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Abstract

Let G be a finite non abelian group. The centralizer graph of G is a simple undirected graph
Γcent(G), whose vertices are the proper centralizers of G and two vertices are adjacent if and only
if their cardinalities are identical [7]. The complement of the centralizer graph is called the co-
centralizer graph. In this paper, we investigate the adjacency and (signless) Laplacian spectra of
centralizer and co-centralizer graphs of some classes of finite non-abelian groups and obtain some
conditions on a group so that the centralizer and co-centralizer graphs are adjacency, (signless)
Laplacian integral. We also demonstrate how the integrality phenomena of these graphs either
align with or differ from those of the commuting and non-commuting graphs of the corresponding
groups.
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1. Introduction

Let G be a finite non-ableian group. In literature, there are many occasions when one associates
a graph to a group G in different ways. For example, a commuting graph of a group G denoted by
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Γcom(G) is a graph with G\Z(G), where Z(G) is the centre of G, as the vertex set and two vertices
x and y are adjacent if and only if xy = yx. Similarly, the non-commuting graph is a graph with
G \ Z(G) as the set of vertices and two vertices x and y are adjacent if and only if xy ̸= yx, and
it is denoted by Γcom(G). Likewise, non-nilpotent graph, cyclic, non-cyclic and conjugacy class
graphs has also been associated on a group. The centralizer graph of G is a simple undirected
graph Γcent(G), whose vertices are the proper centralizers of G and two vertices are adjacent if
their cardinalities are identical [7]. A brief study is done about the structure of centralizer graph
in [7]. Another definition is given for centralizer graph in [6] where the centralizer graph of G
is a simple undirected graph with the proper centralizers of G constituting the vertex set and two
vertices are adjacent if they are same, and its complement graph is called non-centralizer graph.
In this article, we consider the centralizer graph defined in [7]. Also, we define the complement
of that graph as the co-centralizer graph and denote it by Γcent(G) . A group G is called a CA-
group if the centralizer CG(x) of every non-central element x ∈ G is abelian. Examples of CA-
groups include the generalized quaternion group, the dihedral group, the quasidihedral group, the
metacyclic group, and the projective special linear group, among others. Further details and various
properties of CA-groups can be found in [9, 10, 11].

For a simple graph H on n vertices, the adjacency matrix A(H) is a matrix of order n,
whose (i, j)-th entry is 1, if the i-th vertex is adjacent to the j-th vertex; otherwise it is 0. Also,
the Laplacian (resp. signless Laplacian) matrix of H is defined as L(H) = D(H) − A(H) (resp.
Q(H) = D(H) + A(H)), where D(H) is the diagonal matrix of order n, with degree of the i-th
vertex as the i-th diagonal entry.

If M is a symmetric matrix, then the characteristic polynomial of M has only real zeroes.
We will represent this family of eigenvalues (known as the spectrum) as

σM =

(
µ1 µ2 · · · µp

m1 m2 · · · mp

)
,

where µ1, µ2, . . . , µp are the distinct eigenvalues of M and m1,m2, . . . ,mp are the corresponding
multiplicities. Since each of A(H), L(H) and Q(H) is symmetric, we will refer the corresponding
spectrum as the adjacency, the Laplacian and the signless Laplacian spectrum, respectively.

In [2], the adjacency spectrum of the commuting graph of some finite non-abelian groups is
discussed. In [3], the Laplacian and signless Laplacian spectra of the commuting graph of some
finite non-abelian groups is investigated, whereas the Laplacian spectrum of the non-commuting
graph of some finite non-abelian groups is determined in [4]. In [8], the Laplacian spectrum of
unitary cayley graphs are discussed. For other related results the reader can look into [2, 3, 4, 8]
and the references therein.

