Electronic Journal of Graph Theory and Applications

On D-distance (anti)magic labelings of shadow graph of some graphs

Anak Agung Gede Ngurah ${ }^{\text {a }}$, Nur Inayah ${ }^{\text {b }}$, Mohamad I. S. Musti ${ }^{\text {b }}$
${ }^{a}$ Department of Civil Engineering, Universitas Merdeka Malang, Jalan Terusan Raya Dieng $62-64$ Malang, Indonesia
${ }^{b}$ Department of Mathematics, Faculty of Science and Technology, State Islamic University Syarif Hidayatullah,
Jl. Ir H. Juanda No. 95 Tangerang Selatan 15412, Indonesia.
aag.ngurah@unmer.ac.id, \{nur.inayah, mohamad.musti\}@uinjkt.ac.id
Corresponding author: nur.inayah@uinjkt.ac.id (Nur Inayah)

Abstract

Let G be a graph with vertex set $V(G)$ and diameter $\operatorname{diam}(G)$. Let $D \subseteq\{0,1,2,3, \ldots, \operatorname{diam}(G)\}$ and $\varphi: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ be a bijection. The graph G is called D-distance magic, if $\sum_{s \in N_{D}(t)} \varphi(s)$ is a constant for any vertex $t \in V(G)$. The graph G is called (α, β) - D-distance antimagic, if $\left\{\sum_{s \in N_{D}(t)} \varphi(s): t \in V(G)\right\}$ is a set $\{\alpha, \alpha+\beta, \alpha+2 \beta, \ldots, \alpha+(|V(G)|-1) \beta\}$. In this paper, we study D-distance (anti)magic labelings of shadow graphs for $D=\{1\},\{0,1\},\{2\}$, and $\{0,2\}$.

Keywords: D-distance (anti)magic labeling, D-distance (anti)magic graph, shadow graph Mathematics Subject Classification : 05C78
DOI: 10.5614/ejgta.2024.12.1.3

1. Introduction

We follow the terminologies and notations introduced in [11, 12, 15]. Let G be a simple graph with vertex set $V(G)$ and diameter $\operatorname{diam}(G)$. For two vertices $s, t \in V(G)$, the distance between s and t is denoted by $d(s, t)$. Let D be a set of distances in $\{0,1,2,3, \ldots, \operatorname{diam}(G)\}$, and $\varphi: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ be a bijection. The neighborhood of a vertex $t \in V(G)$ under D is $N_{D}(t)=\{s \in V(G): d(s, t) \in D\}$, and its weight is $w_{D}(t)=\sum_{s \in N_{D}(t)} \varphi(s)$. If $D=\{1\}$,

Received: 15 May 2023, Revised: 24 October 2023, Accepted: 26 October 2023.

On D-distance (anti)magic labelings of shadow graph of some graphs | A.A.G. Ngurah et al.
$N_{\{1\}}(t)=N(t)=\{s \in V(G): s t \in E(G)\}$ and $w_{\{1\}}(t)=w(t)=\sum_{s \in N(t)} \varphi(s)$. If $D=\{0,1\}$, $N_{\{0,1\}}(t)=\{t\} \cup N(t)$ and $w_{\{0,1\}}(t)=\varphi(t)+w(t)$.

In the two next definitions, in case the graph G is a disconnected $\operatorname{graph}, \operatorname{diam}(G)$ is the maximum diameter of its components.

Definition 1. [11] A bijection $\varphi: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$ is called a D-distance magic (DM) labeling of a graph G, if $w_{D}(t)=\sum_{s \in N_{D}(t)} \varphi(s)$ is a constant k for every vertex $t \in V(G) . A$ graph which admits a D-DM labeling is called a D-DM graph

The constant k is called vertex sum of the labeling φ. If $D=\{1\}$, a $\{1\}$-DM labeling and a $\{1\}$-DM graph are called a DM labeling and a DM graph, respectively [16]. These notions were independently introduced in [10, 17].

Definition 2. [15] Let $\varphi: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$ be a bijection.
i). If $w_{D}(s) \neq w_{D}(t)$ for every $s, t \in V(G)$, then φ is called D-distance antimagic (DA) labeling of G and G is called a D-DA graph.
ii). If $\left\{w_{D}(t): t \in V(G)\right\}$ is $\{\alpha, \alpha+\beta, \alpha+2 \beta, \ldots, \alpha+(|V(G)|-1) \beta\}$, where $\beta \geq 0$ and $\alpha>0$ are fixed integers, then φ is called an (α, β) - D-DA labeling of G, and G is called an (α, β) - D-DA graph

If $D=\{1\}$, a $\{1\}$-DA labeling (resp. a $\{1\}$-DA graph) is called a DA labeling (resp. a $D A$ graph) [7]. If $D=\{1\}$, an $(\alpha, \beta)-\{1\}$-DA labeling (resp. an ($\alpha, \beta)$ - $\{1\}$-DA graph) is called an (α, β)-DA labeling (resp. an (α, β)-DA graph) [1].

Many results on these subjects have been published. Some results on D-DM labeling can be seen in $[2,4,12,13,14,16]$, results on D-DA labeling can be seen in $[1,3,5,8,13,14]$, recent results on $\{0,2\}$-DM labeling on shadow graph of some graphs can be seen in [9], and the complete results can be seen in [6].

Let G be a graph with no isolated vertices. The shadow graph of a graph G, denoted by $D_{2}(G)$, is the graph constructed from $2 G$ by joining each vertex in the second component to the neighbors of the corresponding vertex in the first component. We denote the first component by G with vertex set $V(G)=\left\{u_{i}: 1 \leq i \leq|V(G)|\right\}$ and the second one by G^{\prime} with the corresponding vertex set $V\left(G^{\prime}\right)=\left\{u_{i}^{\prime}: 1 \leq i \leq\left|V\left(G^{\prime}\right)\right|\right\}$. From the definition of $D_{2}(G)$, every vertex u and u^{\prime} has the same neighbors, namely $N(u)=N\left(u^{\prime}\right)$, in $D_{2}(G)$, and $d\left(u, u^{\prime}\right)=2$. Examples of shadow graphs of P_{4} and C_{4} are given in Figures 1 (a) and 1 (b), respectively.

In this paper, we give some necessary conditions for $D_{2}(G)$ to be D-DM as well as D-DA, where G is a regular graph. Also, we prove the existence and nonexistence of the D-DM labeling and the (α, β) - D-DA labeling of shadow graph of cycles and complete bipartite graphs for $D=$ $\{1\},\{0,1\},\{2\}$, and $\{0,2\}$.

