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Abstract

In this paper, we explore connected Cayley graphs on non-abelian groups of order 5p2, where
p is a prime greater than 5, and Sylow p-subgroup is cyclic with respect to tetravalent sets that
encompass elements with different orders. We prove that these graphs are normal; however, they
are not normal edge-transitive, arc-transitive, nor half-transitive. Additionally, we establish that
the group is a 5-CI-group.
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1. Introduction and Preliminary

Suppose G is a group and S is a subset of G that does not include 1. The Cayley graph
associated with (G,S), denoted by Cay(G,S), is a directed graph with the vertex set G and the
edge set consisting of (u, v) ∈ G×Gwhen uv−1 ∈ S. We notice that the Cayley graphCay(G,S),
may depend on the choice of S, and is connected if and only if S generates G. Also, we care that
the edge set can be identified with set of ordered pairs {(g, sg)|g ∈ G, s ∈ S}. The Cay(G,S)
can be considered as an undirected graph when S is closed under taking inverse i.e., S = S−1.
The degree of each vertex is easily seen to be S. Following the definitions in [7], the graph Γ is
called vertex-transitive, edge-transitive or arc-transitive if the automorphism group Aut(Γ), acts
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transitively on vertex-set, edge-set or arc-set of Γ, respectively. A half-transitive graph is one that
is vertex-set and edge-set transitive, but not arc-transitive.

Assume that Γ = Cay(G,S). Let ρ(G) = {ρg | g ∈ G}, where for g ∈ G, the map ρg : G→ G
is given by ρg(x) = xg. It is evident that, ρg ∈ Aut(Γ). The set ρ(G) forms a subgroup isomorphic
to G) in Aut(Γ). Therefore, since ρ(G) 6 Aut(Γ), acting right regularly on the vertices of Γ, Γ is
vertex-transitive. However Γ is not edge-transitive in general.

Some notations used here are as follows. In a graph Γ, the distance between two vertices u and
v, denoted by d(u, v), is the number of edge in a shortest path connecting them. Let us introduce
the Di(u) = {v ∈ V (Γ) | d(u, v) = i}. For Semi-direct product of K by H in which H act on
K, we write K o H . Zn denotes a cyclic group of order n as well as the ring of integers modulo
n, by Z×n we mean the multiplicative group consisting of the elements in Zn, which are coprime to
n. By Aut(G,S) = {σ ∈ Aut(G)|σ(S) = S}. It is easy to see that Aut(G,S) is a subgroup of
the automorphisms group of Cay(G,S). For two subsets S and T of G such that 1 /∈ S, 1 /∈ T ,
S = S−1 and T = T−1, if there is a f ∈ Aut(G) such that f (S) = T , then S and T said to be
equivalent and it can verified that in this case we have Cay(G,S) ∼= Cay(G, T ) and Cay(G,S) is
normal if and only if Cay(G, T ) is normal.

Let’s review some fundamental facts about normal edge-transitive Cayley graphs.
A Cayley graph Γ = Cay(G,S) is called normal if ρ(G) is a normal subgroup of Aut(Γ),

i.e, NAut(Γ)(ρ(G)) = Aut(Γ); and Γ is called normal edge-transitive or normal arc-transitive if
NAut(Γ)(ρ(G)) is transitive on the edges or arcs of Γ, respectively.

Lemma 1.1. ([2, Lemma 2.1] or [7]) For a Cayley graph Γ = Cay(G,S), we haveNAut(Γ)(ρ(G)) =
ρ(G)oAut(G,S).

Therefore, Γ is normal edge-transitive when ρ(G)oAut(G,S) is transitive on the edge-set of
Γ.

Lemma 1.2. ([7, Proposition 1(c)]) Consider the Cayley graph Γ = Cay(G,S). Then the follow-
ing are equivalent:

(i) Γ is normal edge-transitive;

(ii) S = T ∪ T−1, where T is an Aut(G,S)-orbit in G;

moreover, ρ(G)oAut(G,S) is transitive on the arcs of Γ if and only if Aut(G,S) is transitive on
S.

Lemma 1.3. ([9, Proposition 1.5]) Let A = Aut(Cay(G,S)). The following are equivalent:

(i) ρ(G) � A.

(ii) Aut(Γ) = ρ(G)oAut(G,S).

(iii) A1 6 Aut(G,S), where A1 is the stabilizer of the identity 1 of G in A.
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Definition 1.1. A Cayley graph Cay(G,S) is called a CI-graph, if whenever Cay(G, S) ∼= Cay(G,
T ) for some subset T of G then S be equivalent to T, i.e., T = α(S) for some α ∈ Aut(G). The
group G is called an m-CI-group if every Cayley graph over G of valency at most m is a CI-graph,
and G is a CI-group if every Cayley graph over G is a CI-graph.

In [8], all the normal edge-transitive Cayley graphs of modular groups of order 8n, where n is
a natural number, are determind and in [1, 5, 6] all the tetravalent edge-transitive Cayley graphs on
non-Abelian groups of order p2, 3p2, 4p2 are determined. In [11] all connected cubic non-normal
Cayley graphs of order 2p2 are studied.

