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Abstract

A broadcast on a connected graph G is a function f : V(G) — {0,1,...,diam(G)} such that
f(v) < e(v) (the eccentricity of v) forall v € V. If dg(u,v) > f(u)+ f(v) for any pair of vertices
u,v with f(u) > 0 and f(v) > 0, the broadcast is said to be boundary independent.

We show that the maximum weight «,, (G) of a boundary independent broadcast can be bounded
in terms of the independence number «(G), and prove that the maximum boundary independent
broadcast problem is NP-hard. We investigate bounds on oy, (7") when 7' is a tree in terms of its
order and the number of vertices of degree at least 3, and determine a sharp upper bound on oy, (T")
when T is a caterpillar, giving oy, (1) exactly for certain families of caterpillars. We conclude by
describing a polynomial-time algorithm to determine oy, (7") for a given tree 7.
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1. Introduction

There are several methods by which the concept of independent sets may be generalized to
broadcast independence. If we require that no broadcasting vertex hears another, we obtain the defi-
nition of cost independent broadcasts introduced by Erwin in [6], which we refer to as hearing inde-
pendent, abbreviated h-independent. The definition of boundary independent (or bn-independent)
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broadcasts, in which no broadcasts overlap on edges, was introduced by Neilson [16] and Mynhardt
and Neilson [13] as an alternative to hearing independence.

The maximum cost of a boundary independent broadcast on a given graph G is referred to
as its boundary independence number, denoted oy, (G). For a given integer £ > 0, the problem
of determining whether oy, (G) > k is called the maximum bn-independent broadcast problem.
The hearing independence number oy, (G) and the maximum h-independent broadcast problem are
defined similarly.

As any boundary independent broadcast is hearing independent, it follows from the defi-
nitions that ay,(G) < ap(G) for all graphs G. In [13], Mynhardt and Neilson showed that
ap(G)/ap,(G) < 2, and that this bound is asymptotically best possible. They posed the prob-
lem of investigating the ratio as,(G)/a(G) in [15].

Problem 1.1. Is it true that ou,(G) < 2a(G) for any graph G?

It was shown in [13] that ay,(G) < n — 1 for all graphs G of order n, with equality if and
only if GG is a path or a generalized spider, a tree with exactly one vertex of degree greater than 2.
It is easily observed that o(G) < n — §(G), where 6(G) denotes the minimum degree among the
vertices of GG. In [14], Mynhardt and Neilson asked whether a similar inequality existed for the
maximum boundary independence number.

Problem 1.2. Show that cu,,(G) < n — 0(G) for any graph G of order n.

For any tree 7', the bound in Problem 1.2 follows immediately from the bound oy, (T) < n —1
and the fact that 6(7") = 1.

Broadcast definitions and known results are presented in Section 2. In Section 3, we show that
ap (G) < 2a(@G) for all G, solving Problem 1.1. We further resolve Problem 1.2 by showing that
ap(G) < n — 6(G) for any graph G.

In Section 4, by considering a transformation from independent sets to boundary independent
broadcasts on graphs, we observe that determining whether o, (G) > k for a given integer k is
NP-Complete. In Section 5, we investigate the maximum boundary independence number of trees
and determine oy, () exactly for families of caterpillars.

We continue our study of maximum boundary independence broadcasts in trees in Section 6.
Using a method similar to the proof technique employed by Bessy and Rautenbach in [1], we
derive an O(n) time algorithm to determine o, (T') for a given tree 7.

Open problems and directions for further research are discussed in Section 7.

2. Definitions and Background

Erwin [6] defined a broadcast on a nontrivial connected graph G as a function f : V(G) —
{0, 1, ...,diam(G)} such that f(v) is at most the eccentricity e(v) for all vertices v. We say a vertex
v is broadcasting if f(v) > 1, and that f(v) is the strength of f from v. The cost or weight of f is
o(f)= EveV(G) f(v).

Given a broadcast f on G and a broadcasting vertex v, a vertex u hears f from v if dg(u,v) <
f(v). We define the f-neighbourhood of v, denoted by N (v), as the set of all vertices which hear
f from v (including v itself).
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The f-private neighbourhood of v, denoted by PN¢(v), consists of those vertices that hear
f only from v. The f-boundary of v is Bf(v) = {u € N¢(v)|d(u,v) = f(v)}. The f-private
boundary PBy¢(v) is defined analogously. In particular, PB¢(v) = PN¢(v) N By(v). If u €
Ny(v)\By(v), v is said to overdominate u by k, where k = f(v) — de(u, v). A vertex which does
not broadcast or hear f from any broadcasting vertex is undominated.

Throughout this paper, we partition the set of broadcasting vertices Vf+ into
Vi={veV(G)|f(v)=1} and V;"* = {v € V(G)|f(v) > 1}. We denote the set of
undominated vertices by U;. A broadcast f is dominating if Uy = (). The broadcast domination
number, ,(G), is the minimum weight of such a broadcast. An overview of broadcast domination
in graphs is given by Henning, MacGillivray, and Yang in [8].

We say an edge e = uv hears f or is covered by w € V" if u,v € Ny(w) and at least one
endpoint does not lie on the f-boundary of w. If no such vertex w exists, then e is uncovered. The
set of uncovered edges is denoted U f .

An independent set on a graph G is a set of pairwise nonadjacent vertices. The minimum
cardinality of a maximal independent set, called the independent domination number of G, is
denoted i(G). A broadcast f is hearing independent if x ¢ Ny(v) for any z,v € V;". Ttis
boundary independent if Ny(v)\Bf(v) € PN (v) forallv € V"

U1 V2

S
g

w2

Figure 1: A boundary independent broadcast f on a tree. Vertices v; and v broadcast at strengths 1 and 2, respectively.
The vertex vo overdominates u by 1, whereas w; and w- are undominated.