2. Main Results

Our first result shows the relationship between a D-DM graph and an $(\alpha, 1)$ - D^{\prime}-DA graph for some $D, D^{\prime} \in\{1,2,3, \ldots, \operatorname{diam}(G)\}$.

On D-distance (anti)magic labelings of shadow graph of some graphs $\quad \mid \quad$ A.A.G. Ngurah et al.

Figure 1. The graphs $D_{2}\left(P_{4}\right)$ and $D_{2}\left(C_{4}\right)$.

Lemma 2.1. Let G be a graph with p vertices and diameter diam (G). Let $D^{*} \subseteq\{1,2,3, \ldots$, $\operatorname{diam}(G)\}$ and $D=D^{*} \cup\{0\}$.
$i)$. If G is a D^{*}-DM graph with vertex sum k, then G is a $(k+1,1)$ - D-DA graph.
ii). If G is a D-DM graph with vertex sum k, then G is a $(k-p, 1)$ - D^{*}-DA graph.

Proof. i). Let φ be a D^{*}-DM labeling of G with vertex sum k. Then $w_{D^{*}}(t)=\sum_{s \in N_{D^{*}}(t)} \varphi(s)=k$ for every $t \in V(G)$. Now, $\left\{w_{D}(t): t \in V(G)\right\}=\left\{\varphi(t)+\sum_{s \in N_{D^{*}(t)}} \varphi(s): t \in V(G)\right\}=$ $\{\varphi(t)+k: t \in V(G)\}$. Since $\varphi(t) \in\{1,2,3, \ldots, p\}$, then $\left\{w_{D}(t): t \in V(G)\right\}=\{k+1, k+$ $2, k+3, \ldots, k+p\}$.
ii). Let φ be a D-DM labeling of G with vertex sum k. Then $\left\{w_{D^{*}}(t): t \in V(G)\right\}=$ $\left\{\sum_{s \in N_{D}(t)} \varphi(s)-\varphi(t): t \in V(G)\right\}=\{k-\varphi(t): t \in V(G)\}=\{k-p, k-p+1, k-$ $p+2, \ldots, k-1\}$.

The next results show that the graph $D_{2}(G)$ has no a D-DA labeling as well as a D-DM labeling for some D.

Lemma 2.2. Let G a graph with no isolated vertices.
$i)$. The graph $D_{2}(G)$ is not a DA graph and it is not a $\{0,1\}$-DM graph.
ii). The graph $D_{2}(G)$ is not a $\{0,2\}$-DA graph and it is not a $\{2\}$-DM graph.

Proof. i). Assume that $D_{2}(G)$ is a DA graph with a DA labeling φ. Let us consider vertices u dan u^{\prime}. Since $N(u)=N\left(u^{\prime}\right)$, then $w(u)=\sum_{v \in N(u)} \varphi(v)=\sum_{v \in N\left(u^{\prime}\right)} \varphi(v)=w\left(u^{\prime}\right)$. It is a contradiction to the fact that $w(u) \neq w\left(u^{\prime}\right)$.

Next, suppose that $D_{2}(G)$ is an $\{0,1\}$-DM graph with a $\{0,1\}$-DM labeling φ. Then $\varphi(u)+$ $\sum_{v \in N(u)} \varphi(v)=w_{\{0,1\}}(u)=w_{\{0,1\}}\left(u^{\prime}\right)=\varphi\left(u^{\prime}\right)+\sum_{v \in N\left(u^{\prime}\right)} \varphi(v)$. Since $N(u)=N\left(u^{\prime}\right)$, then $\varphi(u)=\varphi\left(u^{\prime}\right)$. It is a contradiction, since φ is a bijection.
ii). Notice that $N_{\{0,2\}}(u)=N_{\{0,2\}}\left(u^{\prime}\right)=\left\{u, u^{\prime}\right\} \cup\{v \in V(G): d(u, v)=2\} \cup\left\{v^{\prime} \in V\left(G^{\prime}\right):\right.$ $\left.d\left(u^{\prime}, v^{\prime}\right)=2\right\}, N_{\{2\}}(u)=\left\{u^{\prime}\right\} \cup\{v \in V(G): d(u, v)=2\} \cup\left\{v^{\prime} \in V\left(G^{\prime}\right): d\left(u^{\prime}, v^{\prime}\right)=2\right\}$, and $N_{\{2\}}\left(u^{\prime}\right)=\{u\} \cup\{v \in V(G): d(u, v)=2\} \cup\left\{v^{\prime} \in V\left(G^{\prime}\right): d\left(u^{\prime}, v^{\prime}\right)=2\right\}$. By similar argument as in the first part, we can show that $D_{2}(G)$ is not $\{0,2\}$-DA and it is not $\{2\}$-DM.

The following results provide some necessary conditions for $D_{2}(G)$ to be a D-DM graph or an (α, β) - D-DA graph for some D.

Lemma 2.3. Let G be a graph with p vertices, $|N(u)|=r_{1}$, and $\left|N_{\{2\}}(u)\right|=r_{2}$ for each $u \in$ $V(G)$.
i). If $D_{2}(G)$ is a DM graph, then its vertex sum is $k=r_{1}(2 p+1)$.
ii). If $D_{2}(G)$ is a $\{0,2\}$-DM graph, then its vertex sum is $k=\left(r_{2}+1\right)(2 p+1)$.

Proof. i). The graph $D_{2}(G)$ has $2 p$ vertices and $|N(u)|=2 r_{1}$ for each $u \in V\left(D_{2}(G)\right)$. If $D_{2}(G)$ is DM with vertex sum is k, then $2 p k=2 r_{1}(1+2+3+\cdots+2 p)=2 p r_{1}(2 p+1)$.
ii). For each $u \in V\left(D_{2}(G)\right),\left|N_{\{0,2\}}(u)\right|=\left|\left\{u, u^{\prime}\right\}\right|+|\{v \in V(G): d(u, v)=2\}|+\mid\left\{v^{\prime} \in\right.$ $\left.V\left(G^{\prime}\right): d\left(u^{\prime}, v^{\prime}\right)=2\right\} \mid=2 r_{2}+2$. So, If $D_{2}(G)$ is $\{0,2\}$-DM with vertex sum is k, then $2 p k=\left(2 r_{2}+2\right)(1+2+3+\cdots+2 p)=2 p\left(r_{2}+1\right)(2 p+1)$.

