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Abstract

Let D be a digraph without digons. Seymour’s second neighborhood conjecture states that D has a
vertex v such that d+(v) ≤ d++(v). Under some conditions, we prove this conjecture for digraphs
missing n disjoint stars. Weaker conditions are required when n = 2 or 3. In some cases we exhibit
two such vertices.
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1. Introduction

In this paper, a digraph D is a pair of two disjoint finite sets (V,E) such that E ⊆ V × V . E
is the arc set and V is the vertex set and they are denoted by E(D) and V (D) respectively. An
oriented graph is a digraph without loop and digon (directed cycles of length two). If K ⊆ V (D)
then the induced restriction of D to K is denoted by D[K]. As usual, N+

D (v) (resp. N−D (v))
denotes the (first) out-neighborhood (resp. in-neighborhood) of a vertex v ∈ V . N++

D (v) (resp.
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N−−D (v)) denotes the second out-neighborhood (in-neighborhood) of v, which is the set of vertices
that are at distance 2 from v (resp. to v). We also denote d+

D(v) = |N+
D (v)|, d++

D (v) = |N++
D (v)|,

d−D(v) = |N−D (v)| and d−−D (v) = |N−−D (v)|. We omit the subscript if the digraph is clear from the
context. For short, we write x → y if the arc (x, y) ∈ E. A vertex v ∈ V (D) is called whole if it
is adjacent to every vertex in V (D) − {v}. A sink v is a vertex with d+(v) = 0, while a source v
is a vertex with d−(v) = 0. For x, y ∈ V (D), we say xy is a missing edge of D if neither (x, y)
nor (y, x) are in E(D). The missing graph G of D is the graph whose edges are the missing edges
of D and whose vertices are the non whole vertices of D. In this case, we say that D is missing G.
So, a tournament does not have any missing edge. A star of center x is a graph whose edge set has
the form {aix; i = 1, ..., k}. In this paper, n stars are said to be disjoint if any two of them do not
share a common vertex.

A vertex v of D is said to have the second neighborhood property (SNP) if d+
D(v) ≤ d++

D (v).
In 1990, Seymour conjectured the following:

Conjecture 1. (Seymour’s Second Neighborhood Conjecture (SNC))[1] Every oriented graph
has a vertex with the SNP.

In 1996, Fisher [3] solved the SNC for tournaments by using a certain probability distribu-
tion on the vertices. Another proof of Dean’s conjecture was established in 2000 by Havet and
Thomassé [7]. Their short proof uses a tool called median orders. Furthermore, they have proved
that if a tournament has no sink vertex then there are at least two vertices with the SNP. In 2007
Fidler and Yuster [2] proved, using median orders and dependency digraphs, that SNC holds for
digraphs missing a matching, a star or a complete graph. Ghazal proved more general statements
in [4, 6] and proved that the SNC holds for some other classes of digraphs [5].

2. Definitions and Preliminary Results

Let L = v1v2...vn be an ordering of the vertices of a digraph D. An arc e = (vi, vj) is forward
with respect to L if i < j. Otherwise e is a backward arc. The weight of L is ω(L) = |{(vi, vj) ∈
E(D); i < j}|. L is called a median order of D if ω(L) = max{ω(L′);L′ is an ordering of
the vertices of D}; that is L maximizes the number of forward arcs. In fact, the median order L
satisfies the feedback property: For all 1 ≤ i ≤ j ≤ n :

d+
D[i,j](vi) ≥ d−D[i,j](vi)

and
d−D[i,j](vj) ≥ d+

D[i,j](vj)

where [i, j] := {vi, vi+1, ..., vj} (See [7]).

It is also known that if we reverse the orientation of a backward arc e = (vi, vj) of D with re-
spect to L, then L is again a weighted median order of the new digraph D′ = D− (vi, vj)+(vj, vi)
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(See [5]).

Let L = v1v2...vn be a median order. Among the vertices not in N+(vn) two types are distin-
guished: A vertex vj is good if there is i ≤ j such that vn → vi → vj , otherwise vj is a bad vertex.
The set of good vertices of L is denoted by GD

L [7] ( or GL if there is no confusion ). Clearly,
GL ⊆ N++(vn). The last vertex vn is called a feed vertex of D.

We say that a missing edge x1y1 loses to a missing edge x2y2 if: x1 → x2, y2 /∈ N+(x1) ∪
N++(x1), y1 → y2 and x2 /∈ N+(y1) ∪ N++(y1). The dependency digraph ∆ of D is defined as
follows: Its vertex set consists of all the missing edges and (ab, cd) ∈ E(∆) if ab loses to cd [2, 5].
Note that ∆ may contain digons.