In this paper, motivated by [1, 4, 6, 10], we determine the structure of Cayley graphs of Frobe-
nius group G of order 5p2 with cyclic kernel of order p2, with respect to tetravalent sets, i.e. ,
|S| = 4, such that exactly two elements are same order.

Let G be a finite group of order 5p2 with cyclic Sylow p-subgroups of order p2, where p is
a prime number greater than 5. It is not difficult to see, by the Sylow theorems, if the Sylow
p-subgroup of G is cyclic then G is isomorphic to 〈x, y|x5 = yp

2
= 1, x−1yx = yk〉 where

1 < k < p2, p - k, xyx−1 = yk
4 , k5 ≡ 1 (modp2) and o(xiyj) = 5, for 1 ≤ i ≤ 4, 0 ≤ j < p2.

Lemma 1.4. ([4, Lemma 2.5]) Suppose G is a finite group of order 5p2 with cyclic Sylow p-
subgroups of order p2, where p is a prime number greater than 5. Then Aut(G) ∼= Zp2 o Z×p2 ,
where Z×p2 denotes the group of the units (invertible elements) of the ring Zp2 .

Proof. Suppose that f is an automorphism of G. Therefore for the generators x and y of G, f(x)
and f(y) must be of order 5 and p2, respectively. In fact, f(x) ∈ {xiyj | 1 6 i < 5, 0 6 j < p2}
and f(y) ∈ {yj | (j, p) = 1}. We claim that f(x) = xyj , 0 6 j < p2. We shall prove this claim
by the following steps:

Step 1. f(x) 6= x2yj , 0 6 j < p2.

Suppose that f(x) = x2yj and f(y) = yj
′ . On the other hand x−1yx = yk. Thus, we have

f(yk) = f(x−1yx) = f(x)−1f(y)f(x) = y−jx−2yj
′
x2yj

= y−jx−1(x−1yj
′
x)xyj = y−jx−1(ykj

′
)xyj = y−jyk

2j′yj = yk
2j′ .

Also,
f(y) = yj

′ ⇒ f(yk) = ykj
′
.

Therefore,
ykj

′
= yk

2j′ ⇒ p2 | (k2 − k)j′ ⇒ p2 | (k2 − k).

Since p - k, we have p2 | k − 1, contradicting to 1 < k < p2. Thus f(x) 6= x2yj with
0 6 j 6 p2.

Step 2. f(x) 6= x3yj , 0 6 j < p2.

Suppose that f(x) = x3yj for some 0 6 j < p2 . Similar to the first step, we conclude
p2 | k(k2 − 1), since 1 < k < p2, p2 | k2 − 1. That is a contradiction. Because if p2 | k2 − 1
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is true then there are three cases. First, if p|k + 1 and p|k − 1, then this is invalid because p
is odd. Secondly, if p2|k + 1 then p2 = k + 1, due to 1 < k < p2. Beside, k5 ≡ 1 (mode
p2). So we have: (p2 − 1)5 ≡ 1 (mode p2). But this implies −1 ≡ 1 (mode p2), which is
impossible. Third case i.e., p2|k − 1 does not occur when 1 < k < p2.

Step 3. f(x) 6= x4yj , 0 6 j < p2. Suppose that f(x) = x4yj for some 0 6 j < p2. Again, similar to
the first case, we have p2 | k(k3 − 1). In the way, p2 | k3 − 1, makes a contradiction, owing
to if p2|k3 − 1 then p2|k5 − k2, also, k5 ≡ 1 (mode p2), thus p2 will divide k2 − 1. But, in
Step 2 we showed that this does not happen.

Therefore, there are p2 cases for the image of f on x and the image of f on y has φ(p2) cases,
where φ is the Euler function. Hence, all states are totally p3(p− 1).

Elements of S are of the form xiyj , with 0 ≤ i ≤ 4 and 0 ≤ j < p2. Since G = 〈S〉
and the inverses of x3yj and x4yj are x2yj

′ and xyj′ , respectively, we conclude that S = Si with
i ∈ {1, 2, 3, 4, 5}, where if xiyj ∈ S then (xiyj)−1 ∈ S.

S1 = {xyj, xyj′ , (xyj)−1, (xyj
′
)−1}, j 6≡ j′ (mod p2);

S2 = {xyj, x2yj
′
, (xyj)−1, (x2yj

′
)−1}, j′ 6≡ j(k + 1) (mod p2);

S3 = {x2yj, (x2yj)−1, x2yj
′
, (x2yj

′
)−1}, (j 6≡ j′ (mod p2));

S4 = {xyj, (xyj)−1, yj
′
, y−j

′}, (j′, p) = 1;

S5 = {x2yj, (x2yj)−1, yj
′
, y−j

′}, (j′, p) = 1

Lemma 1.5. ([4, Main Theorem]) Let G be a finite group of order 5p2 with cyclic Sylow p-
subgroup where p is a prime number greater than 5. There exists exactly three tetravalent subsets
Si of G, 1 6 i 6 3, such that for each i, G = 〈Si〉, all elements of Si are of order 5 and one of the
following holds.