Although efficient broadcast domination was shown to be solvable in polynomial time for every
graph in [7], the complexity of hearing independence was unknown even for trees until an efficient
algorithm was found by Bessy and Rautenbach in [1].

Theorem 2.1. [1] For any tree T of order n, ay,(T) can be determined in O(n®) time.

Hearing independence was further studied by Bessy and Rautenbach [2, 3] and by Dunbar et al.
[5]. The more recent study of boundary independent broadcasts was continued by Mynhardt and
Neilson in [12, 14, 15] and by Marchessault and Mynhardt in [11]. For terminology and general
concepts in graphs theory not defined in this paper, see Chartrand, Lesniak, and Zhang [4].

3. Upper and Lower Bounds on o, (G)

Our focus in this section is to establish bounds on o, (G) for general graphs, and determine
parameters comparable to oy, to place the parameter within a chain of inequalities.
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In [3], Bessy and Rautenbach found that o, (G) < 4a(G), adapting a proof technique used
by Neilson [16] to show that o (G) < 2ap,(G). Mynhardt and Neilson further studied the ratio

O‘a”’(l—éG)) in [15] and asked whether it can be shown that 2% < 2 for all graphs G.

a(G)
Theorem 3.1. For any graph G, ap,(G) < 2a(QG).

Proof. Let f be an ay,-broadcast on G. If V;* = V!, V/" is an independent set, so assume there
exists v such that f(v) > 2. Let u € Bf(v) and consider a subgraph 7}, consisting of u and unique
geodesics from u to each vertex in S = {z € VfJr :u € By(x)}, the set of all broadcasting vertices
heard by u (if u € PBf(v), S = {v}). Since no edge can be covered by two different broadcasts,
T, is an induced path or spider, hence |V (T,,)| = 1+ > f(w).

weS
Consider a proper two-coloring of 77, and define a new boundary independent broadcast by

deleting all broadcasts from the leaves of 7;, and adding strength-one broadcasts from each vertex
in the color set of highest cardinality (if they have equal cardinality, select one arbitrarily).

Since broadcasts overlap only on boundaries, the broadcasting vertices of the resulting bn-
independent broadcast form an independent set of cardinality at least |V'(7})|/2. Repeating the
process until no vertices broadcasting at strength greater than 1 remain yields an independent set
on G. Since |V(T,,)| < >_ f(w), it follows that as,(G)/2 < a(G). O

weS

As ap, (G) < ay(G) for any graph G, Bessy and Rautenbach’s bound now follows easily from
Neilson’s result and Theorem 3.1.

Corollary 3.2. For any graph G, a,(G) < 4a(Q).

Let 6(G) denote the minimum degree of GG. It is easy to see that a(G) < n — §(G), as the
inclusion of any vertex to an independent set excludes its neighbours. We determine the analogous
result for maximum boundary independence, thereby solving an open problem posed in [14].

Theorem 3.3. For any graph G of order n, ap,(G) < n — §(G).

Proof. The result is clear if |V (G)| = 1, so assume the theorem holds for all graphs G such that
[V(G)| < n — 1 and consider a graph G of order n. Let f be an ay,-broadcast on G' with [V}
maximum. For any v € Vf++, PBj(v) = 0, otherwise a new boundary independent broadcast of
equal weight could be constructed by reducing f(v) by 1, and broadcasting at strength 1 from a
vertex in the f-private boundary of v.

For some v € Vf+, consider the graph G’ = G — PN(v) of order n/, and let f¢ be f restricted
to G'. By induction, o(fo) < apn(G') < n' — §(G'), hence oy, (G) = o(for) + f(v) < f(v) +
n' —o(G").

Consider a vertex u of minimum degree in G'. First, suppose v € By(v) and let k = |PNy(v)N
Ng(u)|. Let P be au—wv geodesic in G. Since P has length f(v) and w is adjacent to k — 1 vertices
in PNy(v)—V (P), wehave that k—1+ f(v) < |PN¢(v)|. Inparticular, if k+ f(v) = |[PNs(v)|+1,
then either PN;(v) consists of a path on f(v) vertices (and thus d(v) = 1), or f(v) = 2 and
dg(v) = k. In either case, since u hears more than one broadcasting vertex under f, §(G) < dg(u).
Thus,

ap(G) < f(o)+n' = 6(G") < f(v)+n' —dg(u) + k <n+1—dgu) <n—0G).
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Otherwise, if £ + f(v) < |PN¢(v)],
ap(G) < f(v) +n' —dg(u) + k <n—0(G).

Finally, if u ¢ Bj(v), then dg(u) = de/(u), hence 6(G) < §(G’) and oy, (G) < n — 0(G") <
n — 0(Q) as desired. O

4. The Hardness of Determining o, (G)

Given a graph GG and a positive integer k, we may verify that a broadcast f on GG of cost at least &
is boundary independent in polynomial time by checking that f(u)+ f(v) < dg(u, v) for every pair
of distinct broadcasting vertices u, v € Vf+. It follows that the maximum bn-independent broadcast
problem is in NP. We proceed to show that the problem is NP-complete by a transformation from
the independent set problem on (, which was shown to be NP-complete by Karp [10], to the
maximum bn-independent broadcast problem on a corresponding graph Cg.

The corona G (-) H of graphs G and H is constructed from G and n = |V (G)| copies of H by
joining the ith vertex in G by edges to every vertex in the ith copy of H. Let C¢ = G () K.