Definition 1. [4] In a digraph D, a missing edge ab is called a good missing edge if:
(i) (∀v ∈ V \{a, b})[(v → a)⇒ (b ∈ N+(v) ∪N++(v))] or
(ii) (∀v ∈ V \{a, b})[(v → b)⇒ (a ∈ N+(v) ∪N++(v))].
If ab satisfies (i) we say that (a, b) is a convenient orientation of ab.
If ab satisfies (ii) we say that (b, a) is a convenient orientation of ab.

We will need the following observation:

Lemma 2.1. ([2], [5]) Let D be an oriented graph and let ∆ denote its dependency digraph. A
missing edge ab is good if and only if its in-degree in ∆ is zero.

Let D be a digraph and let ∆ denote its dependency digraph. Let C be a connected component
of ∆. Set K(C) = {u ∈ V (D); there is a vertex v of D such that uv is a missing edge and belongs
to C }. The interval graph of D, denoted by ID is defined as follows. Its vertex set consists of
the connected components of ∆ and two vertices C1 and C2 are adjacent if K(C1) ∩K(C2) 6= φ.
So ID is the intersection graph of the family {K(C);C is a connected component of ∆ }. Let ξ
be a connected component of ID. We set K(ξ) = ∪C∈ξK(C). Clearly, if uv is a missing edge
in D then there is a unique connected component ξ of ID such that u and v belong to K(ξ). For
f ∈ V (D), we set J(f) = {f} if f is a whole vertex, otherwise J(f) = K(ξ), where ξ is the
unique connected component of ID such that f ∈ K(ξ). Clearly, if x ∈ J(f) then J(f) = J(x)
and if x /∈ J(f) then x is adjacent to every vertex in J(f).

Let L = x1 · · ·xn be a median order of a digraph D. For i < j, the sets [i, j] := [xi, xj] :=
{xi, xi+1, ..., xj} and ]i, j[= [i, j]\{xi, xj} are called intervals ofL. We recall thatK ⊆ V (D) is an
interval ofD if for every u, v ∈ K we have: N+(u)\K = N+(v)\K andN−(u)\K = N−(v)\K.
The following shows a relation between the intervals of D and the intervals of L.

Proposition 2.1. [6] Let I = {I1, ..., Ir} be a set of pairwise disjoint intervals of D. Then for
every median order L of D, there is a weighted median order L′ of D such that: L and L′ have the
same feed vertex and every interval in I is an interval of L′.

We say that D is good digraph if the sets K(ξ)’s are intervals of D. By the previous proposi-
tion, every good digraph has a median order L such that the K(ξ)’s form intervals of L. Such an
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enumeration is called a good median order of the good digraph D [6].

Theorem 2.1. [6] Let D be a good oriented graph and let L be a good median order of D, with
feed vertex f. Then for every x ∈ J(f), we have |N+(x)\J(f)| ≤ |GL\J(f)|. So if x has the SNP
in D[J(f)], then it has the SNP in D.

Corollary 2.1. ([7]) Let L be a median order of a tournament with feed vertex f. Then |N+(f))| ≤
|GL|.

Let L be a good median order of a good oriented graph D and let f denote its feed vertex.
By theorem 2.1, for every x ∈ J(f), |N+(x)\J(f)| ≤ |GL\J(f)|. Let b1, · · · , br denote the
bad vertices of L not in J(f) and v1, · · · , vs denote the non bad vertices of L not in J(f), both
enumerated in increasing order with respect to their index in L.
If |N+(x)\J(f)| < |GL\J(f)|, we set Sed(L) = L. If |N+(x)\J(f)| = |GL\J(f)|, we set
sed(L) = b1 · · · brJ(f)v1 · · · vs. This new order is called the sedimentation of L.

Lemma 2.2. [6] Let L be a good median order of a good oriented graph D. Then Sed(L) is a
good median order of D.

In the rest of this section, D is an oriented graph missing a matching and ∆ denotes its depen-
dency digraph. We begin by the following lemma:

Lemma 2.3. [2] The maximum out-degree of ∆ is one and the maximum in-degree of ∆ is one.
Thus ∆ is composed of vertex disjoint directed paths and directed cycles.

Proof. Assume that a1b1 loses to a2b2 and a1b1 loses to a′2b
′
2, with a1 → a2 and a1 → a′2. The

edge a′2b2 is not a missing edge of D. If a′2 → b2 then b1 → a′2 → b2, a contradiction. If b2 → a′2
then b1 → b2 → a′2, a contradiction. Thus, the maximum out-degree of ∆ is one. Similarly, the
maximum in-degree is one.