Theorem 2.1. Let G be a graph with p vertices, $|N(u)|=r_{1}$, and $\left|N_{\{2\}}(u)\right|=r_{2}$ for each $u \in V(G)$.
i). If $D_{2}(G)$ is an $\left(\alpha_{1}, \beta_{1}\right)$ - $\{0,1\}$-DA graph, then β_{1} is odd and for $r_{1} \ll p, \beta_{1} \leq 2 r_{1}-1$.
ii). If $D_{2}(G)$ is an $\left(\alpha_{2}, \beta_{2}\right)$-\{2\}-DA graph, then β_{2} is odd and for $r_{2} \ll p, \beta_{2} \leq 2 r_{2}-1$.

Proof. i). Notice that, for every $u \in V\left(D_{2}(G)\right),\left|N_{\{0,1\}}(u)\right|=|\{u\} \cup N(u)|=2 r_{1}+1$. Next, let $D_{2}(G)$ be an $\left(\alpha_{1}, \beta_{1}\right)-\{0,1\}$ DA graph. Then $\left\{w_{\{0,1\}}(u): u \in V\left(D_{2}(G)\right)\right\}=\left\{\alpha_{1}, \alpha_{1}+\beta_{1}, \alpha_{1}+\right.$ $\left.2 \beta_{1}, \ldots, \alpha_{1}+(2 p-1) \beta_{1}\right\}$. The sum of all vertex weights is $\alpha_{1}+\left(\alpha_{1}+\beta_{1}\right)+\left(\alpha_{1}+2 \beta_{1}\right)+\cdots+$ $\left(\alpha_{1}+(2 p-1) \beta_{1}\right)=2 p \alpha_{1}+\beta_{1} p(2 p-1)$. This sum contains $2 r_{1}+1$ times each vertex label, since $\left|N_{\{0,1\}}(u)\right|=2 r_{1}+1$ for every $u \in V\left(D_{2}(G)\right)$. So,

$$
2 p \alpha_{1}+\beta_{1} p(2 p-1)=\left(2 r_{1}+1\right)(1+2+\cdots+2 p)=\left(2 r_{1}+1\right) p(2 p+1)
$$

or

$$
\begin{equation*}
2 \alpha_{1}+\beta_{1}(2 p-1)=\left(2 r_{1}+1\right)(2 p+1) \tag{1}
\end{equation*}
$$

Since $\left(2 r_{1}+1\right)(2 p+1)$ is an odd integer and $2 \alpha_{1}$ is an even integer, then $\beta_{1}(2 p-1)$ must be an odd integer. Hence, β_{1} is an odd integer.

Next, the minimum possible (vertex)weight is $1+2+3+\cdots+\left(2 r_{1}+1\right)$ and its maximum is $2 p+(2 p-1)+(2 p-2)+(2 p-3)+\cdots+\left(2 p-2 r_{1}\right)$. Hence, $\alpha_{1} \geq\left(r_{1}+1\right)\left(2 r_{1}+1\right)$ and $\alpha_{1}+(2 p-1) \beta_{1} \leq\left(2 r_{1}+1\right)\left(2 p-r_{1}\right)$. So,

$$
\begin{equation*}
\beta_{1} \leq 2 r_{1}+1-\frac{2 r_{1}\left(2 r_{1}+1\right)}{2 p-1} \tag{2}
\end{equation*}
$$

For a small r_{1} and a large p, then $0<\frac{2 r_{1}\left(2 r_{1}+1\right)}{2 p-1}<1$. Hence, $\beta_{1} \leq 2 r_{1}-1$, since β_{1} is an odd integer.
ii). For every $u \in V\left(D_{2}(G)\right),\left|N_{\{2\}}(u)\right|=\mid\left\{u^{\prime}\right\} \cup\{v \in V(G): d(u, v)=2\} \cup\left\{v^{\prime} \in V\left(G^{\prime}\right):\right.$ $\left.d\left(u^{\prime}, v^{\prime}\right)=2\right\} \mid=2 r_{2}+1$. By the same argument as in the first part, we have the desire results.

Lemma 2.4. Let G be a graph with p vertices and d be a positive integer.
i). If φ_{1} is an $\left(\alpha_{1}, \beta_{1}\right)$ - $\{0,1\}$-DA labeling of $D_{2}(G)$, then $\left|\varphi_{1}(u)-\varphi_{1}\left(u^{\prime}\right)\right|=d \beta_{1}$ for every pair u and u^{\prime} in $V\left(D_{2}(G)\right)$.
ii). If φ_{2} is an $\left(\alpha_{2}, \beta_{2}\right)$ - $\{2\}$-DA labeling of $D_{2}(G)$, then $\left|\varphi_{2}(u)-\varphi_{2}\left(u^{\prime}\right)\right|=d \beta_{2}$ for every pair u and u^{\prime} in $V\left(D_{2}(G)\right)$.

Proof. i). For every pair u and u^{\prime} in $V\left(D_{2}(G)\right), w_{\{0,1\}}(u)=\varphi_{1}(u)+\sum_{v \in N(u)} \varphi_{1}(v)=\alpha_{1}+d_{1} \beta_{1}$ and $w_{\{0,1\}}\left(u^{\prime}\right)=\varphi_{1}\left(u^{\prime}\right)+\sum_{v \in N\left(u^{\prime}\right)} \varphi_{1}(v)=\alpha_{1}+d_{2} \beta_{1}$ for some $d_{1}, d_{2} \in\{0,1,2,3, \ldots, 2 p-1\}$. Since $\sum_{v \in N(u)} \varphi_{1}(v)=\sum_{v \in N\left(u^{\prime}\right)} \varphi_{1}(v)$, then $\varphi_{1}(u)-\varphi_{1}\left(u^{\prime}\right)=\left(d_{1}-d_{2}\right) \beta_{1}=d \beta_{1}$ or $\varphi_{1}\left(u^{\prime}\right)-$ $\varphi_{1}(u)=\left(d_{2}-d_{1}\right) \beta_{1}=-d \beta_{1}$.
ii). For every pair u and u^{\prime} in $V\left(D_{2}(G)\right), w_{\{2\}}(u)=\varphi_{2}\left(u^{\prime}\right)+\sum_{v \in S \cup S^{\prime}} \varphi_{2}(v)=\alpha_{2}+d_{3} \beta_{2}$ and $w_{\{2\}}\left(u^{\prime}\right)=\varphi_{2}(u)+\sum_{v^{\prime} \in S \cup S^{\prime}} \varphi_{2}\left(v^{\prime}\right)=\alpha_{2}+d_{4} \beta_{2}$ for some $d_{3}, d_{4} \in\{0,1,2,3, \ldots, 2 p-1\}$, where $S=\{v \in V(G): d(u, v)=2\}$ and $S^{\prime}=\left\{v^{\prime} \in V\left(G^{\prime}\right): d\left(u^{\prime}, v^{\prime}\right)=2\right\}$. Since, $\sum_{v \in S \cup S^{\prime}} \varphi_{2}(v)=$ $\sum_{v^{\prime} \in S \cup S^{\prime}} \varphi_{2}\left(v^{\prime}\right)$, then $\left|\varphi_{2}\left(u^{\prime}\right)-\varphi_{2}(u)\right|=\left|\left(d_{3}-d_{4}\right)\right| \beta_{2}$.

