About the second neighborhood problem in tournaments missing disjoint stars

Salman Ghazal
Department of Mathematics
Faculty of Sciences I, Lebanese University
Beirut - Lebanon.
Institute Camille Jordan
Département de Mathématiques, Université Claude Bernard Lyon 1
Lyon - France.

salmanghazal@hotmail.com

Abstract

Let D be a digraph without digons. Seymour's second neighborhood conjecture states that D has a vertex v such that $d^{+}(v) \leq d^{++}(v)$. Under some conditions, we prove this conjecture for digraphs missing n disjoint stars. Weaker conditions are required when $n=2$ or 3 . In some cases we exhibit two such vertices.

Keywords: oriented graph, out-neighborhood, second out-neighborhood, star Mathematics Subject Classification : 05C20
DOI:10.5614/ejgta.2016.4.2.6

1. Introduction

In this paper, a digraph D is a pair of two disjoint finite sets (V, E) such that $E \subseteq V \times V . E$ is the arc set and V is the vertex set and they are denoted by $E(D)$ and $V(D)$ respectively. An oriented graph is a digraph without loop and digon (directed cycles of length two). If $K \subseteq V(D)$ then the induced restriction of D to K is denoted by $D[K]$. As usual, $N_{D}^{+}(v)$ (resp. $N_{D}^{-}(v)$) denotes the (first) out-neighborhood (resp. in-neighborhood) of a vertex $v \in V . N_{D}^{++}(v)$ (resp.

Received: 13 September 2015, Revised: 29 August 2016, Accepted: 15 September 2016.
$N_{D}^{--}(v)$) denotes the second out-neighborhood (in-neighborhood) of v, which is the set of vertices that are at distance 2 from v (resp. to v). We also denote $d_{D}^{+}(v)=\left|N_{D}^{+}(v)\right|, d_{D}^{++}(v)=\left|N_{D}^{++}(v)\right|$, $d_{D}^{-}(v)=\left|N_{D}^{-}(v)\right|$ and $d_{D}^{--}(v)=\left|N_{D}^{--}(v)\right|$. We omit the subscript if the digraph is clear from the context. For short, we write $x \rightarrow y$ if the $\operatorname{arc}(x, y) \in E$. A vertex $v \in V(D)$ is called whole if it is adjacent to every vertex in $V(D)-\{v\}$. A $\operatorname{sink} v$ is a vertex with $d^{+}(v)=0$, while a source v is a vertex with $d^{-}(v)=0$. For $x, y \in V(D)$, we say $x y$ is a missing edge of D if neither (x, y) nor (y, x) are in $E(D)$. The missing graph G of D is the graph whose edges are the missing edges of D and whose vertices are the non whole vertices of D. In this case, we say that D is missing G. So, a tournament does not have any missing edge. A star of center x is a graph whose edge set has the form $\left\{a_{i} x ; i=1, \ldots, k\right\}$. In this paper, n stars are said to be disjoint if any two of them do not share a common vertex.

A vertex v of D is said to have the second neighborhood property (SNP) if $d_{D}^{+}(v) \leq d_{D}^{++}(v)$. In 1990, Seymour conjectured the following:

Conjecture 1. (Seymour's Second Neighborhood Conjecture (SNC))[1] Every oriented graph

 has a vertex with the SNP.In 1996, Fisher [3] solved the SNC for tournaments by using a certain probability distribution on the vertices. Another proof of Dean's conjecture was established in 2000 by Havet and Thomassé [7]. Their short proof uses a tool called median orders. Furthermore, they have proved that if a tournament has no sink vertex then there are at least two vertices with the SNP. In 2007 Fidler and Yuster [2] proved, using median orders and dependency digraphs, that SNC holds for digraphs missing a matching, a star or a complete graph. Ghazal proved more general statements in $[4,6]$ and proved that the SNC holds for some other classes of digraphs [5].

2. Definitions and Preliminary Results

Let $L=v_{1} v_{2} \ldots v_{n}$ be an ordering of the vertices of a digraph D. An arc $e=\left(v_{i}, v_{j}\right)$ is forward with respect to L if $i<j$. Otherwise e is a backward arc. The weight of L is $\omega(L)=\mid\left\{\left(v_{i}, v_{j}\right) \in\right.$ $E(D) ; i<j\} \mid$. L is called a median order of D if $\omega(L)=\max \left\{\omega\left(L^{\prime}\right) ; L^{\prime}\right.$ is an ordering of the vertices of $D\}$; that is L maximizes the number of forward arcs. In fact, the median order L satisfies the feedback property: For all $1 \leq i \leq j \leq n$:

$$
d_{D[i, j]}^{+}\left(v_{i}\right) \geq d_{D[i, j]}^{-}\left(v_{i}\right)
$$

and

$$
d_{D[i, j]}^{-}\left(v_{j}\right) \geq d_{D[i, j]}^{+}\left(v_{j}\right)
$$

where $[i, j]:=\left\{v_{i}, v_{i+1}, \ldots, v_{j}\right\}$ (See [7]).
It is also known that if we reverse the orientation of a backward arc $e=\left(v_{i}, v_{j}\right)$ of D with respect to L, then L is again a weighted median order of the new digraph $D^{\prime}=D-\left(v_{i}, v_{j}\right)+\left(v_{j}, v_{i}\right)$
(See [5]).
Let $L=v_{1} v_{2} \ldots v_{n}$ be a median order. Among the vertices not in $N^{+}\left(v_{n}\right)$ two types are distinguished: A vertex v_{j} is good if there is $i \leq j$ such that $v_{n} \rightarrow v_{i} \rightarrow v_{j}$, otherwise v_{j} is a bad vertex. The set of good vertices of L is denoted by G_{L}^{D} [7] (or G_{L} if there is no confusion). Clearly, $G_{L} \subseteq N^{++}\left(v_{n}\right)$. The last vertex v_{n} is called a feed vertex of D.

We say that a missing edge $x_{1} y_{1}$ loses to a missing edge $x_{2} y_{2}$ if: $x_{1} \rightarrow x_{2}, y_{2} \notin N^{+}\left(x_{1}\right) \cup$ $N^{++}\left(x_{1}\right), y_{1} \rightarrow y_{2}$ and $x_{2} \notin N^{+}\left(y_{1}\right) \cup N^{++}\left(y_{1}\right)$. The dependency digraph Δ of D is defined as follows: Its vertex set consists of all the missing edges and $(a b, c d) \in E(\Delta)$ if $a b$ loses to $c d$ [2,5]. Note that Δ may contain digons.