In the following, C = a1b1, ..., akbk denotes a directed cycle of ∆, namely ai → ai+1, bi+1 /∈
N++(ai) ∪N+(ai), bi → bi+1 and ai+1 /∈ N++(bi) ∪N+(bi), for all i < k.

Lemma 2.4. ([2]) If k is odd then ak → a1, b1 /∈ N++(ak)∪N+(ak), bk → b1 and a1 /∈ N++(bk)∪
N+(bk). If k is even then ak → b1, a1 /∈ N++(ak)∪N+(ak), bk → a1 and b1 /∈ N++(bk)∪N+(bk).

Lemma 2.5. [2] K(C) is an interval of D.

Proof. Let f /∈ K(C). Then f is adjacent to every vertex in K(C). If a1 → f then b2 → f , since
otherwise b2 ∈ N++(a1)∪N+(a1) which is a contradiction. So N+(a1)\K(C) ⊆ N+(b2)\K(C).
Applying this to every losing relation of C yields:
N+(a1)\K(C) ⊆ N+(b2)\K(C) ⊆ N+(a3)\K(C)... ⊆ N+(bk)\K(C) ⊆ N+(b1)\K(C) ⊆
N+(a2)\K(C)... ⊆ N+(ak)\K(C) ⊆ N+(a1)\K(C) if k is even. So these inclusion are equali-
ties. An analogous argument proves the same result for odd cycles.
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3. Main Results

3.1. Removing n stars
We recall that a vertex x in a tournament T is a king if {x} ∪ N+(x) ∪ N++(x) = V (T ). It

is well known that every tournament has a king. However, for every natural number n /∈ {2, 4},
there is a tournament Tn on n vertices, such that every vertex is a king for this tournament.

A digraph is called non trivial if it has at least one arc.

Proposition 3.1. Let D be a digraph missing disjoint stars. If the connected components of its
dependency digraph are non-trivial strongly connected, then D is a good digraph.

Proof. Let ξ be a connected component of ∆. First, suppose that K(ξ) = K(C) for some directed
cycle C = a1b1, a2b2, ..., anbn in ∆, namely ai → ai+1 and bi+1 /∈ N+(ai)∪N++(ai). If the set of
the missing edges {aibi; i = 1, ..., n} forms a matching, then by lemma 2.5, K(C) is an interval of
D.

So we will suppose that a center x of a missing star appears twice in the list a1, b1, a2, b2, ..., an,
bn and assume without loss of generality that x = a1. Suppose that n is even. Set K1 =
{a1, b2, ..., an−1, bn} and K2 = K(C)\K1.

Suppose that an → b1 and a1 /∈ N+(an) ∪ N++(an). Then by following the proof of lemma
2.5 we get the desired result.

Suppose an → a1 and b1 /∈ N+(an) ∪ N++(an). Then by following the proof of lemma 2.5
we get that K1 and K2 are intervals of D. Assume, for contradiction that K1 ∩ K2 = φ and let
i > 1 be the smallest index for which x is incident to aibi. Clearly i > 2. However, b3 /∈ K1 and
x = a1 → a2 → a3 implies that i > 3. Suppose that x = ai. Note that i must be odd by definition
of K1. Since b2 → a1 = x = ai and a3 /∈ N+(x) ∪N++(x) then a3 → x. Similarly b4, a5, ..., bi−1

are in-neighbors of x. However, bi−1 is an out-neighbor of ai = x, a contradiction. Suppose that
x = bi. Similarly, a3, b4, ..., ai−1 are in-neighbors of x. However, ai−1 is an out-neighbor of bi = x,
a contradiction. Thus K1 ∩K2 6= φ. Whence, K = K1 ∪K2 is an interval of D. Similar argument
is used to prove it when n is odd.

This result can be easily extended to the case whenK(ξ) = K(C) and C is a non trivial strong-
ly connected component of ∆, because between any two missing edges uv and zt there is directed
path from uv to zt and a directed path from zt to uv. These two directed paths creat many directed
cycles that are used to prove the desired result.

This also is extended to the case when K(ξ) = ∪C∈ξK(C): Let u and u′ be two vertices
of K(ξ). There are two non trivial strongly connected components of ∆ such that u ∈ K(C)
and u′ ∈ K(C ′). Since ξ is a connected component of ID, there is a path C = C0C1...Cn =
C ′. For all i > 0, there is ui ∈ K(Ci−1) ∩ K(Ci), by definition of edges in ID. Therefore,
N+(u)\K(ξ) = N+(u1)\K(ξ) = ... = N+(ui)\K(ξ) = ... = N+(un)\K(ξ) = N+(u′)\K(ξ)
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and N−(u)\K(ξ) = N−(u1)\K(ξ) = ... = N−(ui)\K(ξ) = ... = N−(un)\K(ξ) = N−(u′)\
K(ξ).

