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Abstract

Let G = (V,E) be a finite undirected graph with vertex set V (G) of order |V (G)| = n and edge
set E(G) of size |E(G)| = m. Let ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ be the degree sequence of the
graph G. A clique in a graph G is a complete subgraph of G. The clique number of a graph G,
denoted by ω(G), is the order of a maximum clique of G. In 1907 Mantel proved that a triangle-
free graph with n vertices can contain at most bn2

4
c edges. In 1941 Turán generalized Mantel’s

result to graphs not containing cliques of size r by proving that graphs of order n that contain no
induced Kr have at most (1− 1

r−1
)n

2

2
edges. In this paper, we give new bounds for the maximum

number of edges in a Kr-free graph G of order n, minimum degree δ, and maximum degree ∆.
We show that, for the families of graphs having the above properties, our bounds are slightly better
than the more general bounds of Turán.
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1. Introduction

Let G = (V,E) be a finite undirected graph with vertex set V (G) of order |V (G)| = n and
edge set E(G) of size |E(G)| = m. Let ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ be the degree sequence of
the graph G. A clique in a graph G is a complete subgraph of G. The clique number of a graph G,
denoted by ω(G), is the order of a maximum clique of G.
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In extremal graph theory one seeks extremal values of graph parameters for graphs belonging
to families with prescribed properties. One of the classical problems of extremal graph theory
involves showing that a graph with sufficiently many edges must contain a specific substructure.
In this sense, an extremal graph with respect to a family of graphs {Hi}i∈I is a graph G of order
n and maximum size m among all graphs of order n that do not contain any of the graphs {Hi}i∈I
as induced subgraphs. The well-known Turán graphs T (n, r) constitute examples of just this type
of extremal graphs. Namely, the Turán graph T (n, r) has the maximum possible number of edges
among all graphs on n vertices which do not contain an induced (r + 1)-clique. If r = 2, the
Turán graph T (n, 2) is an undirected graph in which no three vertices form a triangle of edges;
a triangle-free graph. One of the first results concerning extremal triangle-free graphs is due to
Mantel:

Theorem 1.1 ([6]). If G is a triangle-free graph, then m ≤ bn2

4
c. Furthermore, the only triangle-

free graph with bn2

4
c edges is the complete bipartite graph Kbn

2
c,dn

2
e.

Turán’s generalization of Mantel’s result to cliques of size r is perhaps the best known theorem
of extremal graph theory:

Theorem 1.2 ([8]). If a graph G on n vertices contains no copy of Kr, then it contains at most(
1− 1

r−1

)
n2

2
edges.

In this paper we consider the size of the Kr-free graphs G. Since ω(G) ≤ r − 1, we focus on
the lower bounds of the clique number of the graph. Myers and Liu in [7] proved that for a graph
G with n vertices and m edges it holds

ω(G) ≥ n2

n2 − 2m
. (1)

Edwards and Elphick in [2] have improved this bound by proving that for a graphGwith n vertices
and degree sequence d1 ≥ d2 ≥ · · · ≥ dn we have

ω(G) ≥ n2

n−
√∑n

i=1 d
2
i

n

. (2)

Independently, Caro [1] and Wei [9] showed that

ω(G) ≥ 1

n− d1

+
1

n− d2

+ · · ·+ 1

n− dn
. (3)

Based on the above lower bounds of the clique number, we derive new bounds on the maximum
number of edges in Kr-free graphs in terms of the order n and maximum and minimum degrees.
We show that the upper bounds on the maximum sizes of Kr-free graphs of specified maximum
or minimum degrees given by our theorems are smaller than or equal to the upper bounds on
the maximum sizes among all Kr-free graphs (not restricted to specific minimum and maximum
degrees) derived by Turán.
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2. New upper bounds for the size of Kr-free graphs

Let G be a Kr-free graph. Between the clique number of G and r there exist a natural relation,
that is, r − 1 ≥ ω(G). Combining this inequality with the well-known bound ω(G) ≥ n2

n2−2m
we

easily prove the Turán theorem. We notice that an improvement of the lower bounds of the clique
number could improve the Turán theorem. We start with an improvement of the inequality between
the arithmetic and the geometric mean, published in [3].