Next, we consider m copies of the graph $D_{2}(G)$, namely $m D_{2}(G)$, where $G=C_{n}$ and $K_{n, n}$. Notice that $m D_{2}(G) \cong D_{2}(m G)$. By Lemma 2.2, the graphs $m D_{2}\left(C_{n}\right)$ and $m D_{2}\left(K_{n, n}\right)$ are not DA and $\{0,2\}$-DA. Also, they are not $\{0,1\}$-DM and $\{2\}$-DM. In the next theorem, we show that $m D_{2}\left(C_{n}\right)$ has DM and $\{0,2\}$-DM labelings for every integer $m \geq 1$ and $n \geq 3$.
Theorem 2.2. For every integer $m \geq 1$ and $n \geq 3$, the graph $m D_{2}\left(C_{n}\right)$ is DM and $\{0,2\}$-DM.
Proof. Let $V\left(m D_{2}\left(C_{n}\right)\right)=\left\{u_{i, j}, u_{i, j}^{\prime}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and $E\left(m D_{2}\left(C_{n}\right)\right)=\left\{u_{i, j} u_{i+1, j}\right.$, $\left.u_{i, j}^{\prime} u_{i+1, j}^{\prime}, u_{i, j}^{\prime} u_{i+1, j}, u_{i+1, j}^{\prime} u_{i, j},: 1 \leq i \leq n-1,1 \leq j \leq m\right\} \cup\left\{u_{n, j} u_{1, j}, u_{n, j}^{\prime} u_{1, j}^{\prime}, u_{n, j}^{\prime} u_{1, j}, u_{1, j}^{\prime} u_{n, j}:\right.$ $1 \leq j \leq m\}$. For $1 \leq j \leq m$, let $A_{j}=\left\{\left\{u_{i, j}, u_{i, j}^{\prime}\right\}: 1 \leq i \leq n\right\}$ and $B_{j}=\{\{(j-1) n+$ $i, 2 n m+1-(j-1) n-i\}: 1 \leq i \leq n\}$. It is clear that for $k \neq l, A_{k} \cap A_{l}=\varnothing$ and $B_{k} \cap B_{l}=\varnothing$. Also, $\mathcal{A}=\cup_{j=1}^{m} A_{j}=V\left(D_{2}\left(C_{n}\right)\right)$ and $\mathcal{B}=\cup_{j=1}^{m} B_{j}=\{1,2,3, \ldots, 2 n m\}$. Hence, \mathcal{A} is a partion of $\{1,2,3, \ldots, 2 m n\}$ and \mathcal{B} is a partition of $V\left(D_{2}\left(C_{n}\right)\right)$.

Next, one can check that, for $1 \leq j \leq m$, and any bijection $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ we have $w\left(u_{1, j}\right)=$ $w\left(u_{1, j}^{\prime}\right)=\varphi\left(u_{n, j}\right)+\varphi\left(u_{n, j}^{\prime}\right)+\varphi\left(u_{2, j}\right)+\varphi\left(u_{2, j}^{\prime}\right)=4 m n+2, w\left(u_{i, j}\right)=w\left(u_{i, j}^{\prime}\right)=\varphi\left(u_{i-1, j}\right)+$ $\varphi\left(u_{i-1, j}^{\prime}\right)+\varphi\left(u_{i+1, j}\right)+\varphi\left(u_{i+1, j}^{\prime}\right)=4 m n+2$ for $1 \leq i \leq n-1$, and $w\left(u_{n, j}\right)=w\left(u_{n, j}^{\prime}\right)=$ $\varphi\left(u_{n-1, j}\right)+\varphi\left(u_{n-1, j}^{\prime}\right)+\varphi\left(u_{1, j}\right)+\varphi\left(u_{1, j}^{\prime}\right)=4 m n+2$. Therefore, φ is a DM labeling of $m D_{2}\left(C_{n}\right)$ with vertex sum $4 m n+2$.