(e, O

e, O

Figure 2: The construction of the corona K4 (-) K.

Proposition 4.1. Let G be a connected graph on n > 2 vertices and let Cq = G (-) K. Then
ap(Ca) = n+ o(G).

Proof. Letly, ..., 1, be alabeling of the leaves of C'¢, and let vy, ..., v,, be a labeling of the remaining
vertices such that /; is adjacent to v; for all i. Let S C {vy, ..., v, } be a maximum independent set
on the subgraph of C corresponding to G.

Define a broadcast f on C by

2, ifwu=1[; forsomeiandv; € S,
f(u) =141, ifu=1[;forsomeianduv; ¢S,
0, otherwise.

Then Y f(u) = n+ a(G). Since only leaves broadcast, and since d¢, (I;,1;) < f(l;) + f(I;) for
any pair of leaves [; # [;, f is boundary independent. Therefore oy, (C) > n + a(G).

To show that oy, (Cq) < n + a(G), let f be an «y,-broadcast on Cq. If a vertex v; is broad-
casting, the bn-independent broadcast f’ on C¢ defined by f'(l;) = f(v;) + 1, f'(v;) = 0, and
f'(u) = f(u) otherwise has greater cost than f, a contradiction. It follows that VfJr CH{l, ..., 1}

Suppose some leaf [; broadcasts at strength & > 3 under f. Since f(l;) < e(l;), there exist
at least £ — 2 leaves which hear /; from a distance greater than 2. Define a new maximum bn-
independent broadcast [’ by
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), if f(l:) € {1,2},
i) =<2, if f(l;) =k>2,
1, if f(1;) = 0.

and consider R C {vy,...,v,}, where v; € R if and only if f’(l;) = 2. Two vertices adjacent to
leaves broadcasting at strength 2 cannot be adjacent, hence R is an independent set on the subgraph
of C¢ corresponding to GG. Since every leaf broadcasts at strength 1 or 2 under f’, we have that
|R| = apn(Cq) — n. Therefore ay, (Cq) < n+ |R| < n+ a(G). O

Corollary 4.2. Let G be a graph and k a positive integer. The problem of deciding whether
apn(G) > k is NP-complete.

Proof. We have already observed that the maximum bn-independent broadcast problem is NP. As
the transformation described in Proposition 4.1 can be carried out in polynomial time, the problem
is NP-complete. O

It follows that for any graph class C for which G € C implies C € C, if the independent set
problem is known to be NP-complete for all graphs in C, then so is the maximum bn-independent
set problem.

Graph classes for which the independent set problem is known to be NP-complete are listed
in [17]. In particular, the maximum bn-independent set problem is NP-complete for planar and
toroidal graphs, graphs with maximum degree A € {3,4,5,6}, triangle-free and C,,-free graphs
forn € {4,5,6}, K,-free graphs for n € {4,6, 7}, and house-free graphs.

5. Trees

Let T be a tree. Its branch-leaf representation BL(T'), also known as the homeomorphic reduc-
tion of T, is obtained by successively removing a vertex of degree 2 and adding an edge between its
two neighbours until no such vertices remain. Deleting all leaves yields the branch representation
of T', denoted B(T').

o

o

[ J [ J

T BL(T) B(T)

Figure 3: The branch-leaf representation and branch representation of a tree 7.

We partition the vertices of " into sets By, Ly, and 7, where B denotes the set of branch
vertices of T, Ly the set of leaves, and 71 the set of vertices of degree 2, called the trunks of T
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We further define a subset Ry of Br consisting of branch vertices adjacent to at most one leaf in
BL(T). In other words, a branch vertex b belongs to Ry if there exists at most one leaf [ € Ly
such that for every v/ € Br — {b}, the unique &' — [ path contains b. In Figure 3 above, |Br| = 3
and Ry = {v}.

Maximum boundary independent broadcasts on trees were studied by Neilson in [16], who
determined that o, (T) < n — |Br| + |Rr| for any tree T with By # (). Neilson asked whether
this upper bound could be improved to o, (7)) < n — |Br| + a(T[Ryr|), where T[Ry| is the
subgraph of 7" induced by Rr.

A caterpillar is a tree with a diametrical path D such that every vertex lies on D or is adjacent
to a vertex on D. We proceed to show that ay,(C') < n — |Be| + a(C[R¢]) for all caterpillars
C, and determine o, (C') exactly for certain subclasses of caterpillars. Observe that if C' is a
caterpillar, C[R¢| is a path or a forest of paths.

The following lemma will be useful throughout this section.

Lemma 5.1. [16] If f is an ap,-broadcast on a tree T, no leaf of T hears a broadcast from any
non-leaf vertex.

In particular, if f is a maximum boundary independent broadcast on a caterpillar, only leaves
and trunks broadcast.

Given a caterpillar C) its spine is an (arbitrarily chosen) diametrical path. Label the leaves of C'
as ly, ..., L, such that [, and [,, are the endpoints the spine and for all i < j, dc(l1,1;) < de(l,1;).
Call [y, ..., 1,,_1 the inner leaves of C.

Lemma 5.2. Let f be an «y,-broadcast on a caterpillar C' such that \Vfl| is maximized. Then
lil, €V .
y ‘m f

Proof. Suppose not. If [; € Ny(v) for some v € Vf+, define a new broadcast f’ by f'(v) =
flvo—=1), f'(lh) = 1, and f'(w) = f(w) for all w # v,l;. If some vertex u does not hear f’,
broadcasting at strength 1 from u produces a boundary independent broadcast of greater cost than
f, a contradiction. Therefore f’ is an ay,-broadcast on C. By Lemma 5.1, v is a leaf, hence
do(l,v) > 2and sov ¢ V. But then [Vi| > [V}, a contradiction.