(1) S1 = {x, xy, x−1, (xy)−1}, and each element of S1 has order 5; Γ = Cay(G,S1) is normal,
normal edge transitive and edge transitive, but it is not arc-transitive. Aut(G,S1) ∼= Z2 and
Aut(Γ) ∼= ρ(G)o Z2.

(2) S2 = {x2, xy, x−2, (xy)−1}, and each element of S2 has order 5; Γ = Cay(G,S2) is normal
but it is not normal edge transitive and arc-transitive. Aut(G,S2) is trivial and Aut(Γ) ∼=
ρ(G).

(3) S3 = {x2, x2y, x−2, (x2y)−1}, and each element of S3 has order 5; Γ = Cay(G,S3) is
normal, normal edge transitive and edge transitive, but it is not arc-transitive; Aut(G,S1) ∼=
Z2 and Aut(Γ) ∼= ρ(G)o Z2.
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We are interested in the Cayley graph Γ = Cay(G,S) with |S| = 4, 1 /∈ S, S = S−1,G = 〈S〉
and elements of S are of order 5 and p2. Our main result is the following.

Main Theorem. Let G be a finite group of order 5p2 with cyclic Sylow subgroups, where p is a
prime number greater than 5 and let S be a subset of G satisfying the following conditions (1)
|S| = 4, (2) S = S−1, 1 /∈ S, (3) S contains elements of order 5 and elements of order p2. Then
one of the following holds.

(1) S4 = {x, y, x−1, y−1}, where x and y are of order 5 and p2, respectively. Γ4 = Cay(G,S4)
is normal but it is not normal edge transitive, nor edge transitive, nor arc-transitive, nor
normal arc-transitive. Aut(G,S4) ∼= Z2 and Aut(Γ4) ∼= ρ(G)o Z2.

(2) S5 = {x2, y, x−2, y−1}, where x2 and y are of order 5 and p2, respectively. Γ5 = Cay(G,S5)
is normal but it is not normal edge transitive, nor edge transitive, nor arc-transitive, nor
normal arc-transitive. Aut(G,S5) ∼= Z2 and Aut(Γ5) ∼= ρ(G)o Z2.

2. Γ4 = Cay(G,S4)

In this section Cayley graph Cay(G,S4) is denoted by Γ4.

Lemma 2.1. S4 is equivalent to {x, y, x−1, y−1}.

Proof. Let’s remind that S4 = {xyj, yj′ , (xyj)−1, y−j
′}, where 0 6 j < p and (j′, p) = 1. It is

sufficient to consider f ∈ Aut(G) such that f(x) = xyj and f(y) = yj
′ . Since (j′, p2) = 1, there

exists such an automorphism f .

Theorem 2.1. Aut(G,S4) ∼= Z2.

Proof. Suppose that f ∈ Aut(G,S4). By order of elements of S4 and proof of Lemma 1.4, clearly
f(x) = x and for f(y) we have two cases; f(y) = y or f(y) = y−1. In the first case, f = id and
in the second case o(f) = 2.

Lemma 2.2. If ϕ ∈ Aut(Γ4)g and ϕ(xg) = xg, then ϕ(xig) = xig for 1 6 i 6 4.

Proof. Because x4g ∈ D1 (g) and ϕ preserves distance, so:

ϕ
(
x4g
)
∈ ϕ(D1(g)) = D1 (ϕ (g)) = D1 (g) = {xg, x4g, yg, y−1g}

= {ϕ(xg), x4g, yg, y−1g}.

Since ϕ is one-to-one, so ϕ(x4g) ∈ {x4g, yg, y−1g}. On the other hand (x2g, x3g) is an edge
and x2g ∈ D1 (xg), x3g ∈ D1 (x4g), so there exists a member of ϕ (D1 (xg)) that is adjacent
with a member of ϕ (D1 (x4g)). But if ϕ (x4g) = yg or y−1g, these members don’t exist. Thus
ϕ (x4g) = x4g. x2g and x3g are only vertices D1(xg) and D1(x4g) that are adjacent, so ϕ will fix
them.

Similarly, if ϕ(xg) = x−1g, then ϕ(xig) = x−ig for 1 6 i 6 4 and if ϕ(x−1g) = xg, then
ϕ(x−ig) = xig for 1 6 i 6 4.
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Lemma 2.3. If ϕ ∈ Aut(Γ4)g, then ϕ (xg) /∈ {yg, y−1g}.

Proof. If ϕ (xg) = yg, then according to the above description, ϕ (x−1g) 6= xg, thus ϕ (x−1g) =
y−1g. (x2g, x3g) is an edge and x2g ∈ D1 (xg), x3g ∈ D1 (x4g), so there exists a member of
ϕ (D1 (xg)) = D1 (yg) that is adjacent with a member of ϕ (D1 (x4g)) = D1 (y−1g), but these
members do not exist. Similarly ϕ (xg) 6= y−1g.

Lemma 2.4. If ϕ ∈ Aut(Γ4)g and ϕ(yg) = yg, then ϕ(yig) = yig for 1 6 i < p2.