Definition 1. [4] In a digraph D, a missing edge $a b$ is called a good missing edge if:
(i) $(\forall v \in V \backslash\{a, b\})\left[(v \rightarrow a) \Rightarrow\left(b \in N^{+}(v) \cup N^{++}(v)\right)\right]$ or
(ii) $(\forall v \in V \backslash\{a, b\})\left[(v \rightarrow b) \Rightarrow\left(a \in N^{+}(v) \cup N^{++}(v)\right)\right]$.

If $a b$ satisfies (i) we say that (a, b) is a convenient orientation of $a b$.
If $a b$ satisfies $(i i)$ we say that (b, a) is a convenient orientation of $a b$.
We will need the following observation:
Lemma 2.1. ([2], [5]) Let D be an oriented graph and let Δ denote its dependency digraph. A missing edge ab is good if and only if its in-degree in Δ is zero.

Let D be a digraph and let Δ denote its dependency digraph. Let C be a connected component of Δ. Set $K(C)=\{u \in V(D)$; there is a vertex v of D such that $u v$ is a missing edge and belongs to $C\}$. The interval graph of D, denoted by \mathcal{I}_{D} is defined as follows. Its vertex set consists of the connected components of Δ and two vertices C_{1} and C_{2} are adjacent if $K\left(C_{1}\right) \cap K\left(C_{2}\right) \neq \phi$. So \mathcal{I}_{D} is the intersection graph of the family $\{K(C) ; C$ is a connected component of $\Delta\}$. Let ξ be a connected component of \mathcal{I}_{D}. We set $K(\xi)=\cup_{C \in \xi} K(C)$. Clearly, if $u v$ is a missing edge in D then there is a unique connected component ξ of \mathcal{I}_{D} such that u and v belong to $K(\xi)$. For $f \in V(D)$, we set $J(f)=\{f\}$ if f is a whole vertex, otherwise $J(f)=K(\xi)$, where ξ is the unique connected component of \mathcal{I}_{D} such that $f \in K(\xi)$. Clearly, if $x \in J(f)$ then $J(f)=J(x)$ and if $x \notin J(f)$ then x is adjacent to every vertex in $J(f)$.

Let $L=x_{1} \cdots x_{n}$ be a median order of a digraph D. For $i<j$, the sets $[i, j]:=\left[x_{i}, x_{j}\right]:=$ $\left\{x_{i}, x_{i+1}, \ldots, x_{j}\right\}$ and $] i, j\left[=[i, j] \backslash\left\{x_{i}, x_{j}\right\}\right.$ are called intervals of L. We recall that $K \subseteq V(D)$ is an interval of D if for every $u, v \in K$ we have: $N^{+}(u) \backslash K=N^{+}(v) \backslash K$ and $N^{-}(u) \backslash K=N^{-}(v) \backslash K$. The following shows a relation between the intervals of D and the intervals of L.

Proposition 2.1. [6] Let $\mathcal{I}=\left\{I_{1}, \ldots, I_{r}\right\}$ be a set of pairwise disjoint intervals of D. Then for every median order L of D, there is a weighted median order L^{\prime} of D such that: L and L^{\prime} have the same feed vertex and every interval in \mathcal{I} is an interval of L^{\prime}.

We say that D is good digraph if the sets $K(\xi)$'s are intervals of D. By the previous proposition, every good digraph has a median order L such that the $K(\xi)$'s form intervals of L. Such an
enumeration is called a good median order of the good digraph D [6].

Theorem 2.1. [6] Let D be a good oriented graph and let L be a good median order of D, with feed vertex f. Then for every $x \in J(f)$, we have $\left|N^{+}(x) \backslash J(f)\right| \leq\left|G_{L} \backslash J(f)\right|$. So if x has the SNP in $D[J(f)]$, then it has the SNP in D.

Corollary 2.1. ([7]) Let L be a median order of a tournament with feed vertex f. Then $\left.\mid N^{+}(f)\right) \mid \leq$ $\left|G_{L}\right|$.

Let L be a good median order of a good oriented graph D and let f denote its feed vertex. By theorem 2.1, for every $x \in J(f),\left|N^{+}(x) \backslash J(f)\right| \leq\left|G_{L} \backslash J(f)\right|$. Let b_{1}, \cdots, b_{r} denote the bad vertices of L not in $J(f)$ and v_{1}, \cdots, v_{s} denote the non bad vertices of L not in $J(f)$, both enumerated in increasing order with respect to their index in L.
If $\left|N^{+}(x) \backslash J(f)\right|<\left|G_{L} \backslash J(f)\right|$, we set $\operatorname{Sed}(L)=L$. If $\left|N^{+}(x) \backslash J(f)\right|=\left|G_{L} \backslash J(f)\right|$, we set $\operatorname{sed}(L)=b_{1} \cdots b_{r} J(f) v_{1} \cdots v_{s}$. This new order is called the sedimentation of L.

Lemma 2.2. [6] Let L be a good median order of a good oriented graph D. Then $\operatorname{Sed}(L)$ is a good median order of D.

In the rest of this section, D is an oriented graph missing a matching and Δ denotes its dependency digraph. We begin by the following lemma:

Lemma 2.3. [2] The maximum out-degree of Δ is one and the maximum in-degree of Δ is one. Thus Δ is composed of vertex disjoint directed paths and directed cycles.

Proof. Assume that $a_{1} b_{1}$ loses to $a_{2} b_{2}$ and $a_{1} b_{1}$ loses to $a_{2}^{\prime} b_{2}^{\prime}$, with $a_{1} \rightarrow a_{2}$ and $a_{1} \rightarrow a_{2}^{\prime}$. The edge $a_{2}^{\prime} b_{2}$ is not a missing edge of D. If $a_{2}^{\prime} \rightarrow b_{2}$ then $b_{1} \rightarrow a_{2}^{\prime} \rightarrow b_{2}$, a contradiction. If $b_{2} \rightarrow a_{2}^{\prime}$ then $b_{1} \rightarrow b_{2} \rightarrow a_{2}^{\prime}$, a contradiction. Thus, the maximum out-degree of Δ is one. Similarly, the maximum in-degree is one.