A graph is called adjacency (respectively (signless) Laplacian) integral if the adjacency (re-
spectively (signless) Laplacian) spectrum consists entirely of integers. In this article, we consider
some finite non-abelian groups, namely the generalized quaternion group, the dihedral group, the
quasidihedral group, the metacyclic group, and the projective special linear group, and investigate
the adjacency, (signless) Laplacian spectra of centralizer and co-centralizer graphs of them. More-
over, we obtain some conditions so that their centralizer and co-centralizer graphs are adjacency,
(signless) Laplacian integral and demonstrate the ways in which the integrality phenomena of these
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graphs either coincide with or deviate from those of the commuting and non-commuting graphs of
the corresponding groups.

2. Preliminaries

Consider Q4n =< x, y : x2n = 1, xn = y2, yx = x−1y >, be the generalized quaternion group
of order 4n, where n ≥ 2 , and Z(Q4n)= {1, xn}. Then Q4n can be written as A ∪ B, where
A = {1, x, x2, . . . , x2n−1} and B = {y, xy, x2y, . . . , x2n−1y}, where each element of B is of order
4. It has n + 1 distinct centralizers with one of cardinality 2n and others are of cardinality 4. For
illustration, we note that for any z ∈ Z(Q4n), and 1 ≤ i ≤ 2n− 1,

CQ4n(x) = CQ4n(x
iz)

= Z(Q4n) ∪ xZ(Q4n) ∪ x2Z(Q4n) ∪ . . . ∪ xn−1Z(Q4n)

= {1, xn} ∪ x{1, xn} ∪ x2{1, xn} ∪ . . . ∪ xn−1{1, xn}
= {1, xn} ∪ {x, xn+1} ∪ {x2, xn+2} ∪ . . . ∪ {xn−1, x2n−1}
= {1, x, x2, . . . , x2n−1}.

Moreover, for 1 ≤ j ≤ n,

CQ4n(yx
j) = CQ4n(yx

jz) = Z(Q4n) ∪ yxjZ(Q4n)

= {1, xn} ∪ yxj{1, xn}
= {1, xn} ∪ {yxj, yxn+j}.

Therefore, from the definition of centralizer graph, it follows that Γcent(Q4n) is a graph with
n + 1 vertices where one component is Kn and the other is an isolated vertex, i.e., Γcent(Q4n) ∼=
Kn ⊔K1. As co-centralizer graph is the complement of this graph, therefore Γcent(Q4n) ∼= K1,n.

The following result gives the adjacency characteristics polynomial for Kp1,p2,...,pn and will be
useful to derive some of our main results.

Lemma 2.1. [5] The adjacency characteristics polynomial of the complete multipartite graph
Kp1,p2,...,pn , where p1 + p2 + . . .+ pn = N is:

PA(G)(λ) = λN−n

[
n∏

i=1

(λ+ pi)−
n∑

i=1

pi

n∏
j=1,j ̸=i

(λ+ pj)

]
. (1)

3. Spectra of centralizer graphs of some finite non-abelian groups

3.1. Spectra of Γcent(Q4n)

In this section, we consider the centralizer graph of Q4n and obtain the adjacency, Laplacian and
signless Laplacian spectra of it. It is well known (see [1, 3]) that when G = Kn, then σ(Q(G)) =
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2n− 2 n− 2
1 n− 1

)
. when G = Km1 ⊔Km2 ⊔ . . . ⊔Kml

, then

σ(A(G)) =

 −1 m1 − 1 m2 − 1 . . . ml − 1
l∑

i=1

mi − l 1 1 . . . 1

 .

Similarly, if G = l1Km1 ⊔ l2Km2 ⊔ . . . ⊔ lkKmk
, then

σ(L(G)) =

 0 m1 m2 . . . mk
k∑

i=1

li l1(m1 − 1) l2(m2 − 1) . . . lk(mk − 1)

 .

Therefore, the spectra of Γcent(Q4n) are

σ(A(Γcent(Q4n))) =

(
−1 0 n− 1

n− 1 1 1

)
, σ(L(Γcent(Q4n))) =

(
0 n
2 n− 1

)
,

σ(Q(Γcent(Q4n))) =

(
0 n− 2 2(n− 1)
1 n− 1 1

)
.