Proof. We prove that if ϕ ∈ Aut(Γ4)yi−2g and ϕ ∈ Aut(Γ4)yi−1g, then ϕ ∈ Aut(Γ4)yig. Since ϕ is
one-to-one, ϕ (D1 (yi−1g)) = D1 (yi−1g) and the fact that

D1(yi−1g) = {yi−2g, xi−1yg, x4yi−1g, yig}

= {ϕ(yi−2g), xi−1yg, x4yi−1g, yig},
we have

ϕ
(
xi−1yg

)
, ϕ
(
x4yi−1g

)
, ϕ
(
yig
)
∈
{
xi−1yg, x4yi−1g, yig

}
.

We know, x3yi−1g ∈ D1(x4yi−1g), x2yi−1g ∈ D1 (xi−1yg) and (x3yi−1g, x2yi−1g) is an edge,
therefore we have

ϕ
(
x3yi−1g

)
∈ ϕ

(
D1

(
x4yi−1g

))
= D1(ϕ

(
x4yi−1g

)
),

ϕ
(
x2yi−1g

)
∈ ϕ

(
D1

(
xyi−1g

))
= D1(ϕ

(
xyi−1g

)
)

and (ϕ (x3yi−1g) , ϕ (x2yi−1g)) is an edge. Since there is no element of D1 (yig) adjacent to an
element of D1 (xyi−1g) or an element of D1 (x4yi−1g) . Therefore, we have

ϕ
(
xyi−1g

)
, ϕ
(
x4yi−1g

)
∈
{
xyi−1g, x4yi−1g

}
.

Thus ϕ (yig) = yig and the lemma is proved.

Lemma 2.5. If ϕ ∈ Aut(Γ4)g and ϕ(yg) = y−1g, then ϕ(yig) = y−ig for 1 6 i < p2.

Proof. Since ϕ(yg) = y−1g, ϕ(D1(yg)) = D1(ϕ(yg)) = D1 (y−1g), we have

{ϕ(g), ϕ(xyg), ϕ(x4yg), ϕ(y2g)}
=
{
ϕ (g) , xy−1g, x4y−1g, y−2g

}
.

On the other hand x2yg ∈ D1 (xyg), x3yg ∈ D1 (x4yg) and (x2yg, x3yg) is an edge, thus we have

ϕ
(
x2yg

)
∈ ϕ (D1 (xyg)) = D1(ϕ (xyg)),

ϕ
(
x3yg

)
∈ ϕ

(
D1

(
x4yg

))
= D1(ϕ

(
x4yg

)
)

and (ϕ (x2yg) , ϕ (x3yg)) is an edge. Due to the fact that, do not exists any element of D1 (y−2g)
adjacent to an element of D1 (xy−1g) or D1 (x4y−1g), we see that

ϕ (xyg) , ϕ
(
x4yg

)
∈
{
xy−1g, x4y−1g

}
.
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x2g

x3g

xg

x4g

g

yg

y−1g

y2g...

y−2g...

Figure 1. The state of g with its neighboring vertices in the conditions of Lemma 2.6

There for ϕ (y2g) = y−2g.
Now, it’s sufficient that prove: ifϕ (yi−2g) = y−(i−2)g andϕ (yi−1g) = y−(i−1)g, thenϕ (yig) =

y−ig. In Figure 1, replace ”g” by ”yi−1g” and ”y−(i−1)g”. since ϕ (yi−1g) = y−(i−1)g and ϕ is au-
tomorphism, we have{

ϕ
(
xyi−1g

)
, ϕ
(
x4yi−1g

)}
=
{
xy−(i−1)g, x4y−(i−1)g

}
and {

ϕ
(
yig
)
, ϕ
(
yi−2g

)}
=
{
y−ig, y−(i−2)g

}
=
{
y−ig, ϕ

(
yi−2g

)}
.

Thus ϕ(yig) = y−ig.

Lemma 2.6. If ϕ ∈ Aut(Γ4)g, then ϕ(xg) = xg.

Proof. We know that xg ∈ D1 (g), so we have

ϕ (xg) ∈ ϕ (D1 (g)) = D1 (ϕ (g)) = D1 (g) =
{
xg, x4g, yg, y−1g

}
.

On the contrary assume that ϕ(xg) 6= xg. Thus by Lemma 2.3 we have
ϕ(xg) = x−1g, so we encounter with two cases for ϕ(yg):

Case 1. ϕ(yg) = yg; by definition of group, x−1yx = yk. so
(
xg, xykg

)
and

(
ykg, xykg

)
are

two edges of graph. since ϕ preserves distance, so we have:

2 = d(ykg, xg) = d(ϕ(ykg), ϕ(xg)) = d(ykg, x−1g) > 2

which is a contradiction.
Case 2. ϕ(yg) = y−1g; by Lemma 2.5, we have:

2 = d(ykg, xg) = d(ϕ(ykg), ϕ(xg)) = d(y−kg, x−1g) > 2

which is a contradiction. Therefore this case does not happen.

