)).

Proof. By definition, Tr,cT (r) = T . Since g−n,1(d) = d + n for all nonnegative integers d,
g−n,1(d) ≥ n. Therefore, since f(x) ≤ eT (x) ≤ n for all x ∈ V (T ), condition C3 holds by
C1. Similarly, since gn,1(d) = 0 for all nonnegative integers d, C4 holds by C1 and Lemma 6.1
with t = pout.

We now show how to determine αbn(Tu,i, (pin, qin), (pout, qout)) recursively for all O(n5) choices
for (u, i), pin, qin, pout, and qout. Recall that Tu,0 consists of only the single vertex u.

The following lemma holds for all vertices u of T , but is particularly useful when u is a leaf.

Lemma 6.3. For any vertex u of T ,

αbn(Tu,0, (pin, qin), (pout, qout)) =

{
0, if qout > pout,

min{eT (u), gpin,qin(0), pout}, if qout ≤ pout.

Proof. First suppose qout > pout. By (3), either V +
f ∩ V (Tu,0) = ∅ and so f(u) = 0, or yout is a

vertex of Tu,0 such that dT (u, yout) > 0, which is impossible because V (Tu,0) = {u}. Therefore
f(u) = 0 and αbn(Tu,0, (pin, qin), (pout, qout)) = 0.

Now suppose that qout ≤ pout. Then (as mentioned above) qout = pout and, by (3), V +
f ∩

V (Tu,i) ̸= ∅ and dT (u, yout) = 0; that is, u = yout and f(u) = f(yout) = qout > 0. By
C1, f(u) ≤ eT (u), and by C3, f(u) ≤ gpin,qin(0). Hence αbn(Tu,0, (pin, qin), (pout, qout)) =
min{eT (u), gpin,qin(0), pout}.

To illustrate the key recursive step of the algorithm that follows, let Tu,i be a nontrivial subtree.
Define p(0)in , q

(0)
in , p

(0)
out, q

(0)
out with respect to Tu,i−1 as in (2) and (3). Define p(1)in , q

(1)
in , p

(1)
out, q

(1)
out with

respect to Tvi,ki similarly.
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u

vi−1v1 vi

r

Tu,i−1

Tvi,ki

vk
· · · · · ·

Figure 7: A rooted tree and a vertex u with k children, with Tu,i−1 and Tvi,ki
as shown.

Let (pin, qin, pout, qout) be given such that −n ≤ pin, pout ≤ n and 1 ≤ qin, qout ≤ n. For
example, suppose (pin, qin, pout, qout) = (−1, 2, 1, 3). The values of pout and qout indicate that
at this step, we assume a broadcast of strength 3 from a vertex in V (Tu,i) overdominates u by
1. We need only consider choices for p

(0)
out, q

(0)
out, p

(1)
out, q

(1)
out which do not impose stricter upper

bounds on the values of f in V (T\Tu,i) than pout and qout. For instance, (p(0)out, q
(0)
out) = (1, 3) and

(p
(1)
out, q

(1)
out) = (−1, 1) satisfy this condition as max{p(0)out, p

(1)
out − 1} ≤ pout = 1.

Set (p(0)in , q
(0)
in ) equal to (pin, qin) or (p

(1)
out − 1, q

(1)
out) depending on which pair imposes the

strictest upper bound on the values of f in V (Tu,i). Determine (p
(1)
in , q

(1)
in ) similarly by compar-

ing (pin − 1, qin) and (p
(0)
out − 1, q

(0)
out). In our example, pin > p

(1)
out − 1 while pin − 1 < p

(0)
out − 1, so

(p
(0)
in , q

(0)
in ) = (−1, 2) and (p

(1)
in , q

(1)
in ) = (0, 3).