It follows that [, € Vf+. Similarly, [,,, € fo O

Theorem 5.3. If C is a caterpillar, then oy, (C) < n — |Bc| + a(C[Rc]).

Proof. Let f be an ay,-broadcast on C' such that |Vf1] is maximized, and let {; be an inner leaf of
C' adjacent to a branch vertex b;. If f(I;) > 3, then since /; and [,, are broadcasting, /; covers at
least 2(f(l;) — 1) edges on the spine.

If f(l;) is odd, let f’ be a broadcast defined by f’(l;) = 1, f’(v) = 1 for all v at an even distance
from [;, and f'(v) = f(v) for all v & N¢[l;].

If f(l;) is even, define f’ by f'(I;) = 2, f'(v) = 1 for all v at odd distance at least 3 from [,
and f'(v) = f(v) forall v & N¢[l;].

Figure 4 illustrates the construction of f’.

237



Maximum boundary independent broadcasts | J. I. Hoepner et al.

3 4
e, @ O @ O ® O L O L O L
/ ] / J
1 1 1 1
e, L4 O L4 O ([ O @ O @ O L ]

Figure 4: The odd and even cases.

It follows that f” is a boundary independent broadcast on C' such that o(f') = o(f) and |V};| >
|V, a contradiction. Thus, f(I;) < 2 for each inner leaf /;. Since f is boundary independent, the
set of branch vertices adjacent to leaves that broadcast at strength 2 must form an independent set.

By Lemma 5.1, no branch vertices broadcast under f. Let C’ denote the subgraph of C' induced
by removing all inner leaves and branch vertices, and let for denote the restriction of f to C”. Since
fcr 1s boundary independent,

o(fer) < am(C7) < [V(C)] = 6(C7) = [V(C)] = 1.
Taking the sum over all broadcasting vertices, we find that

apn(C) < (IV(C)| = 1) + (Le = 2) + a(C[Rc]) < n — |Be| + a(C[Rc]).

Corollary 5.4. Let C be a caterpillar with |V (C')| > 3.
I Ich = @, then abn(C’) = ’Lc‘ + Oé(C[Rc])
ii. If C has no two adjacent trunks and no vertices of degree 3, then ay,,(C') = |L¢c| + ||

Proof. Suppose 7¢ = (), so that every vertex of C is either a branch vertex or a leaf. By Theorem
5.3, apn(C) < n—|Beo|+ a(ClRe]) = |Le| + a(C[Rc]). Observe that C[R¢] is a forest of paths,
and let S be a maximum independent set of C|R¢]. Define a broadcast f on C by

2 if v € Ly and v is adjacent to a vertex in S
f(v) =< 1 ifv e Ly andwv is not adjacent to a vertex in S
0 ifv¢ Ly

As only leaves broadcast, two broadcasts from /; and [; may overlap only if one or both vertices
broadcast at strength 2. Suppose they do. Without loss of generality, assume f(l;) = 2. Let b; be
the neighbour of /; in S. But then since b; has only one leaf, f(I;) = 2 and b; € S, hence
d(l;,1;) > 4. It follows that f is a boundary independent broadcast on C. Thus, o(f) = |L¢| +
a(C[Rc]) < apn(C).
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Suppose instead that C' has no two adjacent trunks and no vertices of degree 3. Since Rc = 0,
ap(C) < n — |Be| 4+ a(C[R¢]) = |Le| + 7¢ by Theorem 5.3. Define a broadcast f on C' by

F(v) = 1 ifveLsorveTe
] 0 otherwise.

By definition, no two broadcasting vertices are adjacent. It follows that f is a boundary inde-
pendent broadcast, hence o (f) = |L¢| + |7¢] < apn(C). O

6. A polynomial time algorithm for trees

In Section 4, we found that the problem of determining the cost of a bn-independent broadcast
on a general graph G is NP-complete. However, the complexity of boundary independence in trees
is unknown.

In [1], Bessy and Rautenbach proved that the hearing independence number «,(7") can be
determined for a tree T in O(n?) time. In this chapter, we show that their algorithm can be modified
to determine the boundary independence number ay,,(7') in O(n?) time.

A rooted tree (T, ) is a tree in which a distinguished vertex r serves as a point of reference for
all vertices of T". A vertex v is said to be a descendant of w if u lies along the unique r — v path, in
which case u is an ancestor of v. The descendants adjacent to u are known as the children of w.

6.1. Definitions and Notation

Let T" be a tree of order n > 3 in which an arbitrary non-leaf vertex r is chosen to be the root.
For each uw € V(T)), fix an arbitrary linear order on its children. If vy, ..., vy are the children of u
in this linear order, define T, ; as the subtree of 7" induced by w and all vertices w such that the
unique v — w paths contains one of vy, ..., v; (see Figure 5). In addition, define 75,  as the subtree
consisting only of the vertex u. If c7(u) denotes the number of children of « in T rooted at 7, then,
in total, there are at most

Z (cr(u) +1) =deg(r)+ 1+ Z deg(u) =2n — 1= 0(n) (1)

uweV(T) we V(T)\{r}

such subtrees T;,;,. (Note that if u is a leaf, then ¢y(u) = 0 and the only subtree counted is
Tu,O = {U})
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Figure 5: A tree T rooted at r and a vertex u with three children.