Using Lemma 2.6, if ϕ ∈ Aut(Γ4)1, then one of the following two cases occurs: ϕ(x) =
x, ϕ(y) = y or ϕ(x) = x, ϕ(y) = y−1.

Lemma 2.7. For Cayley graph Γ4, if ϕ ∈ Ag, and ϕ fixes all the elements of D1(g), then it fix all
the elements of D2(g).
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Proof. We know that

D2(g) = {x2g, x3g, xykg, xy−kg, x4yg, xyg, y2g, y−2g,

x4y−1g, xy−1g, x4y−k
4

g, x4yk
4

g}.

In fact by Lemmas 2.6 and 2.4, we conclude that ϕ keeps fixed them.

Immediately, the following result is obtained.

Corollary 2.1. If ϕ ∈ Aut(Γ4)1 and ϕ fixes all the elements of S4, then ϕ = id.

Proof. Since graph is connected, it suffices to show that for every natural i > 2, the statement

g′ ∈ Di (1)⇒ ϕ (g′) = g′

holds. By Lemma 2.7 the statement is true for i = 2. Now assume that the statement is true for
1 6 i 6 n, and we will show that the statement holds for n + 1. Let g′ ∈ Dn+1 (1). Hence, there
is a sequence of adjacent vertices

1 = g′0, g
′
1, . . . , g

′
n−1, g

′
n, g
′
n+1.

Clearly g′n−1 ∈ Dn−1(1) and g′n ∈ Dn(g). Therefore by hypothesis, ϕ
(
g′n−1

)
= g′n−1 and ϕ (g′n) =

g′n. By applying Lemma 2.7 for g := g′n and ϕ
(
g′n−1

)
= g′n−1, we conclude that ϕ

(
g′n+1

)
= g′n+1,

or equivalently ϕ (g′) = g′.

Lemma 2.8. If ϕ ∈ Aut(Γ4)1 such that ϕ(x) = x, ϕ (y) = y−1 and f ∈ Aut(G,S4) is non trivial,
then ϕ = f

Proof. Since ϕ ◦ f(1) = 1, ϕ ◦ f(x) = x and ϕ ◦ f(y) = y, by Corollary 2.1, the statement is
obtained.

Theorem 2.2. Aut(Γ4)1
∼= Z2.

Proof. By Lemmas 2.6 and 2.8 and Corollary 2.1, the proof is straightforward.

Therefore, the first part of the main theorem is a consequence of Theorems 2.1 and 2.2 and
Lemmas 1.2 and 1.3 .

3. Γ5 = Cay(G,S5)

We remind that S5 = {x2yj, (x2yj)−1, yj
′
, y−j

′}where (j′, p) = 1. In this section Cayley graph
Cay(G,S5) is denoted by Γ5.

Lemma 3.1. S5 is equivalent to {x2, x−2, y, y−1}.
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Proof. It is sufficient, consider f ∈ Aut(G) such that f(x) = xyi and f(y) = yα, where i have
two following cases {

i = j
2
(k4 − k3 + k2 − k + 1), if j is even;

i = p2+j
2

(k4 − k3 + k2 − k + 1), if j is odd.

We also set α = j′. Therefore, f(x2) = x2yj and f(y) = yj
′ .

From now on, we use the above mentioned equivalent for S5.

Theorem 3.1. Aut(G,S5) ∼= Z2.

Proof. If we consider f ∈ Aut(G,S5), then by attention to the orders of elements of S5 and proof
of Lemma 1.4, we have, f(x2) = x2 and f(y) equals to y or y−1.

Assume that f(y) = y. Then x2 = f(x2) = f(x)2 = xyixyi = x2yi(k+1). Hence, p2 | i(k+ 1).
We know, p - k + 1, i.e., (p, k + 1) = 1, because otherwise, for some integer r, k = rp − 1, we
will have and so, p2 | k5 − 1, thus 1 ≡ k5(mod p2) ≡ 5rp − 1; hence, p2 | 5rp − 2, which is a
contradiction. Thus p2 | i, then i = 0. Therefore, f(x) = x and f(y) = y, i.e., f = id.

Now assume that f(y) = y−1. Since f(x2) = x2, similar to the previous case i = 0. Thus,
f(x) = x. It means that f is an element of order 2.

Lemma 3.2. If ϕ ∈ Aut(Γ5)g and ϕ(x2g) = x2g, then ϕ(xig) = xig for 1 6 i 6 4.

Proof. Since x3g ∈ D1 (g) and ϕ preserves distance, so we have

ϕ
(
x3g
)
∈ ϕ (D1 (g)) = D1 (ϕ (g)) = D1 (g) = {x2g, x3g, yg, y−1g}

= {ϕ(x2g), x3g, yg, y−1g}.

Since ϕ is one-to-one, ϕ (x3g) ∈ {x3g, yg, y−1g}. On the other hand (x4g, xg) is an edge and
x4g ∈ D1 (x2g), xg ∈ D1 (x3g), so there exists a member of ϕ (D1 (x2g)) that is adjacent with a
member of ϕ (D1 (x3g)). But if ϕ(x3g) = yg or y−1g, such members do not exist. Thus ϕ (x3g) =
x3g. Also x4g and xg are the only vertices in D1 (x2g) and D1 (x3g) respectively, which adjacent,
so ϕ fixes them.