Lemma 2.1. [3] If x and y are strictly positive real numbers, then√
x

y
+

√
y

x
≥ 2 +

(x− y)2

2(x2 + y2)
.

Proposition 2.1. Let G be a graph with n vertices and m edges. If ∆ is the maximum degree, δ is
the minimum degree of G and ω(G) is the clique number of the graph G, then

ω(G) ≥

(
n+ (∆−δ)2

2((n−∆)2+(n−δ)2)

)2

n2 − 2m
. (4)

Proof. Let ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ be the vertex-degree sequence of G. From the Cauchy-
Schwarz inequality we have

ω(G)(n2 − 2m) ≥
(

1

n− d1

+
1

n− d2

+ · · ·+ 1

n− dn

)
(n2 − 2m) =

=

(
1

n− d1

+
1

n− d2

+ · · ·+ 1

n− dn

)
((n− dn) + (n− d2) + · · ·+ (n− d1)) ≥

≥

(√
n− dn
n− d1

+ 1 + · · ·+ 1 +

√
n− d1

n− dn

)2

=

(
n− 2 +

√
n− dn
n− d1

+

√
n− d1

n− dn

)2

.

The inequality in (4) follows from Lemma 2.1, setting x = n−∆ and y = n− δ.

Remark 2.1. Since (∆−δ)2
2((n−∆)2+(n−δ)2)

> 0 we get that the bound in (4) is better than the existing
bound given by Myers and Liu [7].

Theorem 2.1. If G is a graph of order n, with maximum degree ∆, minimum degree δ and if G
contains no copy of Kr, then the size m of G is at most

m ≤ n2

2

1−

(
1 + (∆−δ)2

2n((n−∆)2+(n−δ)2)

)2

(r − 1)

 . (5)

Proof. The proof follows directly from r − 1 ≥ ω(G) and the inequality in (4).
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Remark 2.2. It is clear that the bound in the above theorem is slightly better than the bound stated
in the Turán theorem. Let us observe that, if the gap between ∆ and δ is bigger, then the difference
between our and the exiting bound is more significant. For example, if ∆ = n − 1 and δ = 1 we
get m ≤ n2

2

(
1− C2

r−1

)
, where C = 2n3−3n2+4

2n3−4n2+4n
> 1.

Next, we use the lower bound for the clique number given by Edwards and Elphick, [2], and
the following refinement of the inequality between quadratic and arithmetic means published in
[3].

Proposition 2.2. [3] If a1, . . . , an are n positive real numbers such that a2
1 + · · ·+ a2

n 6= 0, then√
a2

1 + · · ·+ a2
n

n
≥ a1 + · · ·+ an

n
+

1

4n
·

n∑
i=1

(na2
i − (a2

1 + · · ·+ a2
n))2

n2a4
i + (a2

1 + · · ·+ a2
n)2

ai.

Let σ2 be the variance of the numbers d2
1, d

2
2, . . . , d

2
n. From the above inequality we obtain the

following result.

Theorem 2.2. Let G be a connected graph on n vertices, with maximum degree ∆, minimum
degree δ and let G contain no copy of Kr. If σ2 is the variance of the squares of the degrees of G,
then

m ≤ n2

2

(
1− 1

r − 1

)
− δn

16∆4
· σ2. (6)

Proof. Setting ai = di in Proposition 2.2 we get√
M1

n
=

√
d2

1 + · · ·+ d2
n

n
≥ 2m

n
+

δ

4n
·

n∑
i=1

(d2
i − M1

n
)2

a4
i +

(
M1

n

)2 . (7)

From d4
i +

(
M1

n

)2 ≤ 2∆4 for each i = 1, 2, . . . , n and from σ2 =
∑n

i=1(d2i−
M1
n )

2

n
we get the

inequality
√

M1

n
≥ 2m

n
+ δ

8∆4σ
2. Now, the desired inequality follows directly from (2).

Remark 2.3. From the bound in (6) we can notice that among all graphs on a fixed number of
vertices, fixed r, with fixed maximum and minimum degree, the graphs whose degrees are spread
further away from the mean, have larger variance σ2, thus have smaller size m. In other words,
Kr-free graphs with larger irregularity have smaller size.