Since the algorithm proceeds in order of nonincreasing distance from r, we are given
αbn(Tu,i−1, (p

(0)
in , q

(0)
in ), (p

(0)
out, q

(0)
out)) and αbn(Tvi,ki , (p

(1)
in , q

(1)
in ), (p

(1)
out, q

(1)
out)) for all possible values

of p
(0)
out, q

(0)
out, p

(1)
out, q

(1)
out and corresponding p

(0)
in , q

(0)
in , p

(1)
in , q

(1)
in . The following lemma and its

corollary show that αbn(Tu,i, (pin, qin), (pout, qout)) = max{αbn(Tu,i−1, (p
(0)
in , q

(0)
in ), (p

(0)
out, q

(0)
out)) +

αbn(Tvi,ki , (p
(1)
in , q

(1)
in ), (p

(1)
out, q

(1)
out))}. The recursive process is formalized in Theorem 6.6.

Lemma 6.4. Let u ∈ V (T ) and i ∈ [k] be given and let v1, ..., vk denote the children of u. Suppose
vi has ki children. A function f : V (Tu,i) → N0 is ((pin, qin), (pout, qout))-compatible if and only if
there exist integers

p
(0)
in , p

(0)
out, p

(1)
in , p

(1)
out, q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out,

with −n ≤ p
(0)
in , p

(0)
out, p

(1)
in , p

(1)
out ≤ n and 1 ≤ q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out ≤ n satisfying the following

conditions:
(i) the restriction of f to V (Tu,i−1) is ((p(0)in , q

(0)
in ), (p

(0)
out, q

(0)
out))-compatible;

(ii) the restriction of f to V (Tvi,ki) is ((p(1)in , q
(1)
in ), (p

(1)
out, q

(1)
out))-compatible;

and for every nonnegative integer d:
(iii) g

p
(0)
in ,q

(0)
in
(d) = min{gpin,qin(d), gp(1)out,q

(1)
out
(d+ 1)};

(iv) g
p
(1)
in ,q

(1)
in
(d) = min{gpin,qin(d+ 1), g

p
(0)
out,q

(0)
out
(d+ 1)};

(v) gpout,qout(d) ≤ min{g
p
(0)
out,q

(0)
out
(d), g

p
(1)
out,q

(1)
out
(d+ 1)}.
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Proof. Suppose f is ((pin, qin), (pout, qout))-compatible. Given a vertex w ∈ V (T\Tu,i), the dis-
tance from w to vi is one more than the distance from w to u. Thus, (v) holds by C4.

Let y(0)in be an arbitrarily chosen vertex for which f(y
(0)
in ) = q

(0)
in and f(yin)− dT (u, yin) = p

(0)
in .

If y
(0)
in lies in V (T\Tu,i), the bounds imposed by pin on f(x) for all x ∈ V (Tu,i) match those

imposed by p
(0)
in on the vertices of Tu,i−1, hence (p

(0)
in , q

(0)
in ) = (pin, qin). Otherwise, y(0)in lies in

V (Tvi,ki). Since gp,q(d + 1) = gp−1,q(d) when q ≥ 1, g
p
(0)
in ,q

(0)
in
(d) = g

p
(1)
in ,q

(1)
in
(d + 1). Therefore

g
p
(0)
in ,q

(0)
in
(d) = min{gpin,qin(d), gp(1)out,q

(1)
out
(d + 1)} for every nonnegative integer d. Similarly, the

minimum in (iv) equals g
p
(1)
in ,q

(1)
in
(d). Therefore (iii) and (iv) hold.

Since f is ((pin, qin), (pout, qout))-compatible, f(x) ≤ gpin,qin(dT (u, x)) for all x ∈ V (Tu,i−1).
Furthermore, by C2, f(x) ≤ dT (x, vi)− f(vi) ≤ g

p
(1)
out,q

(1)
out
(dT (vi, x)) = g

p
(1)
out,q

(1)
out
(dT (u, x) + 1),

and so (i) holds for g
p
(0)
in ,q

(0)
in
(d) as in (iii). Similarly, (ii) holds for g

p
(1)
in ,q

(1)
in
(d) as in (iv).