Now, we show that $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is also a $\{0,2\}$-DM labeling of $m D_{2}\left(C_{n}\right)$. To do this, we consider three the following cases:
Case $n=3$. For $1 \leq j \leq m$ and $1 \leq i \leq 3, w_{\{0,2\}}\left(u_{i, j}\right)=w_{\{0,2\}}\left(u_{i, j}^{\prime}\right)=\varphi\left(u_{i, j}\right)+\varphi\left(u_{i, j}^{\prime}\right)=$ $6 m+1$. Thus, φ is a $\{0,2\}$-DM labeling of $m D_{2}\left(C_{3}\right)$ with vertex sum $6 m+1$.
Case $n=4$. For $1 \leq j \leq m, w_{\{0,2\}}\left(u_{1, j}\right)=w_{\{0,2\}}\left(u_{1, j}^{\prime}\right)=w_{\{0,2\}}\left(u_{3, j}\right)=w_{\{0,2\}}\left(u_{3, j}^{\prime}\right)=$ $\varphi\left(u_{1, j}\right)+\varphi\left(u_{1, j}^{\prime}\right)+\varphi\left(u_{3, j}\right)+\varphi\left(u_{3, j}^{\prime}\right)=16 m+2$, and $w_{\{0,2\}}\left(u_{2, j}\right)=w_{\{0,2\}}\left(u_{2, j}^{\prime}\right)=w_{\{0,2\}}\left(u_{4, j}\right)=$ $w_{\{0,2\}}\left(u_{4, j}^{\prime}\right)=\varphi\left(u_{2, j}\right)+\varphi\left(u_{2, j}^{\prime}\right)+\varphi\left(u_{4, j}\right)+\varphi\left(u_{4, j}^{\prime}\right)=16 m+2$. Thus, φ is a $\{0,2\}$-DM labeling of $m D_{2}\left(C_{4}\right)$ with vertex sum $16 m+2$.
Case $n \geq 5$. For $1 \leq j \leq m, w_{\{0,2\}}\left(u_{1, j}\right)=w_{\{0,2\}}\left(u_{1, j}^{\prime}\right)=\varphi\left(u_{1, j}\right)+\varphi\left(u_{1, j}^{\prime}\right)+\varphi\left(u_{3, j}\right)+\varphi\left(u_{3, j}^{\prime}\right)+$ $\varphi\left(u_{n-1, j}\right)+\varphi\left(u_{n-1, j}^{\prime}\right)=6 m n+3, w_{\{0,2\}}\left(u_{2, j}\right)=w_{\{0,2\}}\left(u_{2, j}^{\prime}\right)=\varphi\left(u_{2, j}\right)+\varphi\left(u_{2, j}^{\prime}\right)+\varphi\left(u_{4, j}\right)+$ $\varphi\left(u_{4, j}^{\prime}\right)+\varphi\left(u_{n, j}\right)+\varphi\left(u_{n, j}^{\prime}\right)=6 m n+3, w_{\{0,2\}}\left(u_{i, j}\right)=w_{\{0,2\}}\left(u_{i, j}^{\prime}\right)=\varphi\left(u_{i, j}\right)+\varphi\left(u_{i, j}^{\prime}\right)+\varphi\left(u_{i+2, j}\right)+$ $\varphi\left(u_{i+2, j}^{\prime}\right)+\varphi\left(u_{i-2, j}\right)+\varphi\left(u_{i-2, j}^{\prime}\right)=6 m n+3$ for $3 \leq i \leq n-2, w_{\{0,2\}}\left(u_{n-1, j}\right)=w_{\{0,2\}}\left(u_{n-1, j}^{\prime}\right)=$ $\varphi\left(u_{n-1, j}\right)+\varphi\left(u_{n-1, j}^{\prime}\right)+\varphi\left(u_{1, j}\right)+\varphi\left(u_{1, j}^{\prime}\right)+\varphi\left(u_{n-3, j}\right)+\varphi\left(u_{n-3, j}^{\prime}\right)=6 m n+3$, and $w_{\{0,2\}}\left(u_{n, j}\right)=$ $w_{\{0,2\}}\left(u_{n, j}^{\prime}\right)=\varphi\left(u_{n, j}\right)+\varphi\left(u_{n, j}^{\prime}\right)+\varphi\left(u_{2, j}\right)+\varphi\left(u_{2, j}^{\prime}\right)+\varphi\left(u_{n-2, j}\right)+\varphi\left(u_{n-2, j}^{\prime}\right)=6 m n+3$. Thus, φ is a $\{0,2\}$-DM labeling of $m D_{2}\left(C_{n}\right), n \geq 5$, with vertex sum $6 m n+3$.

As an example, let consider the case $m=1$. In this case, we redefine vertex and edge sets of $D_{2}\left(C_{n}\right)$ as follows: $V\left(D_{2}\left(C_{n}\right)\right)=\left\{u_{i}, u_{i}^{\prime}: 1 \leq i \leq n\right\}$ and $E\left(D_{2}\left(C_{n}\right)\right)=\left\{u_{i} u_{i+1}, u_{i}^{\prime} u_{i+1}^{\prime}\right.$:

On D-distance (anti)magic labelings of shadow graph of some graphs $\quad \mid \quad$ A.A.G. Ngurah et al.
$1 \leq i \leq n-1\} \cup\left\{u_{n} u_{1}, u_{n}^{\prime} u_{1}^{\prime}\right\} \cup\left\{u_{i}^{\prime} u_{i+1}, u_{i+1}^{\prime} u_{i}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n}^{\prime} u_{1}, u_{1}^{\prime} u_{n}\right\}$. Also, $\mathcal{A}=\left\{\left\{u_{i}, u_{i}^{\prime}\right\}: 1 \leq i \leq n\right\}$ and $\mathcal{B}=\{\{i, 2 n+1-i\}: 1 \leq i \leq n\}$.

Next, let $\varphi\left(\left\{u_{i}, u_{i}^{\prime}\right\}\right)=\{i, 2 n+1-i\}$ for $1 \leq i \leq n$. Then $w\left(u_{1}\right)=w\left(u_{1}^{\prime}\right)=\left[\varphi\left(u_{n}\right)+\varphi\left(u_{n}^{\prime}\right)\right]+$ $\left[\varphi\left(u_{2}\right)+\varphi\left(u_{2}^{\prime}\right)\right]=[n+n+1]+[2+2 n-1]=4 n+2, w\left(u_{i}\right)=w\left(u_{i}^{\prime}\right)=\left[\varphi\left(u_{i-1}\right)+\varphi\left(u_{i-1}^{\prime}\right)\right]+$ $\left[\varphi\left(u_{i+1}\right)+\varphi\left(u_{i+1}^{\prime}\right)\right]=[i-1+2 n+1-i+1]+[i+1+2 n+1-i-1]=4 n+2$ for $1 \leq i \leq n-1$, and $w\left(u_{n}\right)=w\left(u_{n}^{\prime}\right)=\left[\varphi\left(u_{n-1}\right)+\varphi\left(u_{n-1}^{\prime}\right)\right]+\left[\varphi\left(u_{1}\right)+\varphi\left(u_{1}^{\prime}\right)\right]=[n-1+n+2]+[1+2 n]=4 n+2$. Hence, φ is a DM labeling of $D_{2}\left(C_{n}\right)$ with vertex sum $4 n+2$.