Bessy and Rautenbach’s algorithm, based on dynamic programming, successively considers
subtrees T, ; such that the vertices u are ordered by nonincreasing distance from the root r.

Given a boundary independent broadcast f on 7', its restriction to 7T, ; satisfies the following
conditions:

(C1) f(z) <er(z)forallz € V(T,,)

(C2) dr(z,y) > f(x) + f(y) for every two distinct broadcasting vertices z,y € V (T, ;).

As in [1], we find that if f(y) > 0 for some y € V(T'\T,;), then y imposes upper bounds
on f(x) for all x € V(7). Specifically, by C2, if dr(z,y) < f(y), then x € N¢(y) and hence
f(x) = 0.1f f(y) < dr(z,y), then f(z) < dr(z,y) — f(y).

We may express this upper bound as a function g, ,(dr(u,x)) as follows. First, consider a
function h; : Z — Ny such that h;(d) = max{0,d — t}.

For a vertex y € Vf+, let ¢ = f(y), p = f(y) — dr(u,y), and define g,, : Z — N; by
Gp.q(d) = max{0,d—p}. Note that g, , is equivalent to h, under the restriction t = f(y) —dr(u,y),
and so we have the bound f(z) < g, ,(dr(u, x)).

In other words, for each vertex x such that the unique x — y path passes through u, the function
Gp,q(d) with d = dr(u, z) establishes an upper bound on f(z) as shown in Figure 6.

v
sH

p p+1

Figure 6: When dp(u,x) > f(y) — dr(u,y), the upper bound on f(z) imposed by g, ,(d) increases linearly as a
function of d.
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Define integers pi,, ¢, and yy, as follows. If Vf+\V(T i) 1s empty, let p;, = —n and ¢, = 1.
Otherwise, let p;, = max{p = f(y) — dr(u,y) : y € V;’\V(Tu,i)}. Let y;, € V;“\V(Tu,i) be
a vertex for which this maximum holds. If y;, overdominates u, then, by bn-independence, v,
is the unique such vertex; otherwise, there may be more than one such vertex and we choose ¥,
arbitrarily. Let ¢;, = f(vin). Note that

(Pin, Gin) = { el o VIENV(T\T,:) = 2
(f(Yin) — dr(u, yin), f(yin))  otherwise.

Since dr(u, yin) > 0, it follows that p;, < ¢, in either case.

Among all broadcasting vertices in 7\T,, ;, yi, imposes the strictest upper bound on f(z) for
all 2 € T,,;. Thatis, for all z € V(T,;) and all ¢ = f(y), where y € V,"\V(T,,;), we have that
f(@) < Gpgn (dr(u, ) < gpg(dr(u, x)).

The existence of py, and ¢;, implies that bounds on f(z) forall z € V(7,,;) can be encoded with
just these two values. Symmetrically, the upper bounds on the possible values of f on the vertices
of T\T,,; that are imposed by broadcasting vertices in T, ;, again expressed as a function of the
distance from w in 7', can be encoded with two integers pous and go,¢. That is, if V;r NV(T,,) = 2,
let pout = —n and oy = 1; otherwise, let poyy = max{p : y € VfJr NV (T,;)}. and choose Yout
similar to y;,. Then

2)

(—n, 1) itV NV(T.:) =2
(pout7 QOut) = _ .
(f(yout) dT (U, yout)a f(yout)) 0therw1se,

and pout < qout 1n either case.
For all O(n*) possible choices for pin, Pouts Gin, Gout With =1 < P, Pour < nand 1 <

Gin, Gout < M, the algorithm determines the maximum contribution Y  f(x) satisfying:
l‘GV(Tuﬂ;)

3)

(C3) f(x) < gp, g (dr(u, x)) for every vertex x of T, ;.

(C4) If f(y) > O for some vertex y of T, ;, then gp. .. qou (@) < Gr(y)—dr(uy).f(y)(d) for every
positive integer d.

6.2. The Algorithm
The following lemma shows we can check C4 in linear time for a given vertex y.

Lemma 6.1. If t, f and dist are integers such that —n < t < n and f, dist € [n], then h,(d) <
h¢_aist(d) for every positive integer d if and only if dist > max{f, f —t}.

Proof. Suppose t < 0. Since d is positive, d > t + 1, hence h;(d) = d — t. Moreover,

0, if d < f — dist,
hy_gisi(d) = . . .

d— f+dist, ifd> f —dist+ 1.
Therefore, h,(d) < hy_qx(d) if and only if
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(i)d > f —dist+ 1, and

()d—t <d— f+dist
for all positive integers d. With d = 1, (i) becomes dist > f. Therefore, (i) and (ii) together are
equivalent to dist > max{f, f —t}.

Suppose instead that ¢t > 1. When d > ¢ + 1, hy(d) is positive, in which case we once again
have that d > f —dist+ 1 and d —t < d — f + dist. Since we require that h,(d) < hs_g«(d) for
every positive integer d, we again see that dist > f and dist > f — ¢, and the lemma follows. [

We can thus check C4 using Lemma 6.1 with ¢t = poy, f = f(y) and dist= dr(u, y).
Given u € V(T) and i € [k]o, let pin, Pout, Gins Jous D€ integers with —n < piy, pour < n and
1 < Gin, Gout < n. A function

f : V(Tu,z) — NO iS ((pina Qin), (pouta QOut))'Compaﬁble

if conditions C1, C2, C3, and C4 hold under f. Let &, (Toui, (Pin, Gin) > (Pout, Gout)) be the maximum
weight of such a function.

Lemma 6.2. For any non-leaf root r of T', cupn(T') = con(Trcr(ry; (—n, 1), (1, 1)).