Conversely, suppose there exist integers

p
(0)
in , p

(0)
out, p

(1)
in , p

(1)
out, q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out,

with −n ≤ p
(0)
in , p

(0)
out, p

(1)
in , p

(1)
out ≤ n and 1 ≤ q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out ≤ n satisfying (i)− (v).

By (i) and (ii), f satisfies C1; that is, f(x) ≤ eT (x) for all x ∈ V (Tu,i−1) and x ∈ V (Tvi,ki).
Conditions (i) and (ii) further imply that C2 holds for any x, y ∈ V (Tu,i−1) and for any

x, y ∈ V (Tvi,ki). Thus, to prove f satisfies C2, it remains to show that f(x) + f(y) ≤ dT (x, y) for
all x ∈ V (Tu,i−1) and y ∈ V (Tvi,ki) such that f(x), f(y) > 0.

By (i), the restriction of f to V (Tu,i−1) satisfies C3; that is,

f(x) ≤ g
p
(0)
in ,q

(0)
in
(dT (u, x)).

By (iii),

f(x) ≤ g
p
(1)
out,q

(1)
out
(dT (u, x) + 1).

Thus, by (ii) and C4,

f(x) ≤ gf(y)−dT (u,y),f(y)(dT (u, x) + 1)

= gf(y)−dT (vi,y),f(y)(dT (vi, x))

≤ min{0, dT (x, y)− f(y)}.

Since x is broadcasting, f(x) > 0 and so f(x) ≤ dT (x, y)− f(y), satisfying C2.
By (iii), g

p
(0)
in ,q

(0)
in
(d) ≤ gpin,qin(d), and by (iv), g

p
(1)
in ,q

(1)
in
(d) ≤ gpin,qin(d+ 1) for every nonnega-

tive integer d. Thus f satisfies (C3).
Finally, consider y ∈ V (Tu,i) such that f(y) > 0. If y ∈ V (Tu,i−1), then by (v),

gpout,qout(d) ≤ g
p
(0)
out,q

(0)
out
(d)

for all positive integers d. Again by (i), we may apply C4 to the restriction of f to Tu,i−1, obtaining

gpout,qout(d) ≤ gf(y)−dT (u,y),f(y)(d).
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Similarly, if f(y) > 0 for some y ∈ V (Tvi,ki), then

gpout,qout(d) ≤ g
p
(1)
out,q

(1)
out
(d+ 1)

≤ gf(y)−dT (vi,y),f(y)(d+ 1).

= gf(y)−dT (u,y),f(y)(d)

for every positive integer d. Therefore f satisfies C1− C4.

Observe that for any i ∈ [k], V (Tu,i−1) ∪ V (Tvi,ki) = V (Tu,i). The following is a consequence
of Lemma 6.4.

Corollary 6.5. Suppose u ∈ V (T ) has k children. Let i ∈ [k] be given and let vi have ki children.
Then

αbn(Tu,i, (pin, qin), (pout, qout))

= max{αbn(Tu,i−1, (p
(0)
in , q

(0)
in ), (p

(0)
out, q

(0)
out)) + αbn(Tvi,ki , (p

(1)
in , q

(1)
in ), (p

(1)
out, q

(1)
out))}

(4)

over all choices of p(0)in , p
(0)
out, p

(1)
in , p

(1)
out, q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out with −n ≤ p

(0)
in , p

(0)
out, p

(1)
in , p

(1)
out ≤ n

and 1 ≤ q
(0)
in , q

(0)
out, q

(1)
in , q

(1)
out ≤ n satisfying conditions (iii), (iv), and (v) of Lemma 6.4.