In the following, $C=a_{1} b_{1}, \ldots, a_{k} b_{k}$ denotes a directed cycle of Δ, namely $a_{i} \rightarrow a_{i+1}, b_{i+1} \notin$ $N^{++}\left(a_{i}\right) \cup N^{+}\left(a_{i}\right), b_{i} \rightarrow b_{i+1}$ and $a_{i+1} \notin N^{++}\left(b_{i}\right) \cup N^{+}\left(b_{i}\right)$, for all $i<k$.

Lemma 2.4. ([2]) If k is odd then $a_{k} \rightarrow a_{1}, b_{1} \notin N^{++}\left(a_{k}\right) \cup N^{+}\left(a_{k}\right), b_{k} \rightarrow b_{1}$ and $a_{1} \notin N^{++}\left(b_{k}\right) \cup$ $N^{+}\left(b_{k}\right)$. If k is even then $a_{k} \rightarrow b_{1}, a_{1} \notin N^{++}\left(a_{k}\right) \cup N^{+}\left(a_{k}\right), b_{k} \rightarrow a_{1}$ and $b_{1} \notin N^{++}\left(b_{k}\right) \cup N^{+}\left(b_{k}\right)$.

Lemma 2.5. [2] $K(C)$ is an interval of D.
Proof. Let $f \notin K(C)$. Then f is adjacent to every vertex in $K(C)$. If $a_{1} \rightarrow f$ then $b_{2} \rightarrow f$, since otherwise $b_{2} \in N^{++}\left(a_{1}\right) \cup N^{+}\left(a_{1}\right)$ which is a contradiction. So $N^{+}\left(a_{1}\right) \backslash K(C) \subseteq N^{+}\left(b_{2}\right) \backslash K(C)$. Applying this to every losing relation of C yields:
$N^{+}\left(a_{1}\right) \backslash K(C) \subseteq N^{+}\left(b_{2}\right) \backslash K(C) \subseteq N^{+}\left(a_{3}\right) \backslash K(C) \ldots \subseteq N^{+}\left(b_{k}\right) \backslash K(C) \subseteq N^{+}\left(b_{1}\right) \backslash K(C) \subseteq$ $N^{+}\left(a_{2}\right) \backslash K(C) \ldots \subseteq N^{+}\left(a_{k}\right) \backslash K(C) \subseteq N^{+}\left(a_{1}\right) \backslash K(C)$ if k is even. So these inclusion are equalities. An analogous argument proves the same result for odd cycles.

3. Main Results

3.1. Removing n stars

We recall that a vertex x in a tournament T is a king if $\{x\} \cup N^{+}(x) \cup N^{++}(x)=V(T)$. It is well known that every tournament has a king. However, for every natural number $n \notin\{2,4\}$, there is a tournament T_{n} on n vertices, such that every vertex is a king for this tournament.

A digraph is called non trivial if it has at least one arc.
Proposition 3.1. Let D be a digraph missing disjoint stars. If the connected components of its dependency digraph are non-trivial strongly connected, then D is a good digraph.

Proof. Let ξ be a connected component of Δ. First, suppose that $K(\xi)=K(C)$ for some directed cycle $C=a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}$ in Δ, namely $a_{i} \rightarrow a_{i+1}$ and $b_{i+1} \notin N^{+}\left(a_{i}\right) \cup N^{++}\left(a_{i}\right)$. If the set of the missing edges $\left\{a_{i} b_{i} ; i=1, \ldots, n\right\}$ forms a matching, then by lemma $2.5, K(C)$ is an interval of D.

So we will suppose that a center x of a missing star appears twice in the list $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n}$, b_{n} and assume without loss of generality that $x=a_{1}$. Suppose that n is even. Set $K_{1}=$ $\left\{a_{1}, b_{2}, \ldots, a_{n-1}, b_{n}\right\}$ and $K_{2}=K(C) \backslash K_{1}$.

Suppose that $a_{n} \rightarrow b_{1}$ and $a_{1} \notin N^{+}\left(a_{n}\right) \cup N^{++}\left(a_{n}\right)$. Then by following the proof of lemma 2.5 we get the desired result.

Suppose $a_{n} \rightarrow a_{1}$ and $b_{1} \notin N^{+}\left(a_{n}\right) \cup N^{++}\left(a_{n}\right)$. Then by following the proof of lemma 2.5 we get that K_{1} and K_{2} are intervals of D. Assume, for contradiction that $K_{1} \cap K_{2}=\phi$ and let $i>1$ be the smallest index for which x is incident to $a_{i} b_{i}$. Clearly $i>2$. However, $b_{3} \notin K_{1}$ and $x=a_{1} \rightarrow a_{2} \rightarrow a_{3}$ implies that $i>3$. Suppose that $x=a_{i}$. Note that i must be odd by definition of K_{1}. Since $b_{2} \rightarrow a_{1}=x=a_{i}$ and $a_{3} \notin N^{+}(x) \cup N^{++}(x)$ then $a_{3} \rightarrow x$. Similarly $b_{4}, a_{5}, \ldots, b_{i-1}$ are in-neighbors of x. However, b_{i-1} is an out-neighbor of $a_{i}=x$, a contradiction. Suppose that $x=b_{i}$. Similarly, $a_{3}, b_{4}, \ldots, a_{i-1}$ are in-neighbors of x. However, a_{i-1} is an out-neighbor of $b_{i}=x$, a contradiction. Thus $K_{1} \cap K_{2} \neq \phi$. Whence, $K=K_{1} \cup K_{2}$ is an interval of D. Similar argument is used to prove it when n is odd.

This result can be easily extended to the case when $K(\xi)=K(C)$ and C is a non trivial strongly connected component of Δ, because between any two missing edges $u v$ and $z t$ there is directed path from $u v$ to $z t$ and a directed path from $z t$ to $u v$. These two directed paths creat many directed cycles that are used to prove the desired result.

This also is extended to the case when $K(\xi)=\cup_{C \in \xi} K(C)$: Let u and u^{\prime} be two vertices of $K(\xi)$. There are two non trivial strongly connected components of Δ such that $u \in K(C)$ and $u^{\prime} \in K\left(C^{\prime}\right)$. Since ξ is a connected component of \mathcal{I}_{D}, there is a path $C=C_{0} C_{1} \ldots C_{n}=$ C^{\prime}. For all $i>0$, there is $u_{i} \in K\left(C_{i-1}\right) \cap K\left(C_{i}\right)$, by definition of edges in \mathcal{I}_{D}. Therefore, $N^{+}(u) \backslash K(\xi)=N^{+}\left(u_{1}\right) \backslash K(\xi)=\ldots=N^{+}\left(u_{i}\right) \backslash K(\xi)=\ldots=N^{+}\left(u_{n}\right) \backslash K(\xi)=N^{+}\left(u^{\prime}\right) \backslash K(\xi)$
and $N^{-}(u) \backslash K(\xi)=N^{-}\left(u_{1}\right) \backslash K(\xi)=\ldots=N^{-}\left(u_{i}\right) \backslash K(\xi)=\ldots=N^{-}\left(u_{n}\right) \backslash K(\xi)=N^{-}\left(u^{\prime}\right) \backslash$ $K(\xi)$.