Next, we show that φ is also a $\{0,2\}$-DM labeling $D_{2}\left(C_{n}\right)$.
Case $n=3 . w_{\{0,2\}}\left(u_{i}\right)=w_{\{0,2\}}\left(u_{i}^{\prime}\right)=\varphi\left(u_{i}\right)+\varphi\left(u_{i}^{\prime}\right)=7$ for $1 \leq i \leq 3$.
Case $n=4$. $w_{\{0,2\}}\left(u_{1}\right)=w_{\{0,2\}}\left(u_{1}^{\prime}\right)=w_{\{0,2\}}\left(u_{3}\right)=w_{\{0,2\}}\left(u_{3}^{\prime}\right)=\varphi\left(u_{1}\right)+\varphi\left(u_{1}^{\prime}\right)+\varphi\left(u_{3}\right)+$ $\varphi\left(u_{3}^{\prime}\right)=18$ and $w_{\{0,2\}}\left(u_{2}\right)=w_{\{0,2\}}\left(u_{2}^{\prime}\right)=w_{\{0,2\}}\left(u_{4}\right)=w_{\{0,2\}}\left(u_{4}^{\prime}\right)=\varphi\left(u_{2}\right)+\varphi\left(u_{2}^{\prime}\right)+\varphi\left(u_{4}\right)+$ $\varphi\left(u_{4}^{\prime}\right)=18$.
Case $n \geq 5 . w_{\{0,2\}}\left(u_{1}\right)=w_{\{0,2\}}\left(u_{1}^{\prime}\right)=\varphi\left(u_{1}\right)+\varphi\left(u_{1}^{\prime}\right)+\varphi\left(u_{3}\right)+\varphi\left(u_{3}^{\prime}\right)+\varphi\left(u_{n-1}\right)+\varphi\left(u_{n-1}^{\prime}\right)=6 n+$ $3, w_{\{0,2\}}\left(u_{2}\right)=w_{\{0,2\}}\left(u_{2}^{\prime}\right)=\varphi\left(u_{2}\right)+\varphi\left(u_{2}^{\prime}\right)+\varphi\left(u_{4}\right)+\varphi\left(u_{4}^{\prime}\right)+\varphi\left(u_{n}\right)+\varphi\left(u_{n}^{\prime}\right)=6 n+3, w_{\{0,2\}}\left(u_{i}\right)=$ $w_{\{0,2\}}\left(u_{i}^{\prime}\right)=\varphi\left(u_{i}\right)+\varphi\left(u_{i}^{\prime}\right)+\varphi\left(u_{i+2}\right)+\varphi\left(u_{i+2}^{\prime}\right)+\varphi\left(u_{i-2}\right)+\varphi\left(u_{i-2}^{\prime}\right)=6 n+3$ for $3 \leq i \leq n-2$, $w_{\{0,2\}}\left(u_{n-1}\right)=w_{\{0,2\}}\left(u_{n-1}^{\prime}\right)=\varphi\left(u_{n-1}\right)+\varphi\left(u_{n-1}^{\prime}\right)+\varphi\left(u_{1}\right)+\varphi\left(u_{1}^{\prime}\right)+\varphi\left(u_{n-3}\right)+\varphi\left(u_{n-3}^{\prime}\right)=6 n+3$, and $w_{\{0,2\}}\left(u_{n}\right)=w_{\{0,2\}}\left(u_{n}^{\prime}\right)=\varphi\left(u_{n}\right)+\varphi\left(u_{n}^{\prime}\right)+\varphi\left(u_{2}\right)+\varphi\left(u_{2}^{\prime}\right)+\varphi\left(u_{n-2}\right)+\varphi\left(u_{n-2}^{\prime}\right)=6 n+3$. Hence, φ is a $\{0,2\}$-DM labeling of $D_{2}\left(C_{3}\right), D_{2}\left(C_{4}\right)$, and $D_{2}\left(C_{n}\right), n \geq 5$, with vertex sum 7,18 , and $6 n+3$, respectively.

Next, we consider the $(\alpha, \beta)-\{0,1\}$-DA and $(\alpha, \beta)-\{2\}$-DA labelings of the graph $m D_{2}\left(C_{n}\right)$.
Lemma 2.5. Let $m \geq 1$ and $n \geq 3$ be integers.
i). If the graph $m D_{2}\left(C_{n}\right)$ is $\left(\alpha_{1}, \beta_{1}\right)-\{0,1\}-\mathrm{DA}$, then $\beta_{1}=1, \alpha_{1}=4 n m+3$ and $\beta_{1}=3$, $\alpha_{1}=2 n m+4$.
ii). If the graph $m D_{2}\left(C_{n}\right)$ is $\left(\alpha_{2}, \beta_{2}\right)-\{2\}$-DA graphs, then $\beta_{2}=1, \alpha_{2}=4 n m+3$ and $\beta_{2}=3$, $\alpha_{2}=2 n m+4$.

Proof. By Theorem 2.1 and equation (1), we have the desire results.
As a consequence of Lemma 2.1 and Theorem 2.2, we have the following result.
Corollary 2.1. i. For every integer $m \geq 1$ and $n \geq 3$, the graph $m D_{2}\left(C_{n}\right)$ is $(4 n m+3,1)-\{0,1\}$ DA.
ii a). For every integer $m \geq 1$, the graph $m D_{2}\left(C_{3}\right)$ is $(1,1)-\{2\}$-DA.
ii b). For every integer $m \geq 1$, the graph $m D_{2}\left(C_{4}\right)$ is $(8 m+2,1)-\{2\}$-DA.
ii c). For every integer $m \geq 1$ and $n \geq 5$, the graph $m D_{2}\left(C_{n}\right)$ is $(4 m n+3,1)-\{2\}$-DA.

Lemma 2.6. If $m n \equiv 1,2(\bmod 3)$, then the graph $m D_{2}\left(C_{n}\right)$ is not $\left(\alpha_{1}, 3\right)-\{0,1\}$-DA and it is not $\left(\alpha_{2}, 3\right)-\{2\}$-DA for some integer α_{1} and α_{2}.

Proof. Due to Lemma 2.4, if φ is an $(\alpha, 3)-\{0,1\}$ (resp. $(\alpha, 3)-\{2\})$-DA labeling of $m D_{2}\left(C_{n}\right)$, then $\left|\varphi(u)-\varphi\left(u^{\prime}\right)\right|=3 d$ for some positive integer d and for every pair $u, u^{\prime} \in V\left(m D_{2}\left(C_{n}\right)\right)$. Hence, $2 \mathrm{~nm} \equiv 0(\bmod 3)$ or $n m \equiv 0(\bmod 3)$.

Next, let us consider the graph $D_{2}\left(C_{n}\right)$, where $n \equiv 0(\bmod 3)$. It is not easy for us to prove whether $D_{2}\left(C_{n}\right)$ is $(2 n+4,3)-\{0,1\}-D A$ or not. We only have the following results. By equation (2), the graph $D_{2}\left(C_{3}\right)$ is not $(10,3)-\{0,1\}$-DA. Let $D_{2}\left(C_{6}\right)$ is $(16,3)-\{0,1\}-D A$, then $\{w(u)$: $\left.u \in V\left(D_{2}\left(C_{6}\right)\right)\right\}=\{16,19,22,25,28,31,34,37,40,43,46,49\}$. Since there is a unique way to express 16 and 49 as a sum of five numbers in the set $\{1,2,3, \ldots, 12\}$, that is $16=1+2+3+4+6$ and $49=7+9+10+11+12$, and due to Lemma 2.4, we have two possibilities to label of vertices of $D_{2}\left(C_{6}\right)$ as in the Figure 2 . We can verify that the labelings do not lead to a $(16,3)-\{0,1\}$ DA labeling of $D_{2}\left(C_{6}\right)$. So, the graph $D_{2}\left(C_{6}\right)$ is not $(16,3)-\{0,1\}$-DA. By the same arguments, $D_{2}\left(C_{3}\right)$ is not $(10,3)-\{2\}$-DA and $D_{2}\left(C_{6}\right)$ is not (16, 3$)$ - $\{2\}$-DA.