Li et al. [4, 5] introduced the generalized version of the first Zagreb index, defined as

Zp(G) = Mp
1 (G) = dp1 + dp2 + · · ·+ dpn

where p is a real number. This graph invariant is nowadays known under the name general first
Zagreb index, and has also been much investigated. The lower bound for the clique number of G
could be expressed in terms of the general first Zagreb indices.
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Proposition 2.3. Let G be a graph on n vertices and let Zi be the general first Zagreb index. Then

ω(G) ≥ 1 +
∞∑
i=1

Zi
ni+1

.

Proof. We have

ω(G) ≥ 1

n− d1

+ · · ·+ 1

n− dn
=

1

n(1− d1
n

)
+ · · ·+ 1

n(1− dn
n

)
=

=
1

n

(
∞∑
i=0

(
d1

n

)i
+ · · ·+

∞∑
i=0

(
dn
n

)i)
=

=
1

n

(
n+

∞∑
i=1

Zi
ni

)
= 1 +

∞∑
i=1

Zi
ni+1

.

Remark 2.4. From the power mean inequality we obtain k

√
dk1+···+dkn

n
≥ d1+···+dn

n
= 2m

n
, that is,

Zi ≥ (2m)i

ni−1 . Therefore ω(G) ≥ 1 +
∑∞

i=1

(
2m
n2

)i
= n2

n2−2m
, which is a well-known lower bound for

ω(G).

Theorem 2.3. If G is a graph of order n and maximum degree ∆, and G contains no copy of Kr,
the size m of G is at most ⌊

n2 − n+ ∆

2
− (n− 1)2(n−∆)

2((r − 1)(n−∆)− 1)

⌋
. (8)

Proof. Since G does not contain a copy of Kr, then ω(G) ≤ r − 1. Thus, applying (3) and the
inequality between arithmetic and harmonic means, we get

r − 1 ≥ 1

n−∆
+

(n− 1)2

n2 − n− 2m+ ∆

which is equivalent to

n2 − n− 2m+ ∆ ≥ (n− 1)2(n−∆)

(r − 1)(n−∆)− 1
.

This last inequality implies the desired bound (8).

We prove next that the bound (8) from Theorem 2.3 applied to a graph with a specific ∆ is
better than the more general bound of Turán, that is, we show that

n2

2

(
1− 1

r − 1

)
≥ n2 − n+ ∆

2
− (n− 1)2(n−∆)

2((r − 1)(n−∆)− 1))
, (9)
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for all 1 ≤ ∆ ≤ n− 1.
The inequality (9) is equivalent to the inequality

(n−∆)((n− 1)2 + (r − 1)(n−∆)− 1)

(r − 1)(n−∆)− 1
≥ n2

r − 1
. (10)

Taking S = (r − 1)(n−∆)− 1 and r − 1 = S+1
n−∆

, the inequality (10) becomes

(n− 1)2 + S

S
≥ n2

S + 1
.

The last inequality is equivalent to (n − 1)2 − 2S(n − 1) + S2 ≥ 0, that is, (n − 1 − S)2 ≥ 0,
which is true. Note that our bound matches Turán’s bound if n− 1 = S, that is, if r − 1 = n

n−∆
.

The proof of our next theorem is analogous to the proof of Theorem 2.3.

Theorem 2.4. If G is a graph of order n and minimum degree δ, and G contains no copy of Kr,
the size m of G is at most ⌊

n2 − n+ δ

2
− (n− 1)2(n− δ)

2((r − 1)(n− δ)− 1)

⌋
. (11)

Theorems 2.3 and 2.4 yield the following obvious corollary.

Corollary 2.1. The maximum number of edges in a graph G that contains no copy of Kr, having
n vertices, maximum degree ∆, and minimum degree δ, is bounded from above by

min{
⌊
n2 − n+ ∆

2
− (n− 1)2(n−∆)

2((r − 1)(n−∆)− 1)

⌋
,

⌊
n2 − n+ δ

2
− (n− 1)2(n− δ)

2((r − 1)(n− δ)− 1)

⌋
}.
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