Theorem 3.1. Let D be a digraph obtained from a tournament by deleting the edges of disjoint stars. Suppose that, in the induced tournament by the centers of the missing stars, every vertex is a king. If $\delta_{\Delta}^{-}>0$ then D satisfies $S N C$.

Proof. Orient every missing edge of D towards the center of its star. Let L be a median order of the obtained tournament T and let f be its feed vertex. Then f has the SNP in T. We prove that f has the SNP in D as well.

First, suppose that f is a whole vertex. Then $N^{+}(f)=N_{T}^{+}(f)$. Let $v \in N_{T}^{++}(f)$. Then there $\exists u \in V(T)=V(D)$ such that $f \rightarrow u \rightarrow v \rightarrow f$ in T. Since f is whole, then (f, u) and $(v, f) \in D$. If $(u, v) \in D$ then $v \in N^{++}(f)$. Otherwise, $u v$ is a missing edge and hence, $\exists a b$ that loses to $u v$, say $b \rightarrow v$ and $u \notin N^{+}(b) \cup N^{++}(b)$. But $f b$ is not a missing edge, since f is whole. Then $(f, b) \in D$, since otherwise, $b \rightarrow f \rightarrow u$ in D which is a contradiction. Therefore, $f \rightarrow b \rightarrow v$ in D. Whence, $v \in N^{++}(f)$. So $N_{T}^{++}(f) \subseteq N^{++}(f)$. Therefore, $d^{+}(f)=d_{T}^{+}(f) \leq d_{T}^{++}(f) \leq d^{++}(f)$.

Now suppose that f is the center of a missing star. Then $N^{+}(f)=N_{T}^{+}(f)$. Let $v \in N_{T}^{++}(f)$. Then there $\exists u \in V(T)=V(D)$ such that $f \rightarrow u \rightarrow v \rightarrow f$ in T. Then $(f, u) \in D$ while $(f, v) \notin D$. If $(u, v) \in D$ then $v \in N^{++}(f)$. Otherwise, $u v$ is a missing edge and v is the center of a missing star. Then $v \in N^{+}(f) \cup N^{++}(f)$, because f is a king for the centers of the missing stars. Note that $v \notin N^{+}(f)$. So $N_{T}^{++}(f) \subseteq N^{++}(f)$. Therefor, f has the SNP in D.

Finally, suppose that f is not whole and not the center of a missing star. Then $\exists x$ a center of a missing star such that $f x$ is a missing edge. We distinguish between two cases.

In the first case, we suppose that $f x$ does not lose to any missing edge. We reorient $f x$ as (x, f). Since $(f, x) \in T$ is a backward arc with respect to L, the again L is a median order of the new tournament T^{\prime} obtained by reversing the orientation of $f x$. Moreover, $N^{+}(f)=N_{T^{\prime}}^{+}(f)$ and f has the SNP in T^{\prime}. Let $v \in N_{T^{\prime}}^{++}(f)$. Then there $\exists u \in V(T)=V(D)$ such that $f \rightarrow u \rightarrow v \rightarrow f$ in T^{\prime}. Then $(f, u) \in D$ while $(f, v) \notin D$. If (u, v) in D then $v \in N^{++}(f)$. Otherwise $u v$ is a missing edge and v is the center of a missing star.Since Δ has no source, there is a missing edge that loses to $u v$. Suppose that this edge is of the form $a x$. Then we must have $x \rightarrow v$ and $u \notin N^{+}(x) \cup N^{++}(x)$, by definition of losing relation and due to the fact that $v \in N^{+}(x) \cup N^{++}(x)$ (x is a king for the centers of the missing stars). If $v \notin N^{++}(f)$, then $f x$ loses $u v$ which is a contradiction to the supposition of this case. Hence, $v \notin N^{++}(f)$. Now, suppose that the missing edge that loses to $u v$ is of the form $b y$ with $x \notin\{b, y\}$. Suppose without loss of generality that y is the center of a missing star containing $b y$. Then $y \rightarrow v$ and $u \notin N^{+}(y) \cup N^{++}(y)$, by definition of losing relation and due to the fact that $v \in N^{+}(y) \cup N^{++}(y)$ (y is a king for the centers of the missing stars). But $(f, u) \in D$ and $f y$ is not a missing edge, then $(f, y) \in D$. Thus $f \rightarrow y \rightarrow v$. Whence, $v \in N^{+}(f) \cup N^{++}(f)$. So $N_{T^{\prime}}^{++}(f) \subseteq N^{++}(f)$. Therefor, f has the SNP in D as well.

In the second case, we suppose that $f x$ loses to some missing edge $b y$. We may assume without loss of generality that y is the center of a missing star containing by. Then we must have $x \rightarrow y$ and $b \notin N^{+}(x) \cup N^{++}(x)$. Clearly, $N^{+}(f) \cup\{y\}=N_{T}^{+}(f)$. We prove that $N_{T}^{++}(f) \subseteq N^{++}(f) \cup\{y\}$. Let $v \in N_{T}^{++}(f) \backslash y$. Then there $\exists u \in V(T)=V(D)$ such that $f \rightarrow u \rightarrow v \rightarrow f$ in T. Suppose that $u=x$. Since $b v$ is not a missing edge, $x=u \rightarrow v$ and $b \notin N^{+}(x) \cup N^{++}(x)$ then we must have $(b, v) \in D$. Whence, $f \rightarrow b \rightarrow v$ in D. Therefore $v \in N^{++}(f)$. Now suppose that $u \neq x$. Then $(f, u) \in D$. If $(u, v) \in D$ then $v \in N^{++}(f)$. Otherwise, $u v$ is a missing edge. Hence there is a missing edge $p q$ that loses to $u v$, namely, $q \rightarrow v$ and $u \notin N^{+}(q) \cup N^{++}(q)$. If $q=x$, then we have $f \rightarrow x \rightarrow v \rightarrow f$ in T, which is the same as the case when $u=x$. So we may suppose that $q \neq x$. Note that q must be the center of a missing star. So $f, x \notin\{p, q\}$. Thus $f q$ is not a missing edge, $u \notin N^{+}(q) \cup N^{++}(q)$ and $(f, u) \in D$. Then we must have $(f, q) \in D$, since otherwise we get $q \rightarrow f \rightarrow u$ in D which is a contradiction. Thus $f \rightarrow q \rightarrow v$ in D. Whence $v \in N^{++}(f)$. So $N_{T}^{++}(f) \subseteq N^{++}(f) \cup\{y\}$. Therefore $d^{+}(f)+1=d_{T}^{+}(f) \leq d_{T}^{++}(f) \leq d^{++}(f)+1$. Whence f has the SNP in D.