Proof. Let p
(0)
in , p

(0)
out, p

(1)
in , p

(1)
out, q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out be integers satisfying the conditions of

the lemma such that the maximum in (4) is attained. Let f be a broadcast such that
the restrictions of f to Tu,i−1 and Tvi,ki correspond to αbn(Tu,i−1, (p

(0)
in , q

(0)
in ), (p

(0)
out, q

(0)
out))

and αbn(Tvi,ki , (p
(1)
in , q

(1)
in ), (p

(1)
out, q

(1)
out)), respectively. By definition, the restrictions are

((p
(0)
in , q

(0)
in ), (p

(0)
out, q

(0)
out))-compatible and ((p

(1)
in , q

(1)
in ), (p

(1)
out, q

(1)
out))-compatible, hence conditions (i)

and (ii) in the statement of Lemma 6.4 are satisfied. Thus, by Lemma 6.4, the restriction of f to
Tu,i is boundary independent.

We may now prove the main theorem of this section.

Theorem 6.6. Given a tree T with n ≥ 3 vertices, its boundary independent broadcast number
αbn(T ) can be determined in O(n9) time.

Proof. Select a non-leaf vertex r as the root and process the vertices of T in order of non-
increasing distance from r. Recall that by (1), there are O(n) choices for (u, i). Sup-
pose u and i are given. For each of the O(n4) choices for pin, qin, pout, and qout, the value
αbn(Tu,i, (pin, qin), (pout, qout)) can be determined in O (n4) time as follows. If i = 0, apply Lemma
6.3 to find αbn(Tu,i, (pin, qin), (pout, qout)) in linear time. Otherwise:

• For each of the O(n4) possible choices for the four integers p(0)out, p
(1)
out, q

(0)
out, and q

(1)
out, check

condition (v) from Lemma 6.4 in constant time.

• Given pin, qin, p
(0)
out, p

(1)
out, q

(0)
out, and q

(1)
out, apply conditions (iii) and (iv) of Lemma 6.4 to

determine p
(0)
in , p

(1)
in , q

(0)
in , and q

(1)
in in constant time.
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• Finally, add αbn(Tu,i−1, (p
(0)
in , q

(0)
in ), (p

(0)
out, q

(0)
out)) and αbn(Tvi,ki , (p

(1)
in , q

(1)
in ), (p

(1)
out, q

(1)
out)) and

apply Corollary 6.5.

Since there are O(n) choices for (u, i), it follows that αbn(Tr,cT (r), (−n, 1), (n, 1)) can be deter-
mined in O(n9) time. By Lemma 6.2, this value equals the boundary independent broadcast num-
ber αbn(T ).

We illustrate the algorithm with a simple example. Consider the tree T below, in which one of
the two non-leaf vertices is arbitrarily defined to be the root. The remaining vertices are labelled
u1 through u4 such that dT (ui, r) ≤ dT (uj, r) whenever i > j.

r

u1

u2 u3 u4
T

Figure 8: A tree T and its rooted structure.

Note that eT (ui) = 3 for i ∈ {1, 2, 3}. By Lemma 6.3, for each 1 ≤ i ≤ 3, we have that

αbn(Tui,0, (pin, qin), (pout, qout)) =

{
0, if qout > pout,

min{3, gpin,qin(0), pout}, if qout ≤ pout

over all choices for pin, qin, pout, and qout such that −5 ≤ pin, pout ≤ 5 and 1 ≤ qin, qout ≤ 5.
Observe that since Tui,0 consists of only a single vertex, ui is broadcasting if and only if qout =
pout. Then αbn(Tui,0, (pin, qin), (pout, qout)) = 0 if pin ≥ 0, and αbn(Tui,0, (pin, qin), (pout, qout)) ∈
{1, 2, 3} if pin < 0.