Proof. By definition, T,..,) = T. Since g_,1(d) = d + n for all nonnegative integers d,
g—n1(d) > n. Therefore, since f(x) < er(x) < n for all z € V(T'), condition C3 holds by
Cl1. Similarly, since g, 1(d) = 0 for all nonnegative integers d, C4 holds by C1 and Lemma 6.1
with t = pout. O

We now show how to determine @, (T} i, (Pins @in ), (Pout, Gout)) Tecursively for all O(n®) choices
for (u, %), Pin» Gin» Pout» and ¢out. Recall that T), o consists of only the single vertex w.
The following lemma holds for all vertices u of T', but is particularly useful when w is a leaf.

Lemma 6.3. For any vertex u of T,

OJ l.‘fQOut > Pout,

Qy (T ,Ov(p' , 4i )7(p » g )): . .
e e oty Hout mln{eT(u)agpin,qin(o)apout}a lfQOut S Pout-

Proof. First suppose ¢out > Pout- By (3), either VfJr NV (T.o) = @ and so f(u) = 0, or Yoyt is a
vertex of T, such that dr(u, Yout) > 0, which is impossible because V(7o) = {u}. Therefore
f(u) = 0 and abn(Tu,Oa (pina qin)a (pou‘w QOut)) =0.

Now suppose that gous < pous- Then (as mentioned above) ¢out = Pout and, by (3), V;r N
V(T,:) # @ and dr(u,Your) = 0; that is, u = Your and f(u) = f(Yout) = ¢owt > 0. By
Cl, f(u) < GT(U), and by C3, f(u) < gpin:qin<0)' Hence abn(TU,Ov (pinqu)a (pout;qOut>> =
min{er(w), gp.q (0), Pout } - L

To illustrate the key recursive step of the algorithm that follows, let 7, ; be a nontrivial subtree.
Define pi(g), qi(r? ), pg?l)t, q(()?l)t with respect to 73, ;_; as in (2) and (3). Define pi(i), qi(r}), pgt)t, q(l) with

out
respect to 7, i, similarly.
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Figure 7: A rooted tree and a vertex « with k children, with T, ;_; and T, j, as shown.

Let (Pin, Gins Pous, Gous) b€ given such that —n < piy, Pous < nand 1 < ¢, Gouy < n. For
example, suppose (Pin, ¢in, Pouts dout) = (—1,2,1,3). The values of pyy and goy indicate that

at this step, we assume a broadcast of strength 3 from a vertex in V' (7,,;) overdominates u by

1. We need only consider choices for pfm)t, q(()u)t, pc()u)t, qgu)t which do not impose stricter upper

bounds on the values of f in V(T\T,,;) than p,, and g,y. For instance, (pg?ll, q(()?l)t) = (1,3) and

(pfj)t, qc(,t)t) = (—1,1) satisfy this condition as max{p((,?l)t, pfj}t — 1} < pouy = L.

Set (pl(n), ql(f)) equal to (pin, i) OF (pf,u)t -1, q(()i)t) depending on which pair imposes the

strictest upper bound on the values of f in V(T ;). Determine (pi(i), qi(i)) similarly by compar-

ing (pin — 1, ¢in) and (pg?l)t -1 q(()g)t) In our example, p;, > pgl)t — 1whilep;, — 1 < p(()?l)t —1,s0
0 ) = (~1,2) and (Y, o)) = (0.3)
Since the algorithm proceeds in order of nonincreasing distance from r, we are given

(T, (03 1)), (P dont)) a0 0 (T s (01 05 (Pt dour)) for all possible values
of p(()u)t, qf,?l)t, pgl)t, q(()u)t and corresponding pi(r?), qi(f), Pi(i); Qi(nl). The following lemma and its

corollary show that abn<Tm, <pm,qm> (Pout Gout)) = max{ap(Tui1, (0, a0, (02, abr)) +

A (T, ks (pi(i), ql(r} N, %, @)} The recursive process is formalized in Theorem 6.6.
Lemma 6.4. Letw € V(T') and i € [k| be given and let vy, ..., vy, denote the children of u. Suppose
v; has k; children. A function f : V(Ty;) — Ny is ((Pins Gin), (Pout, Gout ) ) -compatible if and only if

there exist mtegers

pl(n)7 pgu)t’,a pl(i)a p((il)tﬁ ql(I?)7 Q(()u)t’,u ql(é)7 qg%l)t?

with —n < pl(g), pg?l)t, pl(i), pgu)t <nand1l < ql(r?), q(()?l)t, ql(n), q((m)t < n satisfying the following

conditions:
(i) the restriction of f 1o V(T,;_1) is (piy, ay ). (PSe: Gt ))-compatible;
(ii) the restriction of f to V (T, x,) is ((pi(n), qi(n)), (p(()u)t, q(()u)t))—compatible;
and for every nonnegative integer d.:

(iii) g ) <0>(d) = min{gpim%n (d)a gp(l)t’q(l)t (d + 1)};

1n ln

(iv) g W (1)(d) = min{gpimqm (d + 1), gp(o)t’q(o)t (d + 1)},’

1n 1n

(V) Gpomto () < min{g o o (d), g,0 o (d+1)}
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Proof. Suppose f i8 ((Pin, Gin), (Pouts dout) )-compatible. Given a vertex w € V(T\T,;), the dis-
tance from w to v; is one more than the distance from w to u. Thus, (v) holds by C4.
(0)

Let ym) be an arbitrarily chosen vertex for which f (ym ) = ¢\” and f (Yin) — dr(u, yin) =y, -

m

If yi(n) lies in V(T'\T,;), the bounds imposed by py, on f(x) for all z € V(T,;) match those
imposed by pi(r?) on the vertices of 7,,;_1, hence (pl(n), ql(l?)) (Pin, ¢in). Otherwise, yi(l?) lies in
V(T k,)- Since gy q(d + 1) = gp-1,4(d) when ¢ > 1, g © 0(d) = g o (d+1). Therefore

9, ,© (d) = min{gp,, 4, (d), ) o (d + 1)} for every nonnegatlve 1nteger d. Similarly, the
ut

),
mihrn?um in (iv) equals g ) (1>( ) Therefore (i77) and (iv) hold.