Similarly, if ϕ(x2g) = x3g, then ϕ(x−ig) = xig for 1 6 i 6 4 and if ϕ(x3g) = x2g, then
ϕ(x−ig) = xig for 1 6 i 6 4.

Lemma 3.3. If ϕ ∈ Aut(Γ5)g, then ϕ (x2g) /∈ {yg, y−1g}.

Proof. If ϕ (x2g) = yg, then according to above description, ϕ (x3g) 6= x2g, thus ϕ (x3g) = y−1g.
Also (x4g, xg) is an edge and x4g ∈ D1 (x2g) and xg ∈ D1 (x3g), so there exists a member of
ϕ (D1 (x2g)) = D1 (yg) that is adjacent with a member of ϕ (D1 (x3g)) = D1 (y−1g), but there
are no such elements.
Similarly ϕ (x2g) 6= y−1g and the result now follows.

Lemma 3.4. If ϕ ∈ Aut(Γ5)g and ϕ(yg) = yg, then ϕ(yig) = yig for 1 6 i < p2.
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Proof. we prove that If ϕ ∈ Aut(Γ5)yi−2g and ϕ ∈ Aut(Γ5)yi−1g, then ϕ ∈ Aut(Γ5)yig for i > 2.
Since ϕ is one-to-one, ϕ (D1 (yi−1g)) = D1 (yi−1g) and

D1

(
yi−1g

)
=
{
yi−2g, x2yi−1g, x3yi−1g, yig

}
=

{
ϕ
(
yi−2g

)
, x2yi−1g, x3yi−1g, yig

}
.

So

ϕ
(
x2yi−1g

)
, ϕ
(
x3yi−1g

)
, ϕ
(
yig
)
∈
{
x2yi−1g, x3yi−1g, yig

}
.

We know

xyi−1g ∈ D1

(
x3yi−1g

)
, x4yi−1g ∈ D1

(
x2yi−1g

)
and (xyi−1g, x4yi−1g) is an edge, therefore we have

ϕ
(
xyi−1g

)
∈ ϕ

(
D1

(
x3yi−1g

))
= D1(ϕ

(
x3yi−1g

)
)

ϕ(x4yi−1g) ∈ ϕ(D1(x2yi−1g) = D1(ϕ(x2yi−1g)

and (ϕ (xyi−1g) , ϕ (x4yi−1g)) is and edge. Because there is no element of D1 (yig) adjacent to an
element of D1 (x2yi−1g) or an element of D1 (x3yi−1g). So we have

ϕ
(
x2yi−1g

)
, ϕ
(
x3yi−1g

)
∈
{
x2yi−1g, x3yi−1g

}
.

Thus ϕ (yig) = yig and the lemma is proved.

Lemma 3.5. If ϕ ∈ Aut(Γ5)g and ϕ(yg) = y−1g, then ϕ(yig) = y−ig for 1 6 i < p2.

Proof. Since ϕ(yg) = y−1g, ϕ (D1 (yg)) = D1(ϕ(yg)) = D1(y−1g), we have

{ϕ(g), ϕ(x2yg), ϕ(x3yg), ϕ(y2g)}

=
{
ϕ (g) , x2y−1g, x3y−1g, y−2g

}
,

On the other hand, since x4yg ∈ D1 (x2yg), xyg ∈ D1 (x3yg) and (x4yg, x3yg) is an edge, thus
we have

ϕ
(
x4yg

)
∈ ϕ

(
D1

(
x2yg

))
= D1(ϕ

(
x2yg

)
),

ϕ (xyg) ∈ ϕ
(
D1

(
x3yg

))
= D1(ϕ

(
x3yg

)
)

and (ϕ (x4yg) , ϕ (xyg)) is an edge. Due to fact that, do not exists any element of D1 (y−2g)
adjacent to an element of D1 (x2y−1g) or D1 (x3y−1g), we see that

ϕ
(
x2yg

)
, ϕ
(
x3yg

)
∈
{
x2y−1g, x3y−1g

}
.

There for ϕ (y2g) = y−2g.
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x2g

x3g

xg

x4g

g

yg

y−1g

y2g...

y−2g...

Figure 2. The state of g with its neighboring vertices in the conditions of Lemma 3.5

Now, it’s sufficient that prove: if ϕ (yi−2g) = y−(i−2)g and ϕ (yi−1g) = y−(i−1)g, then ϕ(yig) =
y−ig.

In Figure 2, replace ”g” by ”yi−1g” and ”y−(i−1)g”. since ϕ (yi−1g) = y−(i−1)g and ϕ is
automorphism, we have{

ϕ
(
x2yi−1g

)
, ϕ
(
x3yi−1g

)}
=
{
x2y−(i−1)g, x3y−(i−1)g

}
and {

ϕ
(
yig
)
, ϕ
(
yi−2g

)}
=
{
y−ig, y−(i−2)g

}
=
{
y−ig, ϕ

(
yi−2g

)}
.