Otherwise, qout > pout, in which case αbn(Tui,0, (pin, qin), (pout, qout)) = 0 as expected.
Recall that by Lemma 5.1, given a tree T and an αbn-broadcast f on T , no leaf of T hears f

from a non-leaf. In particular, no vertex adjacent to a leaf belongs to V +
f , hence the restriction of

an αbn-broadcast f to Tu4,0 = {u4} has weight 0. By Lemma 6.5, we have that

αbn(Tu4,1, (pin, qin), (pout, qout))

= max{αbn(Tu4,0, (p
(0)
in , q

(0)
in ), (p

(0)
out, q

(0)
out)) + αbn(Tu1,0, (p

(1)
in , q

(1)
in ), (p

(1)
out, q

(1)
out))}

= max{αbn(Tu1,0, (p
(1)
in , q

(1)
in ), (p

(1)
out, q

(1)
out))}

over all choices of p(0)in , p
(0)
out, p

(1)
in , p

(1)
out, q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out with −5 ≤ p

(0)
in , p

(0)
out, p

(1)
in , p

(1)
out ≤ 5

and 1 ≤ q
(0)
in , q

(0)
out, q

(1)
in , q

(1)
out ≤ 5 satisfying conditions (iii), (iv), and (v) of Lemma 6.4.

We may calculate αbn(Tr,1, (pin, qin), (pout, qout)) as max{αbn(Tu2,0, (p
(1)
in , q

(1)
in ), (p

(1)
out, q

(1)
out))}

similarly. Thus, to determine αbn(Tr,2, (pin, qin), (pout, qout), we need only consider the subtrees
Tu2,0 and Tu3,0.
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Finally, by Lemmas 6.2 and 6.5, we may calculate αbn(T ) as

αbn(Tr,3, (−n, 1), (n, 1))

= max{αbn(Tr,2, (p
(0)
in , q

(0)
in ), (p

(0)
out, q

(0)
out)) + αbn(Tu4,1, (p

(1)
in , q

(1)
in ), (p

(1)
out, q

(1)
out))}

(5)

again over all p(0)in , p
(0)
out, p

(1)
in , p

(1)
out, q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out with −5 ≤ p

(0)
in , p

(0)
out, p

(1)
in , p

(1)
out ≤ 5 and

1 ≤ q
(0)
in , q

(0)
out, q

(1)
in , q

(1)
out ≤ 5 satisfying Lemma 6.4.

r

Tr, 2

Tu4, 1

Figure 9: The partition of T considered in (5).

Repetitive calculations show that this maximum is achieved when
αbn(Tr,2, (p

(0)
in , q

(0)
in ), (p

(0)
out, q

(0)
out)) = 2 and αbn(Tu4,1, (p

(1)
in , q

(1)
in ), (p

(1)
out, q

(1)
out)) = 2. Since

f(r) = f(u4) = 0 under an αbn-broadcast f , we find that maximum boundary independence is
achieved when f(u1) = 2 and f(u2) = f(u3) = 1. Hence αbn(T ) = 4.

7. Open problems

In [16], Neilson determined that αbn(T ) ≤ n−|BT |+ |RT | for all trees with at least one branch
vertex, which we improved to αbn(C) ≤ n− |BC |+ α(C[RC ]) for caterpillars. It may be possible
to extend this result to all trees.

Conjecture 7.1. For any tree T of order n with at least one branch vertex, αbn(T ) ≤ n− |BT | +
α(T [RT ]).

In particular, we found that equality holds for caterpillars C with no trunks, as well as caterpil-
lars with no branches of degree 3 and no two adjacent trunks, when |V (C)| ≥ 3. It would be of
interest to further classify graphs for which equality holds.

Problem 7.2. Characterize trees T such that αbn(T ) = n− |BT |+ α(T [RT ]).

Problem 7.3. Find a closed formula to determine αbn(C) exactly for caterpillars or other classes
of trees.

In Section 6, we showed that the maximum bn-independence problem is solvable in polynomial
time on all trees, which we illustrated with a simple example. For further research, more efficient
algorithms may be possible when considering the additional constraints of boundary independence
compared to hearing independence.

Problem 7.4. Improve the running time in Theorem 6.6, or show it is best possible.
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