3.2. Removing a star

A more general statement to the following theorem is proved in [4]. Here we introduce another prove that uses the sedimentation technique of a median order.
Theorem 3.2. [2] Let D be an oriented graph missing a star. Then D satisfies $S N C$.
Proof. Orient all the missing edges of D towards the center x of the missing star. The obtained digraph is a tournament T. Let L be a median order of T that maximizes α, the index of x in L, and let f denote its feed vertex. Reorient the missing edges incident to f towards f (if any). L is also a median order of the new tournament T^{\prime}. Note that $N^{+}(f)=N_{T^{\prime}}^{+}(f)$ and we have $d_{T^{\prime}}^{+}(f) \leq\left|G_{L}^{T^{\prime}}\right|$. If $x \in G_{L}^{T^{\prime}}$ and $d_{T^{\prime}}^{+}(f)=\left|G_{L}^{T^{\prime}}\right|$ then $\operatorname{sed}(L)$ is a median order of T^{\prime} in which the index of x is greater than α, and also greater than the index of f. So we can give the missing edge incident to f (if it exists then it is $x f$) its initial orientation (as in T) such that $\operatorname{sed}(L)$ is a median order of T, a contradiction to the fact that L maximizes α. So $x \notin G_{L}^{T^{\prime}}$ or $d^{+} T^{\prime}(f)<\left|G_{L}^{T^{\prime}}\right|$. If $f=x$ then, clearly, $d^{+}(f)=d_{T^{\prime}}^{+}(f) \leq\left|G_{L}^{T^{\prime}}\right| \leq d_{T^{\prime}}^{++}(f)=d^{++}(f)$. Now suppose that $f \neq x$. We have that x is the only possible gained second out-neighbor vertex for f. If $x \notin G_{L}^{T^{\prime}}$ then $G_{L}^{T^{\prime}} \subseteq N^{++}(f)$, whence the result follows. If $d_{T^{\prime}}^{+}(f)<\left|G_{L}^{T^{\prime}}\right|$ then $d^{+}(f)=d_{T^{\prime}}^{+}(f) \leq\left|G_{L}^{T^{\prime}}\right|-1 \leq d^{++}(f)$. So f has the SNP in D.

3.3. Removing 2 disjoint stars

In this section, let D be a digraph obtained from a tournament by deleting the edges of 2 disjoint stars and let Δ denote its dependency digraph. Let S_{x} and S_{y} be the two missing disjoint stars with centers x and y respectively, $A=V\left(S_{x}\right) \backslash x, B=V\left(S_{y}\right) \backslash y, K=V\left(S_{x}\right) \cup V\left(S_{y}\right)$ (the set of non whole vertices) and assume without loss of generality that $x \rightarrow y$. In [4] it is proved that if the dependency digraph of any digraph consists of isolated vertices only then it satisfies SNC. Here we consider the case when the Δ has no isolated vertices.

Theorem 3.3. Let D be an oriented graph missing 2 disjoint stars. If Δ has no isolated vertex, then D satisfies $S N C$.

Proof. Assume without loss of generality that $x \rightarrow y$. We note that the condition Δ has no isolated vertex, implies that for every $a \in A$ and $y \in B$ we have $y \rightarrow a$ and $b \rightarrow x$. We shall orient all the missing edges of D. First, we give every good edge a convenient orientation. For the other missing edges, let the orientation be towards the center of the 2 missing stars S_{x} or S_{y}. The obtained digraph is a tournament T. Let L be a median order of T such that the index k of x is maximum and let f denote its feed vertex. We know that f has the SNP in T. We have only 5 cases:

Suppose that f is a whole vertex. In this case $N^{+}(f)=N_{T}^{+}(f)$. Suppose $f \rightarrow u \rightarrow v$ in T. Clearly $(f, u) \in D$. If $(u, v) \in D$ or is a convenient orientation then $v \in N^{+}(f) \cup N^{++}(f)$. Otherwise there is a missing edge $z t$ that loses to $u v$ with $t \rightarrow v$ and $u \notin N^{+}(f) \cup N^{++}(f)$. But $f \rightarrow u$, then $f \rightarrow t$, whence $f \rightarrow t \rightarrow v$ in D. Therefore, $N^{++}(f)=N_{T}^{++}(f)$ and f has the SNP in D as well.

Suppose $f=x$. Orient all the edges of S_{x} towards the center $x . L$ is a median order of the modified completion T^{\prime} of D. We have $N^{+}(f)=N_{T^{\prime}}^{+}(f)$. Suppose $f \rightarrow u \rightarrow v$ in T^{\prime}. If $(u, v) \in D$ or is a convenient orientation then $v \in N^{+}(f) \cup N^{++}(f)$. Otherwise $(u, v)=(b, y)$ for some $b \in B$, but $f=x \rightarrow y$. Thus, $N^{++}(f)=N_{T^{\prime}}^{++}(f)$ and f has the SNP in T^{\prime} and D.

Suppose $f=b \in B$. Orient the missing edge by towards b. Again, L is a median order of the modified tournament T^{\prime} and $N^{+}(f)=N_{T^{\prime}}^{+}(f)$. Suppose $f \rightarrow u \rightarrow v$ in T^{\prime}. If $(u, v) \in D$ or is a convenient orientation then $v \in N^{+}(f) \cup N^{++}(f)$. Otherwise $(u, v)=\left(b^{\prime}, y\right)$ for some $b^{\prime} \in B$ or $(u, v)=(a, x)$ for some $a \in A$, however $x, y \in N^{++}(f) \cup N^{+}(f)$ because $f=b \rightarrow x \rightarrow y$ in D. Thus, $N^{++}(f)=N_{T^{\prime}}^{++}(f)$ and f has the SNP in T^{\prime} and D.