Thus ϕ (yig) = y−ig.

Lemma 3.6. If ϕ ∈ Aut(Γ5)g, then ϕ(x2g) = x2g.

Proof. We know x2g ∈ D1 (g), so we have

ϕ
(
x2g
)
∈ ϕ (D1 (g)) = D1 (ϕ (g)) = D1 (g) =

{
x2g, x3g, yg, y−1g

}
.

On the contrary assume that ϕ(x2g) 6= x2g. Thus by Lemma 3.3, we have
ϕ(x2g) = x3g.

Then we have two cases for ϕ(y):
Case 1. ϕ(yg) = yg; by definition of group, x−1yx = yk. so (x2g, x2yk

2
g) and

(
yk

2
g, x2yk

2
g
)

are two edges of graph. since ϕ preserves distance, so we have

2 = d(yk
2

g, x2g) = d(ϕ(yk
2

g), ϕ(x2g)) = d(yk
2

g, x3g) > 2,

which is a contradiction.
Case 2. ϕ(yg) = y−1g; similar to the previous case, we conclude

2 = d(yk
2

g, x2g) = d(ϕ(yk
2

g), ϕ(x2g)) = d(y−k
2

g, x3g) > 2,

which is a contradiction, therefore this case does not happen.

Corollary 3.1. If ϕ ∈ Aut(Γ5)g, then ϕ(xg) = xg.

Proof. By applying Lemma 3.6 for g := x2g and g := x4g, it follows.

Similar to Lemma 2.7, we have the following lemma.
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Lemma 3.7. For Cayley graph Γ5, if ϕ ∈ Ag, and ϕ fixes all the elements of D1(g), then it fixes
all the elements of D2(g).

Proof. We know

D2(g) = {x4g, xg, x2yk
2

g, x2y−k
2

g, x3yk
3

g, x3y−k
3

g, x2y−1g,

x3y−1g, x2yg, x3yg, y2g, y−2g}.

Already by Lemma 3.4 and Corollary 3.1, we know, ϕ keeps fixed them.

Corollary 3.2. If ϕ ∈ Aut(Γ5)1 and ϕ fixes all the elements of D1(g), then ϕ = id.

Proof. It follows immediately from Lemma 3.7 and graph connectivity.

Lemma 3.8. Let ϕ ∈ Aut(Γ5)1. If ϕ(y) = y, then ϕ = id. If ϕ(y) = y−1, then ϕ = f , where f is
non-identity element of Aut(G,S5).

Proof. The first case is obtained using Corollaries 3.1, 3.2 and graph connectivity. In the second
case, since ϕ ◦ f(x) = x, ϕ ◦ f(y) = y and ϕ ◦ f ∈ Aut(Γ5)1, by Corollary 3.2, ϕ ◦ f = id and
because f is of order 2, so we have ϕ = f .

Theorem 3.2. Aut(Γ5)1
∼= Z2.

Proof. The statement is a consequence of Lemma 3.8 and Corollary 3.1.

Therefore, Lemmas 1.2, 1.3 and Theorems 3.1, 3.2 prove the second part of the Main Theorem.

Lemma 3.9. Γ1 � Γ3.

Proof. Suppose that there exists an automorphism ϕ : Γ1 → Γ3, so for some g ∈ G, we have
ϕ (1) = g. On other hand, since Γ3 is vertex-transitive, there exsits ψ ∈ Aut(Γ3) such that
ψ (g) = 1, therefore, ψ ◦ ϕ (1) = 1. Thus, without loss of generality, we assume ϕ (1) = 1.
Now, since ϕ is isomorphism and {1, x} is an edge of Γ1, {1, ϕ (x)} is an edge of Γ3. Therefore,
ϕ (x) ∈

{
x2, x3, x2y, (x2y)

−1
}

. In the following, we show that ϕ (x) can’t be equal to any of these
4 elements.

Case 1. ϕ (x) 6= x2. Because, if ϕ (x) = x2, then ϕ (x2) = x4, and ϕ (xy) ∈
{
x2y, (x2y)

−1
}

.

On the other hand, D2 (x2) ∩ D3 (xy) =
{
y−1, y−k, x2yk

}
in Γ1. Since ϕ is isomorphism,

D2 (ϕ (x2)) ∩D3 (ϕ (xy)) has 3 elements in Γ3.
But,

D2

(
x4
)
∩D3

(
x2y
)

= D2

(
x4
)
∩D3

((
x2y
)−1
)

=
{
x4yk

2

, y−1
}

which is a contradiction with isomorphism ϕ.
Case 2. ϕ (x) 6= x3. Because, if ϕ (x) = x3, then ϕ (x3) = x4, and ϕ (xy) ∈

{
x2y, (x2y)

−1
}

.