Since f is ((Pin, Gin), (pr;ut,qout))—compatible f(@) < gpog (dr(u, x)) forall @ € V(T,,-1).
Furthermore, by C2, f(z) < dr(z,v;) — f(vi) < g, W (dr(vi, @) =g, W 0 (dr(u,x) + 1),
and so () holds for 9y ©(d) as in (i77). Similarly, (zz) holds forg, 1) 4O (d) as in (1v).

Conversely, suppose there exist integers

0 1 1 0 1 1
pl(n)7 p(()u)ta pl(n)a p(()u)t7 ql(n)7 Q(()u)ta qsn)v Q(()uzn

with —n < pf), plin, ply’s Pl < mand 1< g, g, a’, aliy < n satistying (i) — (v).

By (¢) and (1), f satisfies C1; thatis, f(z) < ep(z) forall z € V(T ;1) and x € V (T}, 1, ).
Conditions (i) and (i7) further imply that C2 holds for any z,y € V(7,;-1) and for any
x,y € V(T,, k). Thus, to prove f satisfies C2, it remains to show that f(z) + f(y) < dy(x,y) for
allz € V(T,,-1) and y € V(T,, x,) such that f(x), f(y) > 0.
By (i), the restriction of f to V' (7,,;_1) satisfies C3; that is,
f(@) < g,0 o (dr(u, ).

By (i),

f@) < g0 o (dr(u,z) +1).

Poutr9out

Thus, by (7¢) and C4,

flx) < 9f(y)—dr(wy),f (dT(“ r) +1)
= 9f<y>—dT<vi,y>,f<y (dr(vi, x))
< min{0, dr(z,y) — f(y)}.

Since z is broadcasting, f(x) > 0 and so f(z) < dr(z,y) — f(y), satistying C2.

By (iii), g, o <0)(d) < Gpuan (d), and by (iv), gpfrll),qf;)(d) < G (d + 1) for every nonnega-
tive integer d. Thus f satisfies (C3).

Finally, consider y € V (T, ;) such that f(y) > 0. If y € V(T,,_1), then by (v),

gpouh‘JOut (d> < gpé?l)t qc(>0u)t (d)
for all positive integers d. Again by (i), we may apply C4 to the restriction of f to T}, ;_1, obtaining
Ipout-gout () < Gr(y)—dr (u), £ () (d)-
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Similarly, if f(y) > 0 for some y € V(T,, x,), then

gpout7QOut (d) S g ) @ (d + 1)

out’Zout

< 9 —dr (i) fw)(d +1).
= G(y)—dr(uy).f(v) (D)

for every positive integer d. Therefore f satisfies C'1 — C4. O]

Observe that for any i € [k, V/(T,,;—1) UV (Ty, 1) = V(T4.:). The following is a consequence
of Lemma 6.4.

Corollary 6.5. Suppose w € V(T) has k children. Let i € [k] be given and let v; have k; children.
Then

Olpp, (Tu,’h (pin; Qin)u (pou'w QOut))
0 0 (0 e )
= Il’laX{qu(Tu i—1 (pl(n)7 ql(n)) <p<()u)t7 qc(>u)t)> + abn(Tvi,kﬂ (pl(n)7 ql(l’l)>7 (pgu)w qt()u)t))}
over all choices of P\, , Pk, Py’ s Dok Qb+ Qo By > ot with —n < piY p8L, plY, i, <
and 1 < qi(f), (()g)t, ql(i), qéu)t < n satisfying conditions (iii), (iv), and (v) of Lemma 6.4.
Proof. Let ply), plok., b’ o 48 domes @y, @ be integers satisfying the conditions of
the lemma such that the maximum in (4) is attained. Let f be a broadcast such that

the restrictions of f to T,, 1 and T, correspond to (7). i- 1,(pl(n),ql(r?)) (pg?l)t,qé?l)t))

and o, (1o, & Z,(pl(n),ql(i)) (pgi)t,qéi)t)), respectively. By definition, the restrictions are

(bl ). (Dot 6 ))-compatible and ((piy, g5, ). (Piut dout))-compatible, hence conditions (i)

and (i7) in the statement of Lemma 6.4 are satisfied. Thus, by Lemma 6.4, the restriction of f to
T, 1s boundary independent. [

“)

We may now prove the main theorem of this section.

Theorem 6.6. Given a tree T' with n > 3 vertices, its boundary independent broadcast number
apn(T) can be determined in O(n®) time.

Proof. Select a non-leaf vertex r as the root and process the vertices of 7" in order of non-
increasing distance from 7. Recall that by (1), there are O(n) choices for (u,i). Sup-
pose u and i are given. For each of the O(n*) choices for pin, Gin; Pout, and Gout, the value
@n(Tuiy (Pin, Gin) s (Pout, Gout)) can be determined in O (n*) time as follows. If i = 0, apply Lemma
6.3 to find vy, (Tois (Pins Gin)s (Pouts dout)) in linear time. Otherwise:
s For each of the O(n*) possible choices for the four integers p(()?l)t, p((,t)t, q(()u)t, and q&)t, check
condition (v) from Lemma 6.4 in constant time.