Suppose $f=y$. Orient the missing edges towards y and let T^{\prime} denote the new tournament. We note that $B \subseteq N^{++}(y) \cap N_{T^{\prime}}^{++}(y)$ due to the condition $\delta_{\Delta}>0$. Also, x is the only possible new second neighbor of y in T^{\prime}. If $B \cup\{x\} \nsubseteq G_{L}$ or $d_{T^{\prime}}^{+}(y)<d_{T^{\prime}}^{++}(y)$, then $d^{+}(y)=d_{T^{\prime}}^{+}(y) \leq d_{T^{\prime}}^{++}(y)-1 \leq d^{++}(y)$. Otherwise, $B \cup\{x\} \nsubseteq G_{L}$ and $d_{T^{\prime}}^{+}(y)=\left|G_{L}\right|$. In this case we consider the median order $\operatorname{Sed}(L)$ of T^{\prime}. Now the feed vertex of $\operatorname{sed}(L)$ is different from y, the index of x had increased, and the index of y became less than the index of any vertex of B which makes $\operatorname{Sed}(L)$ a median order of T also, in which the index of x is greater than k, a contradiction.

Suppose $f=a \in A$. Orient the missing edge $a x$ as (x, a) and let T^{\prime} denote the new tournament. Note that y is the only possible new second neighbor of a in T^{\prime} and not in D. Also $x \in N_{T}^{++}(a) \cap$ $N^{++}(a)$. If $d_{T^{\prime}}^{+}(a)<d_{T^{\prime}}^{++}(a)$, then $d^{+}(a)=d_{T^{\prime}}^{+}(a) \leq d_{T^{\prime}}^{++}(a)-1 \leq d^{++}(a)$, hence a has the SNP in D. Otherwise, $d_{T^{\prime}}^{+}(a)=\left|G_{L}\right|=d_{T^{\prime}}^{++}(a)$ and in particular $x \in G_{L}$. In this case we consider $\operatorname{sed}(L)$ which is a median order of T^{\prime}. Note that the feed vertex of $\operatorname{Sed}(L)$ is different from a and the index of a is less than the index of x in the new order $\operatorname{Sed}(L)$. Hence $\operatorname{Sed}(L)$ is a median of T as well, in which the index of x is greater than k, a contradiction.
So in all cases f has the SNP in D. Therefore D satisfies SNC.
Theorem 3.4. Let D be a digraph obtained from a tournament by deleting the edges of 2 disjoint
stars. If Δ has neither a source nor a sink and D has no sink, then D has at least two vertices with the SNP.

Proof.
claim 1:Suppose $K=V(D)$. If Δ has no isolated vertex, then D has at least two vertices with the SNP.
Proof of claim 1: The condition Δ has no isolated vertex implies that for every $a \in A$ and $b \in B$ we have $y \rightarrow a$ and $b \rightarrow x$. Clearly, $N^{+}(x)=\{y\}, N^{+}(y)=A, d^{+}(x) \leq 1 \leq|A| \leq d^{++}(x)$, thus x has the SNP. Let H be the tournament $D-\{x, y\}$. Then H has a vertex v with the SNP in H. If $v \in A$, then $d^{+}(v)=d_{H}^{+}(v) \leq d_{H}^{++}(v)=d^{++}(v)$. If $v \in B$, then $d^{+}(v)=d_{H}^{+}(v)+1 \leq$ $d_{H}^{++}(v)+1=d^{++}(v)$. Whence, v also has the $S N P$ in D.

Claim 2: D is a good digraph.
Proof of claim 2: Let $\mathcal{I}_{\mathcal{D}}$ be the interval graph of D. Let C_{1} and C_{2} be two distinct connected components of Δ. Then the centers x and y appear in each of the these two connected components, whence $K\left(C_{1}\right) \cap K\left(C_{2}\right) \neq \phi$. Therefore, $\mathcal{I}_{\mathcal{D}}$ is a connected graph, having only one connected component ξ. Then, $K=K(\xi)$.
So if Δ is composed of non trivial strongly connected components, the result holds by lemma 3.1. Due to the condition Δ has neither a source nor a sink, Δ has a non trivial strongly connected component, hence $N^{+}(x) \backslash K=N^{+}(y) \backslash K$. Now let $v \in K$ and assume without loss of generality that $x v$ is a missing edge. Due to the condition Δ has neither a source nor a sink, we have that $x v$ belongs to a non trivial strongly connected component of Δ, and in this case $v \in R$ and $N^{+}(v) \backslash K=N^{+}(x) \backslash K=N^{+}(y) \backslash K$, or $x v$ belongs to a directed path $P=x a_{1}, y b_{1}, \cdots, x a_{p}, y b_{p}$ joining 2 non trivial strongly connected components C_{1} and C_{2} with $x a_{1} \in C_{1}$ and $y b_{p} \in C_{2}$. There is $i>1$ such that $v=a_{i}$. $L=x a_{i-1}, y b_{i-1}, x a_{i}, y b_{i}$ is a path in Δ. By the definition of losing cycles we have $N^{+}(x) \backslash K \subseteq N^{+}\left(b_{i-1}\right) \backslash K \subseteq N^{+}\left(a_{i}\right) \backslash K \subseteq N^{+}(y) \backslash K=N^{+}(x) \backslash K$. Hence $N^{+}(x) \backslash K=N^{+}(v) \backslash K$ for all $v \in K$. Since every vertex outside K is adjacent to every vertex in K we also have $N^{-}(x) \backslash K=N^{-}(v) \backslash K$ for all $v \in K$. This proves the second claim.