Theorem 3.1. Let D be a digraph obtained from a tournament by deleting the edges of disjoint
stars. Suppose that, in the induced tournament by the centers of the missing stars, every vertex is
a king. If δ−∆ > 0 then D satisfies SNC.

Proof. Orient every missing edge of D towards the center of its star. Let L be a median order of
the obtained tournament T and let f be its feed vertex. Then f has the SNP in T . We prove that f
has the SNP in D as well.

First, suppose that f is a whole vertex. Then N+(f) = N+
T (f). Let v ∈ N++

T (f). Then
there ∃u ∈ V (T ) = V (D) such that f → u → v → f in T . Since f is whole, then (f, u)
and (v, f) ∈ D. If (u, v) ∈ D then v ∈ N++(f). Otherwise, uv is a missing edge and hence,
∃ab that loses to uv, say b → v and u /∈ N+(b) ∪ N++(b). But fb is not a missing edge, s-
ince f is whole. Then (f, b) ∈ D, since otherwise, b → f → u in D which is a contradiction.
Therefore, f → b → v in D. Whence, v ∈ N++(f). So N++

T (f) ⊆ N++(f). Therefore,
d+(f) = d+

T (f) ≤ d++
T (f) ≤ d++(f).

Now suppose that f is the center of a missing star. Then N+(f) = N+
T (f). Let v ∈ N++

T (f).
Then there ∃u ∈ V (T ) = V (D) such that f → u → v → f in T . Then (f, u) ∈ D while
(f, v) /∈ D. If (u, v) ∈ D then v ∈ N++(f). Otherwise, uv is a missing edge and v is the center
of a missing star. Then v ∈ N+(f) ∪ N++(f), because f is a king for the centers of the missing
stars. Note that v /∈ N+(f). So N++

T (f) ⊆ N++(f). Therefor, f has the SNP in D.

Finally, suppose that f is not whole and not the center of a missing star. Then ∃x a center of a
missing star such that fx is a missing edge. We distinguish between two cases.

In the first case, we suppose that fx does not lose to any missing edge. We reorient fx as (x, f).
Since (f, x) ∈ T is a backward arc with respect to L, the again L is a median order of the new
tournament T ′ obtained by reversing the orientation of fx. Moreover, N+(f) = N+

T ′(f) and f has
the SNP in T ′. Let v ∈ N++

T ′ (f). Then there ∃u ∈ V (T ) = V (D) such that f → u → v → f in
T ′. Then (f, u) ∈ D while (f, v) /∈ D. If (u, v)inD then v ∈ N++(f). Otherwise uv is a missing
edge and v is the center of a missing star.Since ∆ has no source, there is a missing edge that loses to
uv. Suppose that this edge is of the form ax. Then we must have x→ v and u /∈ N+(x)∪N++(x),
by definition of losing relation and due to the fact that v ∈ N+(x) ∪ N++(x) (x is a king for the
centers of the missing stars). If v /∈ N++(f), then fx loses uv which is a contradiction to the
supposition of this case. Hence, v /∈ N++(f). Now, suppose that the missing edge that loses to
uv is of the form by with x /∈ {b, y}. Suppose without loss of generality that y is the center of a
missing star containing by. Then y → v and u /∈ N+(y)∪N++(y), by definition of losing relation
and due to the fact that v ∈ N+(y) ∪ N++(y) (y is a king for the centers of the missing stars).
But (f, u) ∈ D and fy is not a missing edge, then (f, y) ∈ D. Thus f → y → v. Whence,
v ∈ N+(f) ∪N++(f). So N++

T ′ (f) ⊆ N++(f). Therefor, f has the SNP in D as well.
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In the second case, we suppose that fx loses to some missing edge by. We may assume without
loss of generality that y is the center of a missing star containing by. Then we must have x→ y and
b /∈ N+(x)∪N++(x). Clearly, N+(f)∪{y} = N+

T (f). We prove that N++
T (f) ⊆ N++(f)∪{y}.