» Given pi,, Gin, Pg?l)m pgu)tv q(()ut, and qout, apply conditions (zii) and (iv) of Lemma 6.4 to

determine pi(n), pg% CL(I?), and qi(n) in constant time.
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* Finally, add ap,(Toi 1, (0, ¢, (04, ¢0)) and (T, (0, ¢, (P00, ¢0)) and

apply Corollary 6.5.

Since there are O(n) choices for (u, ), it follows that o, (15,cp (), (=7, 1), (n, 1)) can be deter-
mined in O(n?) time. By Lemma 6.2, this value equals the boundary independent broadcast num-
ber oy, (T). O

We illustrate the algorithm with a simple example. Consider the tree 7" below, in which one of
the two non-leaf vertices is arbitrarily defined to be the root. The remaining vertices are labelled
uy through wuy such that dr(u;, ) < dr(u;,r) whenever i > j.

i

T

U2 U3 Ug

Uy

Figure 8: A tree T and its rooted structure.

Note that er(u;) = 3 fori € {1,2,3}. By Lemma 6.3, for each 1 < i < 3, we have that

07 lf Gout > Pout,

OénTw s (Pin; ¢in )5 \Pout sy Jou = . .
’ ( o (p q ) (p ' q t)) {mln{37gpin,qin(0)7pout}7 1fq43ut Spout

over all choices for pi,, ¢in, Pout, and goue such that —5 < pin, Powt < 5 and 1 < Gin, Gour < O.
Observe that since 1, o consists of only a single vertex, u; is broadcasting if and only if gy =
Pout- Then abn(Tui,07 (pim Qin)y (pouta QOut>) =01if Pin > 0, and abn<Tui,07 (pina Qin)a (pouty QOut)) €
{1, 2, 3} ifpin < 0.

Otherwise, gout > Pout, in Which case o, (T, 0, (Pin, Gin), (Pout, Gout)) = 0 as expected.

Recall that by Lemma 5.1, given a tree 7" and an «y,-broadcast f on 7', no leaf of 7" hears f
from a non-leaf. In particular, no vertex adjacent to a leaf belongs to Vf+, hence the restriction of
an ay,-broadcast f to T, o = {u4} has weight 0. By Lemma 6.5, we have that

abn(Tu4,17 (pin7 Qin)’ (pouta QOut>>

0 0 0 0 1 1 1 1
= max{an(Tu,0, (0, ), (00, 400 + pn (Tur 0, 0, 0), (01, )}

1 1 1 1
= max{ap (Tu,0, (P, ), (), SN}

over all choices of piy, Pouk, Pl Dot i+ Gonts i’ Gt With =5 < ), plit, pl, Pl < 5

and 1 < qi(f), q(()?l)t, qi(i), C](()lu)t < 5 satisfying conditions (4ii), (iv), and (v) of Lemma 6.4.

We may calculate ap, (Th1, (Pin, Gin)s (Pouts Gout)) as max{apn (Tuy 0, (0, ¢V), (05, ¢S}

similarly. Thus, to determine o, (7.2, (Pins Gin); (Pout, Gout)» We need only consider the subtrees
Tu270 and ,I;L?”().
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Finally, by Lemmas 6.2 and 6.5, we may calculate «y,(7") as

Oébn(TT’g,(—n 1), (n,1))
— max{apm(Tra, (0, ¢2), 0L, ¢2)) + o (Tus 1, B, g, (B0, a5}

again over all pl(g)7 pg?l)b pfi)a p(()t)m ql(r?)7 qc()?l)m ql(;)a qglll)t Wlth _5 S pI(I?)7 pg(l)l)h pl(n)7 p(()ut < 5 and

1<q, aS. ¢y, alut < 5 satisfying Lemma 6.4.

&)

Figure 9: The partition of 7" considered in (5).

Repetitive  calculations = show  that this maximum is  achieved  when

(T, (0 0)), (050, abn)) = 2 and apn (Tuy 1, (0, 0)), (DS, abr)) = 2. Since

f(r) = f(us) = 0 under an ay,-broadcast f, we find that maximum boundary independence is
achieved when f(u;) = 2 and f(us) = f(us) = 1. Hence oy, (T) = 4.

7. Open problems

In [16], Neilson determined that v, (7") < n— |Br|+ |Ry| for all trees with at least one branch
vertex, which we improved to oy, (C') < n — |Be| + a(C[Rc¢]) for caterpillars. It may be possible
to extend this result to all trees.

Conjecture 7.1. For any tree T of order n with at least one branch vertex, au,,(T) < n — |Br| +
a(T[Rr]).

In particular, we found that equality holds for caterpillars C' with no trunks, as well as caterpil-
lars with no branches of degree 3 and no two adjacent trunks, when |V (C')| > 3. It would be of
interest to further classify graphs for which equality holds.

Problem 7.2. Characterize trees T such that oy, (T) = n — |Br| + o(T[R7)).

Problem 7.3. Find a closed formula to determine au,,(C') exactly for caterpillars or other classes
of trees.

In Section 6, we showed that the maximum bn-independence problem is solvable in polynomial
time on all trees, which we illustrated with a simple example. For further research, more efficient
algorithms may be possible when considering the additional constraints of boundary independence
compared to hearing independence.

Problem 7.4. Improve the running time in Theorem 6.6, or show it is best possible.
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