Since D is a good digraph, then it has a good median order $L=x_{1} x_{2} \ldots x_{n}$. If $J\left(x_{n}\right)=K$, then the result follows by claim 1 and theorem 2.1. Otherwise, x_{n} is whole, that is $J\left(x_{n}\right)=\left\{x_{n}\right\}$. By theorem 2.1, x_{n} has the SNP in D. So we need to find another vertex with the SNP in D. Consider the good median order $L^{\prime}=x_{1} x_{2} \ldots x_{n-1}$ of the good digraph $D^{\prime}=D\left[\left\{x_{1}, \ldots, x_{n-1}\right\}\right]$. Suppose first that L^{\prime} is stable. There is q for which $\operatorname{Sed}^{q}\left(L^{\prime}\right)=y_{1} \ldots y_{n-1}$ and $\left|N^{+}\left(y_{n-1}\right) \backslash J\left(y_{n-1}\right)\right|<\mid$ $G_{S e d^{q}\left(L^{\prime}\right)} \backslash J\left(y_{n-1}\right) \mid(*)$. Note that $y_{1} \ldots y_{n-1} x_{n}$ is also a good median order of D. By theorem 2.1 and claim 1, there is $y \in J\left(y_{n-1}\right)$ that has the SNP in D^{\prime}, more precisely $\left|N^{+}(y)\right|<\left|N^{++}(y)\right|$ due to $(*)$. Since $y \in J\left(y_{n-1}\right)$ and $y_{n-1} \rightarrow x_{n}$ then $y \rightarrow x_{n}$. So $\left|N^{+}(y)\right|=\left|N_{D^{\prime}}^{+}(y)\right|+1 \leq \mid$ $N^{++}(y) \mid$.

Now suppose that L^{\prime} is periodic. Since D has no sink then x_{n} has an out-neighbor x_{j}. Choose j to be the greatest (so that it is the last vertex of its corresponding interval). Note that for every q, x_{n} is an out-neighbor of the feed vertex of $S e d^{q}\left(L^{\prime}\right)$. So x_{j} is not the feed vertex of any $S e d^{q}\left(L^{\prime}\right)$. Since L^{\prime} is periodic, x_{j} must be a bad vertex of $S e d^{q}\left(L^{\prime}\right)$ for some integer q, otherwise the index
of x_{j} would always increase during the sedimentation process. Let q be such an integer and set $\operatorname{Sed}^{q}\left(L^{\prime}\right)=y_{1} \ldots y_{n-1}$. By theorem 2.1 and claim 1, there is $y \in J\left(y_{n-1}\right)$ that has the SNP in D^{\prime}, more precisely $\left|N_{D^{\prime}}^{+}(y) \backslash J\left(y_{n-1}\right)\right|<\left|G_{S e d^{q}\left(L^{\prime}\right)} \backslash J\left(y_{n-1}\right)\right|$ due to $(*)$. Since $y \in J\left(y_{n-1}\right)$ and $y_{n-1} \rightarrow x_{n}$ then $y \rightarrow x_{n}$. Note that $y \rightarrow x_{n} \rightarrow x_{j}, G_{S e d^{q}\left(L^{\prime}\right)} \cup\left\{x_{j}\right\} \backslash J\left(y_{n-1}\right) \subseteq N^{++}(y) \backslash J\left(y_{n-1}\right)$ and $\left|N_{D^{\prime}}^{+}(y) \backslash J\left(y_{n-1}\right)\right|=\left|G_{\text {Sed }}\left(L^{\prime}\right) \backslash J\left(y_{n-1}\right)\right|$.

Therefore, $\left|N^{+}(y)\right|=\left|N_{D^{\prime}}^{+}(y)\right|+1=\left|N_{D^{\prime}}^{+}(y) \backslash J\left(y_{n-1}\right)\right|+1+\left|N_{D^{\prime}}^{+}(y) \cap J\left(y_{n-1}\right)\right|=$ $\left|G_{S e d^{q}\left(L^{\prime}\right)} \backslash J\left(y_{n-1}\right)\right|+1+\left|N_{D^{\prime}}^{+}(y) \cap J\left(y_{n-1}\right) \backslash J\left(y_{n-1}\right)\right|=\left|G_{S_{\text {Sed }}\left(L^{\prime}\right)} \cup\left\{x_{j}\right\} \backslash J\left(y_{n-1}\right)\right|+\mid N_{D^{\prime}}^{+}(y) \cap$ $J\left(y_{n-1}\right)\left|\leq\left|N_{D}^{++}(y) \backslash J\left(y_{n-1}\right)\right|+\left|N_{D}^{++}(y) \cap J\left(y_{n-1}\right)\right| \leq\left|N^{++}(y)\right|\right.$.

3.4. Removing 3 disjoint stars

In this section, D is an oriented graph missing three disjoint stars S_{x}, S_{y} and S_{z} with centers x, y and z respectively. Set $A=V\left(S_{x}\right)-x, B=V\left(S_{y}\right)-x, C=V\left(S_{z}\right)-z$ and $K=A \cup B \cup C \cup\{x, y, z\}$. Let Δ denote the dependency digraph of D. The triangle induced by the vertices x, y and z is either a transitive triangle or a directed triangle.
First we will deal with the case when this triangle is directed, and assume without loss of generality that $x \rightarrow y \rightarrow z \rightarrow x$. This is a particular case of the case when the missing graph is a disjoint union of stars such that, in the induced tournament by the centers of the missing stars, every vertex is a king.

Theorem 3.5. Let D be an oriented graph missing 3 disjoint stars whose centers form a directed triangle. If Δ has no isolated vertices, then D satisfies SNC.

Proof.
Claim: The only possible arcs in Δ have the forms $x a \rightarrow y b$ or $y b \rightarrow z c$ or $z c \rightarrow x a$, where $a \in A, b \in B$ and $c \in C$.
Proof of the claim: $x a$ can not lose to $z c$ because $z \rightarrow x$ and $z \in N^{++}(x)$. Similarly $y b$ can not lose to $x a$ and $z c$ can not lose to $y b$.

Orient the good missing edges in a convenient way and orient the other edges toward the centers. The obtained digraph T is a tournament. Let L be a median order of T such that the sum of the indices of x, y and z is maximum. Let f denote the feed vertex of L. Due to symmetry, we may assume that f is a whole vertex or $f=x$ or $f=a \in A$.

Suppose f is a whole vertex. Clearly, $N^{+}(f)=N_{T}^{+}(f)$. Suppose $f \rightarrow u \rightarrow v$ in T. If $(u, v) \in E(D)$ or $u v$ is a good missing edge then $v \in N^{+}(f) \cup N^{++}(f)$. Otherwise, there is missing edge $r s$ that loses to $u v$ with $r \rightarrow v$ and $u \notin N^{++}(r) \cup N^{+}(r)$. But $f \rightarrow u$, then $f \rightarrow r$, whence $f \rightarrow r \rightarrow v$ and $v \in N^{+}(f) \cup N^{++}(f)$. Thus, $N_{T}^{++}(f)=N^{++}(f)$ and f has the SNP in D.