Let v ∈ N++
T (f)\y. Then there ∃u ∈ V (T ) = V (D) such that f → u → v → f in T . Suppose

that u = x. Since bv is not a missing edge, x = u → v and b /∈ N+(x) ∪ N++(x) then we must
have (b, v) ∈ D. Whence, f → b → v in D. Therefore v ∈ N++(f). Now suppose that u 6= x.
Then (f, u) ∈ D. If (u, v) ∈ D then v ∈ N++(f). Otherwise, uv is a missing edge. Hence there
is a missing edge pq that loses to uv, namely, q → v and u /∈ N+(q) ∪N++(q). If q = x, then we
have f → x → v → f in T , which is the same as the case when u = x. So we may suppose that
q 6= x. Note that q must be the center of a missing star. So f, x /∈ {p, q}. Thus fq is not a missing
edge, u /∈ N+(q) ∪ N++(q) and (f, u) ∈ D. Then we must have (f, q) ∈ D, since otherwise we
get q → f → u in D which is a contradiction. Thus f → q → v in D. Whence v ∈ N++(f). So
N++
T (f) ⊆ N++(f) ∪ {y}. Therefore d+(f) + 1 = d+

T (f) ≤ d++
T (f) ≤ d++(f) + 1. Whence f

has the SNP in D.

3.2. Removing a star
A more general statement to the following theorem is proved in [4] . Here we introduce another

prove that uses the sedimentation technique of a median order.

Theorem 3.2. [2] Let D be an oriented graph missing a star. Then D satisfies SNC.

Proof. Orient all the missing edges of D towards the center x of the missing star. The obtained
digraph is a tournament T . Let L be a median order of T that maximizes α, the index of x in L, and
let f denote its feed vertex. Reorient the missing edges incident to f towards f (if any). L is also a
median order of the new tournament T ′. Note that N+(f) = N+

T ′(f) and we have d+
T ′(f) ≤ |GT ′

L |.
If x ∈ GT ′

L and d+
T ′(f) = |GT ′

L | then sed(L) is a median order of T ′ in which the index of x is
greater than α, and also greater than the index of f . So we can give the missing edge incident to
f (if it exists then it is xf ) its initial orientation (as in T ) such that sed(L) is a median order of T ,
a contradiction to the fact that L maximizes α. So x /∈ GT ′

L or d+T ′(f) < |GT ′
L |. If f = x then,

clearly, d+(f) = d+
T ′(f) ≤ |GT ′

L | ≤ d++
T ′ (f) = d++(f). Now suppose that f 6= x. We have that

x is the only possible gained second out-neighbor vertex for f . If x /∈ GT ′
L then GT ′

L ⊆ N++(f),
whence the result follows. If d+

T ′(f) < |GT ′
L | then d+(f) = d+

T ′(f) ≤ |GT ′
L | − 1 ≤ d++(f). So f

has the SNP in D.

3.3. Removing 2 disjoint stars
In this section, letD be a digraph obtained from a tournament by deleting the edges of 2 disjoint

stars and let ∆ denote its dependency digraph. Let Sx and Sy be the two missing disjoint stars with
centers x and y respectively, A = V (Sx)\x, B = V (Sy)\y, K = V (Sx) ∪ V (Sy) (the set of non
whole vertices) and assume without loss of generality that x → y. In [4] it is proved that if the
dependency digraph of any digraph consists of isolated vertices only then it satisfies SNC. Here
we consider the case when the ∆ has no isolated vertices.

Theorem 3.3. Let D be an oriented graph missing 2 disjoint stars. If ∆ has no isolated vertex,
then D satisfies SNC.
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Proof. Assume without loss of generality that x → y. We note that the condition ∆ has no iso-
lated vertex, implies that for every a ∈ A and y ∈ B we have y → a and b → x. We shall
orient all the missing edges of D. First, we give every good edge a convenient orientation. For the
other missing edges, let the orientation be towards the center of the 2 missing stars Sx or Sy. The
obtained digraph is a tournament T . Let L be a median order of T such that the index k of x is
maximum and let f denote its feed vertex. We know that f has the SNP in T . We have only 5 cases:

Suppose that f is a whole vertex. In this case N+(f) = N+
T (f). Suppose f → u → v in

T . Clearly (f, u) ∈ D. If (u, v) ∈ D or is a convenient orientation then v ∈ N+(f) ∪ N++(f).
Otherwise there is a missing edge zt that loses to uv with t → v and u /∈ N+(f) ∪ N++(f). But
f → u, then f → t, whence f → t → v in D. Therefore, N++(f) = N++

T (f) and f has the SNP
in D as well.

Suppose f = x. Orient all the edges of Sx towards the center x. L is a median order of
the modified completion T ′ of D. We have N+(f) = N+

T ′(f). Suppose f → u → v in T ′. If
(u, v) ∈ D or is a convenient orientation then v ∈ N+(f) ∪ N++(f). Otherwise (u, v) = (b, y)
for some b ∈ B, but f = x→ y. Thus, N++(f) = N++

T ′ (f) and f has the SNP in T ′ and D.