Figure 2. The possibilities to label of $D_{2}\left(C_{6}\right)$

Problem 1. Decide if there exists $a(2 n+4,3)-\{0,1\}$ (resp. $(2 n+4,3)-\{2\})$-DA labeling of $D_{2}\left(C_{n}\right)$ for every integer $9 \leq n \equiv 0(\bmod 3)$.

Next, we consider the shadow graph $m D_{2}\left(K_{n, n}\right)$. In the next result, we show that $m D_{2}\left(K_{n, n}\right)$ is a DM graph as well as a $\{0,2\}$-DM graph.

Theorem 2.3. For every integer $m, n \geq 1$, the graph $G=m D_{2}\left(K_{n, n}\right)$ is DM and $\{0,2\}$-DM.
Proof. For $1 \leq j \leq m$, let $V(G)=V_{1, j} \cup V_{2, j} \cup V_{1, j}^{\prime} \cup V_{2, j}^{\prime}$ and $E(G)=V_{1, j} V_{2, j} \cup V_{1, j}^{\prime} V_{2, j}^{\prime} \cup$ $V_{2, j} V_{1, j}^{\prime} \cup V_{1, j} V_{2, j}^{\prime}$, where $V_{1, j}=\left\{u_{i, j}: 1 \leq i \leq n\right\}, V_{2, j}=\left\{v_{i, j}: 1 \leq i \leq n\right\}, V_{1, j}^{\prime}=\left\{u_{i, j}^{\prime}:\right.$ $1 \leq i \leq n\}, V_{2, j}^{\prime}=\left\{v_{i, j}^{\prime}: 1 \leq i \leq n\right\}$, and $V_{i, j} V_{k, l}$ means that every vertex in $V_{i, j}$ is adjacent to each vertex in $V_{k, l}$ and vice versa. Next, for $1 \leq j \leq m$, let $S_{1, j}=\{(j-1) n+i: 1 \leq i \leq n\}$, $S_{2, j}=\{m n+(j-1) n+i: 1 \leq i \leq n\}, S_{3, j}=\{3 m n+1-(j-1) n-i: 1 \leq i \leq n\}$, and $S_{4, j}=\{4 m n+1-(j-1) n-i: 1 \leq i \leq n\}$. It is clear that, for $1 \leq j \leq m, S_{1, j} \cup S_{2, j} \cup S_{3, j} \cup S_{4, j}=$ $\{1,2,3, \ldots, 4 m n\}, \sum_{s \in S_{1, j}} s=\frac{1}{2} n(2 n(j-1)+n+1), \sum_{s \in S_{2, j}} s=\frac{1}{2} n(2 m n+2 n(j-1)+n+1)$, $\sum_{s \in S_{3, j}} s=\frac{1}{2} n(6 m n-2 n(j-1)-n+1)$, and $\sum_{s \in S_{4, j}} s=\frac{1}{2} n(8 m n-2 n(j-1)-n+1)$.

Next, for $1 \leq j \leq m$, label each vertex in $V_{1, j}$ by every number in $S_{1, j}$, each vertex in $V_{2, j}$ by every number in $S_{2, j}$, each vertex in $V_{1, j}^{\prime}$ by every number in $S_{4, j}$, and each vertex in $V_{2, j}^{\prime}$ by every number in $S_{3, j}$. Then, for $1 \leq i \leq n$ and $1 \leq j \leq m, w\left(u_{i, j}\right)=w\left(u_{i, j}^{\prime}\right)=$
$\frac{1}{2} n(2 m n+2 n(j-1)+n+1)+\frac{1}{2} n(6 m n-2 n(j-1)-n+1)=n(4 m n+1)$, and $w\left(v_{i, j}\right)=$ $w\left(v_{i, j}^{\prime}\right)=\frac{1}{2} n(2 n(j-1)+n+1)+\frac{1}{2} n(8 m n-2 n(j-1)-n+1)=n(4 m n+1)$. Thus, $m D_{2}\left(K_{n, n}\right)$ is a DM graph.

Next, we show that the labeling is also a $\{0,2\}$-DM labeling of $m D_{2}\left(K_{n, n}\right)$. For $1 \leq i \leq n$ and $1 \leq j \leq m, w\left(u_{i, j}\right)=w\left(u_{i, j}^{\prime}\right)=\frac{1}{2} n(2 n(j-1)+n+1)+\frac{1}{2} n(8 m n-2 n(j-1)-n+1)=n(4 m n+1)$, and $w\left(v_{i, j}\right)=w\left(v_{i, j}^{\prime}\right)=\frac{1}{2} n(2 m n+2 n(j-1)+n+1)+\frac{1}{2} n(6 m n-2 n(j-1)-n+1)=n(4 m n+1)$. Hence, $m D_{2}\left(K_{n, n}\right)$ is a $\{0,2\}$-DM graph.

Next, we provide an illustration of the proof of Theorem 2.3 for $m=1$. First, redefine vertex and edge sets of $D_{2}\left(K_{n, n}\right)$ as follows: $V\left(D_{2}\left(K_{n, n}\right)\right)=V_{1} \cup V_{2} \cup V_{1}^{\prime} \cup V_{2}^{\prime}$ and $E\left(D_{2}\left(K_{n, n}\right)\right)=$ $V_{1} V_{2} \cup V_{1}^{\prime} V_{2}^{\prime} \cup V_{1}^{\prime} V_{2} \cup V_{2}^{\prime} V_{1}$, where $V_{1}=\left\{u_{i}: 1 \leq i \leq n\right\}, V_{2}=\left\{v_{i}: 1 \leq i \leq n\right\}, V_{1}^{\prime}=\left\{u_{i}^{\prime}: 1 \leq\right.$ $i \leq n\}, V_{2}^{\prime}=\left\{v_{i}^{\prime}: 1 \leq i \leq n\right\}$. Also, $S_{1}=\{1,2,3, \ldots, n\}, S_{2}=\{n+1, n+2, n+3, \ldots, 2 n\}$, $S_{3}=\{3 n, 3 n-1,3 n-2, \ldots, 2 n+1\}$, and $S_{4}=\{4 n, 4 n-1,4 n-2, \ldots, 3 n+1\}$. Obviously, $\sum_{s \in S_{1}} s=\frac{1}{2} n(n+1), \sum_{s \in S_{2}} s=\frac{1}{2} n(3 n+1), \sum_{s \in S_{3}} s=\frac{1}{2} n(5 n+1)$, and $\sum_{s \in S_{4}} s=\frac{1}{2} n(7 n+1)$.