If ϕ (xy) = (x2y)
−1, then ϕ

(
(xy)−1) = x2y. On the other hand, D2 (x3) ∩ D3

(
(xy)−1) =
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{
x3y−k

3
, yk

4
, yk

3
}

in Γ1, then, D2 (x4) ∩ D3 (x2y) has 3 elements, but D2 (x4) ∩ D3 (x2y) ={
x4yk

2
, y−1

}
, which is a contrary to the fact that an isomorphism. So we consider ϕ (xy) = x2y.

suppose that σ′ ∈ Aut(G,S1), so σ′ (x) = xy, σ′ (y) = y−1 and σ ∈ Aut(G,S3) are non trivial.
Let ψ = σ ◦ ϕ ◦ σ′. ψ defines an isomorphism from Γ1 to Γ3, such that ψ (1) = 1 and ψ (x) = x2.
But by case 1, there is no such isomorphism.

Case 3. ϕ (x) 6= x2y. we assume that ϕ (x) = x2y. Let ψ = ϕ ◦ σ′ (where σ′ ∈ Aut(G,S1) is
non trivial). Obviosly, ψ (1) = 1 and ψ (x) ∈ {x2, x3}. But by case 1 and case 2, there is no such
isomorphism.

Case 4. ϕ (x) 6= (x2y)
−1. If ϕ (x) = (x2y)

−1, then clearly ϕ (x) ∈ {x2, x3}. Let ψ = ϕ ◦ σ′
similar to the previous case, ψ is a isomorphism that ψ (1) = 1 and ψ (x) ∈ {x2, x3}, which is a
contradiction with cases 1 and 2.

Therefore, by these four cases the proof is complete.

Lemma 3.10. Γ4 � Γ5.

Proof. Suppose that ϕ : Γ4 → Γ5 is an isomorphism. Without loss of generality, we assume that
ϕ(1) = 1. Based on Figures 1 and 2, we have ϕ(x) ∈ {x2, x3} and ϕ(y) ∈ {y, y−1}. Let’s consider
both possible cases.

Case 1. If ϕ(y) = y, then ϕ(yi) = yi. However, since d(yk, x) = 2 in Γ4, if ϕ(x) = x2, then
d(yk, x2) = d(ϕ(yk), ϕ(x)) = 2 in Γ5, which leads to a contradiction. Similarly, if ϕ(x) = x3,
then d(yk, x3) = d(ϕ(yk), ϕ(x)) = 2 in Γ5, resulting in a contradiction. Therefore, this case is not
possible.

Case 2. If ϕ(y) = y−1, then clearly ϕ(y−1) = y. According to Lemma 2.8 and Theorem 2.2,
there exists a non-trivial element f belongs to Aut(G,S4) such that f(x) = x and f(y) = y−1.
Let ψ = ϕ ◦ f . Consequently, ψ is an isomorphism between the graphs Γ4 and Γ5 with ψ(1) = 1
and ψ(y) = ϕ(f(y)) = ϕ(y−1) = y. Therefore, ψ induse an isomorphic between Γ4 and Γ5 with
the condition ψ(y) = y, which is a contradiction similar to Case 1.

Lemma 3.11. Cayley graphs Cay(G,S) with |S| = 4 are CI-graph.

Proof. We know that there are five subsets non equivalent for S. By Lemma 1.5, Aut(Γ1)1 �
Aut(Γ2)1. Therefore Γ1 � Γ2. Also by Lemma 3.9, Γ1 � Γ3. On the other hand, by Main
Theorem Γ4 and Γ5 are not edge transitive, but by Lemma 1.5, Γ1 is edge transitive. Consequently,
Γ4 and Γ5 can’t isomorphism with Γ1. According Lemma 1.5, Theorem 2.2 and Theorem 3.2, since
Aut(Γ2)1 � Aut(Γ3)1, Aut(Γ2)1 � Aut(Γ4)1 and Aut(Γ2)1 � Aut(Γ5)1, so Γ2 � Γ3, Γ2 � Γ4

And Γ2 � Γ5 respectively. Morever, Γ3 � Γ4 and Γ3 � Γ5, because, by Lemma 1.5, Γ3 is normal
edge-transitive, while Γ4 and Γ5 aren’t normal edge transitive. Finally, by Lemma 3.10, Γ4 � Γ5.
This completes the proof.

Lemma 3.12. G is a 5-CI-graph.

Proof. According to the order and relation between the generators of the group, the order of el-
ements of S can’t be 1,2,3 and 5. Therefore by Lemma 3.11 and Definition 1.1, the statement
holds.

101



www.ejgta.org

Tetravalent non-normal Cayley graphs of order 5p2 | S. Khazaei and H. Sharifi

4. Conclusion

In this paper, we consider Cayley graphs on Frobenius group of orders 5p2, where p > 5 is
prime, with cyclic Sylow p-subgroup and with respect to tetravalent sets. In [4], we investigate
graph automorphism and group automorphism determining all connected tetravalent normal edge
transitive Cayley graphs on non-Abelian groups of order 5p2 with respect to tetravalent sets and
same order elements. the main result of which was the form of Lemma 1.5. In this paper, we have
focus on the tetravalent sets with different orders. We prove that these graphs are normal; but, they
are not normal edge-transitive, arc-transitive, nor half- transitive. Also, we show that the group is a
5-CI-group. This can be an interesting research problem to investigate Cayley graphs on Frobenius
groups of order qp2.
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