Suppose f = b ∈ B. Orient the missing edge by towards b. Again, L is a median order of the
modified tournament T ′ and N+(f) = N+

T ′(f). Suppose f → u → v in T ′. If (u, v) ∈ D or is a
convenient orientation then v ∈ N+(f) ∪N++(f). Otherwise (u, v) = (b′, y) for some b′ ∈ B or
(u, v) = (a, x) for some a ∈ A, however x, y ∈ N++(f) ∪N+(f) because f = b→ x→ y in D.
Thus, N++(f) = N++

T ′ (f) and f has the SNP in T ′ and D.

Suppose f = y. Orient the missing edges towards y and let T ′ denote the new tournamen-
t. We note that B ⊆ N++(y) ∩ N++

T ′ (y) due to the condition δ∆ > 0. Also, x is the on-
ly possible new second neighbor of y in T ′. If B ∪ {x} " GL or d+

T ′(y) < d++
T ′ (y), then

d+(y) = d+
T ′(y) ≤ d++

T ′ (y) − 1 ≤ d++(y). Otherwise, B ∪ {x} * GL and d+
T ′(y) = |GL|. In

this case we consider the median order Sed(L) of T ′. Now the feed vertex of sed(L) is different
from y, the index of x had increased, and the index of y became less than the index of any vertex
of B which makes Sed(L) a median order of T also, in which the index of x is greater than k, a
contradiction.

Suppose f = a ∈ A. Orient the missing edge ax as (x, a) and let T ′ denote the new tournament.
Note that y is the only possible new second neighbor of a in T ′ and not in D. Also x ∈ N++

T (a) ∩
N++(a). If d+

T ′(a) < d++
T ′ (a), then d+(a) = d+

T ′(a) ≤ d++
T ′ (a)− 1 ≤ d++(a), hence a has the SNP

in D. Otherwise, d+
T ′(a) = |GL| = d++

T ′ (a) and in particular x ∈ GL. In this case we consider
sed(L) which is a median order of T ′. Note that the feed vertex of Sed(L) is different from a and
the index of a is less than the index of x in the new order Sed(L). Hence Sed(L) is a median of T
as well, in which the index of x is greater than k, a contradiction.
So in all cases f has the SNP in D. Therefore D satisfies SNC.

Theorem 3.4. Let D be a digraph obtained from a tournament by deleting the edges of 2 disjoint
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stars. If ∆ has neither a source nor a sink and D has no sink, then D has at least two vertices with
the SNP.

Proof.
claim 1:Suppose K = V (D). If ∆ has no isolated vertex, then D has at least two vertices with the
SNP.
Proof of claim 1: The condition ∆ has no isolated vertex implies that for every a ∈ A and b ∈ B
we have y → a and b → x. Clearly, N+(x) = {y}, N+(y) = A, d+(x) ≤ 1 ≤ |A| ≤ d++(x),
thus x has the SNP. Let H be the tournament D − {x, y}. Then H has a vertex v with the SNP in
H . If v ∈ A, then d+(v) = d+

H(v) ≤ d++
H (v) = d++(v). If v ∈ B, then d+(v) = d+

H(v) + 1 ≤
d++
H (v) + 1 = d++(v). Whence, v also has the SNP in D.

Claim 2: D is a good digraph.
Proof of claim 2: Let ID be the interval graph ofD. Let C1 and C2 be two distinct connected com-
ponents of ∆. Then the centers x and y appear in each of the these two connected components,
whence K(C1) ∩ K(C2) 6= φ. Therefore, ID is a connected graph, having only one connected
component ξ. Then, K = K(ξ).
So if ∆ is composed of non trivial strongly connected components, the result holds by lemma 3.1.
Due to the condition ∆ has neither a source nor a sink, ∆ has a non trivial strongly connected
component, hence N+(x)\K = N+(y)\K. Now let v ∈ K and assume without loss of gener-
ality that xv is a missing edge. Due to the condition ∆ has neither a source nor a sink, we have
that xv belongs to a non trivial strongly connected component of ∆, and in this case v ∈ R and
N+(v)\K = N+(x)\K = N+(y)\K, or xv belongs to a directed path P = xa1, yb1, · · · , xap, ybp
joining 2 non trivial strongly connected componentsC1 andC2 with xa1 ∈ C1 and ybp ∈ C2. There
is i > 1 such that v = ai. L = xai−1, ybi−1, xai, ybi is a path in ∆. By the definition of losing
cycles we have N+(x)\K ⊆ N+(bi−1)\K ⊆ N+(ai)\K ⊆ N+(y)\K = N+(x)\K. Hence
N+(x)\K = N+(v)\K for all v ∈ K. Since every vertex outside K is adjacent to every vertex in
K we also have N−(x)\K = N−(v)\K for all v ∈ K. This proves the second claim.