Finally, label every vertex in V_{1} by each member of S_{1}, every vertex in V_{2} by each member of S_{2}, every vertex in V_{1}^{\prime} by each member of S_{4}, and every vertex in V_{2}^{\prime} by each member of S_{3}. Under this labeling, for $1 \leq i \leq n, w\left(u_{i}\right)=w\left(u_{i}^{\prime}\right)=\frac{1}{2} n(3 n+1)+\frac{1}{2} n(5 n+1)=n(4 n+1)$, and $w\left(v_{i}\right)=w\left(v_{i}^{\prime}\right)=\frac{1}{2} n(n+1)+\frac{1}{2} n(7 n+1)=n(4 n+1)$. So, $D_{2}\left(K_{n, n}\right)$ is a DM graph. Next, for $1 \leq i \leq n, w\left(u_{i}\right)=w\left(u_{i}^{\prime}\right)=\frac{1}{2} n(n+1)+\frac{1}{2} n(7 n+1)=n(4 n+1)$, and $w\left(v_{i}\right)=w\left(v_{i}^{\prime}\right)=$ $\frac{1}{2} n(3 n+1)+\frac{1}{2} n(5 n+1)=n(4 n+1)$. So, $D_{2}\left(K_{n, n}\right)$ is a $\{0,2\}$-DM graph.

As a consequence of Lemma 2.1 and Theorem 2.3, we have the following result.
Corollary 2.2. The graph $m D_{2}\left(K_{n, n}\right)$ is $(n(4 m n+1)+1,1)-\{0,1\}$-DA and $(n(4 m n-4 m+1), 1)-$ $\{2\}$-DA for every integer $m, n \geq 1$.

By a similar argument as in the proof of Lemma 2.6, we have the following lemma.
Lemma 2.7. If $m n \equiv 1,2(\bmod 3)$, then the graph $m D_{2}\left(K_{n, n}\right)$ is not $\left(\alpha_{1}, 3\right)-\{0,1\}$-DA and it is not $\left(\alpha_{2}, 3\right)-\{2\}$-DA for some integer α_{1} and α_{2}.

The problem related to these results are as follows.
Problem 2. Decide if there exists a $(\alpha, 3)-\{0,1\}$ (resp. $(\alpha, 3)-\{2\})$-DA labeling of $\left(D_{2}\left(K_{n, n}\right)\right)$ for every integer $n \equiv 0(\bmod 3)$.

Problem 3. For every integer $m \geq 1$ and $n_{1} \neq n_{2} \geq 1$, find $a \mathrm{DM}$ labeling and an ($\left.\alpha, \beta\right)-\{0,1\}$ DA labeling of the graph $m D_{2}\left(K_{n_{1}, n_{2}}\right)$.

3. Conclusion

In this paper, we study D-DM labeling and (α, β) - D-DA labeling of shadow graphs for $D \in$ $\{\{1\},\{0,1\},\{2\},\{0,2\}\}$. We provide some necessary conditions for the shadow graph of a regular graph to be D-DM or $(\alpha, \beta)-\{D\}$-DA. Also, we prove the existence and nonexistence of D-DM labeling and $(\alpha, \beta)-\{D\}$-DA labeling for the graphs $m D_{2}\left(C_{n}\right)$ and $m D_{2}\left(K_{n, n}\right)$. Our results also give an example if $D_{2}(G)$ is D-DM, G needs not to be D-DM. Namely, $D_{2}\left(C_{n}\right)$ is DM for every $n \geq 3$, however, C_{n} is not DM for $n \neq 4$.

On D-distance (anti)magic labelings of shadow graph of some graphs $\quad \mid \quad$ A.A.G. Ngurah et al.

References

[1] S. Arumugam and N. Kamatchi, On (a,d)-distance antimagic graphs, Australas J. Combin. 54 (2012), 279 - 287.
[2] S. Beena, On \sum and \sum^{\prime} labelled graphs, Discrete Math. 309 (2009), 1783 - 1787.
[3] D. Froncek, Handicap distance antimagic graphs and incomplete tournaments, AKCE Int. J. Graphs and Combin. 10 (2013), 119 - 127.
[4] B. Freyberg and M. Keranen, Orientable Z_{n}-distance magic labeling of the Cartesian product of many cycles, Electron. J. Graph Theory Appl. 5(2) (2017), 304-311.
[5] D. Froncek and A. Shepanik, Regular handicap graphs of order $n \equiv 0(\bmod 8)$, Electron. J. Graph Theory Appl. 6(2) (2018), 208-218.
[6] J. Gallian, A dynamic survey of graph labeling, The Electronic J. of Combinat. 25 (2022), \#DS6.
[7] N. Kamatchi and S. Arumugam, Distance antimagic graphs, J. Combin. Math. Combin. Comput. 84 (2013), 61 -- 67.
[8] N. Kamatchi, G.R. Vijayakumar, A. Ramalakshmi, S. Nilavarasi, and S. Arumugam, 2016, Distance antimagic labelings of graphs, ICTCSDM 2016: First International Conference on Theoretical Computer Science and Discrete Mathematics, Krishnankoil, India, 19-21 December.
[9] C. Krisna and S. Perikamana, 2021, Distance magic labeling on shadow graphs, ICMTA 2021: 2nd International Conference on Mathematical Techniques and Applications, Kattankulathur, India, 24-26 March.
[10] M. Miller, C. Rodger, and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003), $305-315$.
[11] A. O'Neal and P. Slater, An introduction to distance D-magic graphs, J. Indones. Math. Soc. Special Edition (2011), 89 - 107.
[12] A. O'Neal and P. Slater, Uniqueness of vertex magic constants, SIAM J. Discrete Math. 27 (2013), $708-716$.
[13] A.A.G. Ngurah and N. Inayah, 2022, On $\{0,1\}$-distance labelings of 2-regular graphs, ICoMCoS 2022: International Conference on Mathematics, Computational Sciences and Statistics, Surabaya, Indonesia, 3 October.
[14] A.A.G. Ngurah and R. Simanjuntak, On Distance labelings of 2-regular graphs, Electron. J. Graph Theory Appl. 9(1) (2021), $25-37$.
[15] R. Simanjuntak and K. Wijaya, On distance antimagic graphs, arXiv:1312.7405.
[16] K.A. Sugeng, D. Froncek, M. Miller, J. Ryan, and J. Walker, On distance magic labeling of graphs, J. Combin. Math. Combin. Comput. 71 (2009), 39 - 48.
[17] V. Vilfred, E-labelled Graph and Circulant Graphs, Ph.D. Thesis, University of Kerala, Trivandrum, India, 1994.