Suppose $f=x$. Reorient all the missing edges incident to x toward x. In the new tournament T^{\prime} we have $N^{+}(x)=N_{T^{\prime}}^{+}(x)$ and x has the SNP in T^{\prime}. Since $y \in N^{+}(x)$ and $z \in N^{++}(x)$ we
have that $N^{++}(x)=N_{T^{\prime}}^{++}(x)$. Thus x has the SNP in D.
Suppose that $f=a \in A$. Reorient $a x$ toward a. Suppose $a \rightarrow u \rightarrow v$ in the new tournament T^{\prime} with $v \neq y$. If $(u, v) \in E(D)$ or $u v$ is a good missing edge then $v \in N^{+}(a) \cup N^{++}(a)$. Otherwise, there is $b \in B$ and $c \in C$ such that $(u, v)=(c, z)$ and by loses to $c z$, then $f \rightarrow c$ implies that $a \rightarrow y$, but $y \rightarrow z$, whence $z \in N^{++}(a) \cup N^{+}(a)$. So the only possible new second out-neighbor of a is y, hence if $y \notin N_{T^{\prime}}^{++}(a)$ then a has the SNP in D. Suppose $y \in N_{T^{\prime}}^{++}(a)$. If $d_{T^{\prime}}^{+}(a)<d_{T^{\prime}}^{++}(a)$ then $d^{+}(a)=d_{T^{\prime}}^{+}(a) \leq d_{T^{\prime}}^{++}(a)=d^{++}(a)$, hence a has the SNP in D. Otherwise, $d_{T^{\prime}}^{+}(a)=\left|G_{L}\right|$ and $G_{L}=N_{T^{\prime}}^{++}(a)$. So x, y and z are not bad vertices, hence the index of each increases in the median order $\operatorname{Sed}(L)$ of T^{\prime}. But the index of a is less than the index of x, then we can give $a x$ its initial orientation as in T nd the same order $\operatorname{Sed}(L)$ is a median order of T. However, the sum of indices of x, y and z has increased. A contradiction. Thus f has the SNP in D and D satisfies SNC.

Theorem 3.6. Let D be an oriented graph missing 3 disjoint stars whose centers form a directed triangle. If Δ has neither a source nor a sink and D has no sink, then D has at least two vertices with the SNP.

Proof. Claim 1: For every $a \in A, b \in B$ and $c \in C$ we have:
$b \rightarrow x \rightarrow c \rightarrow y \rightarrow a \rightarrow z \rightarrow b$.
Proof of Claim 1: This is due to the claim in the previous proof and the condition that Δ has neither a source nor a sink.

Claim 2: If $K=V(D)$ then D has at least 3 vertices with the SNP.
Proof of Claim 2: Let $H=D-\{x, y, z\}$. H is a tournament with no sink (dominated vertex). Then H has 2 vertices u and v with SNP in H. Without loss of generality we may assume that $u \in A$. But $y \rightarrow u \rightarrow z$, the adding the vertices x, y and z makes u gains only one vertex to its first out-neighborhood and x to its second out-neighborhood. Thus, also u has the SNP in D. Similarly, v has the SNP in D. Suppose, without loss of generality, that $|A| \geq|C|$. We have $C \cup\{y\}=N^{+}(x)$ and $A \cup\{z\}=N^{++}(x)$. Hence, $d^{+}(x)=|C|+1 \leq|A|+1 \leq d^{++}(x)$, whence, x has the SNP in D.

Claim 3: D is a good oriented graph.
Proof of Claim 3: Let $\mathcal{I}_{\mathcal{D}}$ be the interval graph of D. Let C_{1} and C_{2} be two distinct connected components of Δ. The three centers of the missing disjoint stars must appear in each of the these two connected components, whence $K\left(C_{1}\right) \cap K\left(C_{2}\right) \neq \phi$. Therefore, $\mathcal{I}_{\mathcal{D}}$ is a connected graph, having only one connected component ξ. Then, $K=K(\xi)$.
So if Δ is composed of non trivial strongly connected components, the result holds by proposition 3.1.

Due to the condition that Δ has neither a source nor a sink, Δ has a non trivial strongly connected component C.

Since x, y and z must appear in C, we have $N^{+}(x) \backslash K=N^{+}(y) \backslash K=N^{+}(z) \backslash K$. Now let $v \in K$. If v appears in a non trivial strongly connected component of Δ then $N^{+}(v) \backslash K=$ $N^{+}(x) \backslash K=N^{+}(y) \backslash K=N^{+}(z) \backslash K$.

Otherwise, due to the condition that Δ has neither a source nor a sink, v appears in a directed path P of Δ joining two non trivial strongly connected components C_{1} and C_{2} of Δ. By the definition of losing relations we can prove easily that for all $a \in K\left(C_{1}\right), b \in K(P)$ and $c \in K\left(C_{2}\right)$ we have $N^{+}(a) \backslash K(\xi) \subseteq N^{+}(b) \backslash K(\xi) \subseteq N^{+}(c) \backslash K(\xi)$. In particular, for $a=x=c$ and $b=v$. So $N^{+}(v) \backslash K=N^{+}(x) \backslash K$. Similarly, $N^{-}(v) \backslash K=N^{-}(x) \backslash K$. This proves claim 3.

To conclude we apply the same argument of the proof of theorem 3.4.

4. Acknowledgments

The author thanks Pr. Amine El-Sahili for many useful discussions.

References

[1] N. Dean and B. J. Latka, Squaring the tournament: an open problem, Congress Numerantium 109 (1995), 73-80.
[2] D. Fidler and R. Yuster, Remarks on the second neighborhood problem, J. Graph Theory 55 (2007), 208-220.
[3] D. Fisher, Squaring a tournament: a proof of Dean's conjecture, J. Graph Theory 23 (1996), 43-48.
[4] S. Ghazal, Seymour's second neighborhood conjecture in tournaments missing a generalized star, J. Graph Theory 71 (2012), 89--94.
[5] S. Ghazal, A contribution to the second neighborhood problem, Graphs and Combinatorics 29 (2013), 1365-1375.
[6] S. Ghazal, A remark on the second neighborhood conjecture, Electronic Journal of Graph Theory and its Applications 3 (2) (2015), 182-190.
[7] F. Havet and S. Thomaseé, Median orders of tournaments: A tool for the second neighborhood problem and Sumner's conjecture, J. Graph Theory 35 (2000), 244-256.
[8] Y. Kaneko and S. C. Locke, The minimum degree approach for Paul Seymour's distance 2 conjecture, Congressus Numerantium 148 (2001), 201-206.