Since D is a good digraph, then it has a good median order L = x1x2...xn. If J(xn) = K, then
the result follows by claim 1 and theorem 2.1. Otherwise, xn is whole, that is J(xn) = {xn}. By
theorem 2.1, xn has the SNP in D. So we need to find another vertex with the SNP in D. Consider
the good median order L′ = x1x2...xn−1 of the good digraph D′ = D[{x1, ..., xn−1}]. Suppose
first that L′ is stable. There is q for which Sedq(L′) = y1...yn−1 and | N+(yn−1)\J(yn−1) |<|
GSedq(L′)\J(yn−1) | (∗). Note that y1...yn−1xn is also a good median order of D. By theorem 2.1
and claim 1, there is y ∈ J(yn−1) that has the SNP in D′, more precisely |N+(y)| < |N++(y)|
due to (∗). Since y ∈ J(yn−1) and yn−1 → xn then y → xn. So | N+(y) |=| N+

D′(y) | +1 ≤|
N++(y) |.

Now suppose that L′ is periodic. Since D has no sink then xn has an out-neighbor xj . Choose
j to be the greatest (so that it is the last vertex of its corresponding interval). Note that for every q,
xn is an out-neighbor of the feed vertex of Sedq(L′). So xj is not the feed vertex of any Sedq(L′).
Since L′ is periodic, xj must be a bad vertex of Sedq(L′) for some integer q, otherwise the index
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of xj would always increase during the sedimentation process. Let q be such an integer and set
Sedq(L′) = y1...yn−1. By theorem 2.1 and claim 1, there is y ∈ J(yn−1) that has the SNP in
D′, more precisely |N+

D′(y)\J(yn−1)| < |GSedq(L′)\J(yn−1)| due to (∗). Since y ∈ J(yn−1) and
yn−1 → xn then y → xn. Note that y → xn → xj , GSedq(L′) ∪ {xj}\J(yn−1) ⊆ N++(y)\J(yn−1)
and | N+

D′(y)\J(yn−1) |=| GSedq(L′)\J(yn−1) |.

Therefore, |N+(y)| = |N+
D′(y)| + 1 = |N+

D′(y)\J(yn−1)| + 1 + |N+
D′(y) ∩ J(yn−1)| =

|GSedq(L′)\J(yn−1)|+ 1 + |N+
D′(y)∩J(yn−1)\J(yn−1)| = |GSedq(L′)∪{xj}\J(yn−1)|+ |N+

D′(y)∩
J(yn−1)| ≤ |N++

D (y)\J(yn−1)|+ |N++
D (y) ∩ J(yn−1)| ≤ |N++(y)|.

3.4. Removing 3 disjoint stars
In this section, D is an oriented graph missing three disjoint stars Sx, Sy and Sz with cen-

ters x, y and z respectively. Set A = V (Sx) − x, B = V (Sy) − x, C = V (Sz) − z and
K = A ∪B ∪ C ∪ {x, y, z}. Let ∆ denote the dependency digraph of D. The triangle induced by
the vertices x, y and z is either a transitive triangle or a directed triangle.
First we will deal with the case when this triangle is directed, and assume without loss of generality
that x → y → z → x. This is a particular case of the case when the missing graph is a disjoint
union of stars such that, in the induced tournament by the centers of the missing stars, every vertex
is a king.

Theorem 3.5. Let D be an oriented graph missing 3 disjoint stars whose centers form a directed
triangle. If ∆ has no isolated vertices, then D satisfies SNC.

Proof.
Claim: The only possible arcs in ∆ have the forms xa → yb or yb → zc or zc → xa, where
a ∈ A, b ∈ B and c ∈ C.
Proof of the claim: xa can not lose to zc because z → x and z ∈ N++(x). Similarly yb can not
lose to xa and zc can not lose to yb.

Orient the good missing edges in a convenient way and orient the other edges toward the cen-
ters. The obtained digraph T is a tournament. Let L be a median order of T such that the sum of
the indices of x, y and z is maximum. Let f denote the feed vertex of L. Due to symmetry, we
may assume that f is a whole vertex or f = x or f = a ∈ A.

Suppose f is a whole vertex. Clearly, N+(f) = N+
T (f). Suppose f → u → v in T . If

(u, v) ∈ E(D) or uv is a good missing edge then v ∈ N+(f) ∪ N++(f). Otherwise, there is
missing edge rs that loses to uv with r → v and u /∈ N++(r) ∪N+(r). But f → u, then f → r,
whence f → r → v and v ∈ N+(f)∪N++(f). Thus,N++

T (f) = N++(f) and f has the SNP inD.

Suppose f = x. Reorient all the missing edges incident to x toward x. In the new tournament
T ′ we have N+(x) = N+

T ′(x) and x has the SNP in T ′. Since y ∈ N+(x) and z ∈ N++(x) we
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have that N++(x) = N++
T ′ (x). Thus x has the SNP in D.

Suppose that f = a ∈ A. Reorient ax toward a. Suppose a→ u→ v in the new tournament T ′

with v 6= y. If (u, v) ∈ E(D) or uv is a good missing edge then v ∈ N+(a)∪N++(a). Otherwise,
there is b ∈ B and c ∈ C such that (u, v) = (c, z) and by loses to cz, then f → c implies that
a→ y, but y → z, whence z ∈ N++(a) ∪N+(a). So the only possible new second out-neighbor
of a is y, hence if y /∈ N++

T ′ (a) then a has the SNP inD. Suppose y ∈ N++
T ′ (a). If d+

T ′(a) < d++
T ′ (a)

then d+(a) = d+
T ′(a) ≤ d++

T ′ (a) = d++(a), hence a has the SNP in D. Otherwise, d+
T ′(a) = |GL|

and GL = N++
T ′ (a). So x, y and z are not bad vertices, hence the index of each increases in the

median order Sed(L) of T ′. But the index of a is less than the index of x, then we can give ax
its initial orientation as in T nd the same order Sed(L) is a median order of T . However, the sum
of indices of x, y and z has increased. A contradiction. Thus f has the SNP in D and D satisfies
SNC.

Theorem 3.6. Let D be an oriented graph missing 3 disjoint stars whose centers form a directed
triangle. If ∆ has neither a source nor a sink and D has no sink, then D has at least two vertices
with the SNP.

Proof. Claim 1: For every a ∈ A, b ∈ B and c ∈ C we have:
b→ x→ c→ y → a→ z → b.
Proof of Claim 1: This is due to the claim in the previous proof and the condition that ∆ has
neither a source nor a sink.

Claim 2: If K = V (D) then D has at least 3 vertices with the SNP.
Proof of Claim 2: Let H = D − {x, y, z}. H is a tournament with no sink (dominated vertex).
Then H has 2 vertices u and v with SNP in H . Without loss of generality we may assume that
u ∈ A. But y → u → z, the adding the vertices x, y and z makes u gains only one vertex to
its first out-neighborhood and x to its second out-neighborhood. Thus, also u has the SNP in D.
Similarly, v has the SNP in D. Suppose, without loss of generality, that |A| ≥ |C|. We have
C ∪ {y} = N+(x) and A ∪ {z} = N++(x). Hence, d+(x) = |C| + 1 ≤ |A| + 1 ≤ d++(x),
whence, x has the SNP in D.

Claim 3: D is a good oriented graph.
Proof of Claim 3: Let ID be the interval graph of D. Let C1 and C2 be two distinct connected
components of ∆. The three centers of the missing disjoint stars must appear in each of the these
two connected components, whence K(C1) ∩ K(C2) 6= φ. Therefore, ID is a connected graph,
having only one connected component ξ. Then, K = K(ξ).
So if ∆ is composed of non trivial strongly connected components, the result holds by proposition
3.1.
Due to the condition that ∆ has neither a source nor a sink, ∆ has a non trivial strongly connected
component C.

Since x, y and z must appear in C, we have N+(x)\K = N+(y)\K = N+(z)\K. Now
let v ∈ K. If v appears in a non trivial strongly connected component of ∆ then N+(v)\K =
N+(x)\K = N+(y)\K = N+(z)\K.
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Otherwise,due to the condition that ∆ has neither a source nor a sink, v appears in a directed
path P of ∆ joining two non trivial strongly connected components C1 and C2 of ∆. By the def-
inition of losing relations we can prove easily that for all a ∈ K(C1), b ∈ K(P ) and c ∈ K(C2)
we have N+(a)\K(ξ) ⊆ N+(b)\K(ξ) ⊆ N+(c)\K(ξ). In particular, for a = x = c and b = v.
So N+(v)\K = N+(x)\K. Similarly, N−(v)\K = N−(x)\K. This proves claim 3.

To conclude we apply the same argument of the proof of theorem 3.4.
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[7] F. Havet and S. Thomaseé, Median orders of tournaments: A tool for the second neighbor-
hood problem and Sumner’s conjecture, J. Graph Theory 35 (2000), 244–256.

[8] Y. Kaneko and S. C. Locke, The minimum degree approach for Paul Seymour’s distance 2
conjecture, Congressus Numerantium 148 (2001), 201–206.

189