Thus, Γcent(Q4n) is adjacency, Laplacian and signless Laplacian integral for any n.

3.2. Comparative study of the centralizer graph Γcent(Q4n) and the commuting graph Γcom(Q4n)

As established earlier, Q4n is a non-abelian CA-group that possesses n+1 distinct centralizers
of non-central elements. Among these, one centralizer has order 2n, while each of the remaining
ones has order 4. Since |Z(Q4n)| = 2 and all centralizers of its non-central elements are abelian,
it follows that

Γcom(Q4n) ∼= K2n−2 ⊔ nK2.

The spectra of Γcom(Q4n) have been explicitly determined in [2, 3], where it is shown that its
adjacency, Laplacian, and signless Laplacian spectra are integral for all values of n. Thus, the
integrality phenomena of the centralizer graph of Q4n is consistent with that of its commuting
graph.

3.3. Spectra of Γcent(D2n)

In this section, we consider the centralizer graph of the dihedral group D2n =< x, y : xn =
y2 = 1, yxy−1 = x−1 > and obtain the adjacency, Laplacian and signless Laplacian spectra of it.
For odd values of n, we have |Z(D2n)| = 1, and the group D2n admits n + 1 distinct centralizers
of non-central elements. Among these, one centralizer is of order n, while each of the remaining
centralizers has order 2. Consequently, the centralizer graph Γcent(D2n) takes the form K1 ⊔ Kn

when n is odd.
On the other hand, when n is even, we obtain |Z(D2n)| = 2, and D2n possesses n

2
+ 1 distinct

centralizers of non-central elements. In this case, exactly one centralizer has order n, while all
others are of order 4. Therefore, for even n, the centralizer graph Γcent(D2n) is given by K1 ⊔Kn

2
.
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Therefore, if n is odd, then

σ(A(Γcent(D2n))) =

(
−1 0 n− 1

n− 1 1 1

)
, σ(L(Γcent(D2n))) =

(
0 n
2 n− 1

)
,

σ(Q(Γcent(D2n))) =

(
0 n− 2 2(n− 1)
1 n− 1 1

)
.

Similarly, if n is even, then

σ(A(Γcent(D2n))) =

(
−1 0 n

2
− 1

n
2
− 1 1 1

)
, σ(L(Γcent(D2n))) =

(
0 n

2

2 n
2
− 1

)
,

σ(Q(Γcent(D2n))) =

(
0 n

2
− 2 n− 2

1 n
2
− 1 1

)
.

Thus, Γcent(D2n) is adjacency, Laplacian, and signless Laplacian integral for all n.

3.4. Comparative study of the centralizer graph Γcent(D2n) and the commuting graph Γcom(D2n)

Since D2n is a CA-group, by the discussion in the previous section regarding the structure of
Γcent(D2n), it follows that

Γcom(D2n) ∼=

Kn−1 ⊔ nK1, if n is odd,

Kn−2 ⊔ n
2
K2, if n is even.

In [2, 3], the adjacency, Laplacian, and signless Laplacian spectra of Γcom(D2n) were determined,
and from those results it is evident that the commuting graph of D2n is adjacency, Laplacian, and
signless Laplacian integral for all n. Thus, the property of integrality exhibited by Γcom(D2n) is
consistent with that of Γcent(D2n).

Remark 3.1. Let us consider the metacyclic group M2pq =< a, b : ap = b2q = 1, bab−1 =
a−1 > , where p > 2. It can be easily observed that for even p (respectively for odd p) the
corresponding centralizer graph is same as that of the centralizer graph of dihedral group D2n for
even n (respectively for odd n), and is independent of q. Therefore the adjacency, Laplacian and
signless Laplacian spectra of M2pq is exactly same as the corresponding spectra of D2n.

3.5. Spectra of Γcent(QD2n)

In this section, we consider the centralizer graph of the quasidihedral group QD2n =< a, b :
a2

n−1
= b2 = 1, bab−1 = a2

n−2−1 >, where n ≥ 4, and obtain the adjacency, Laplacian and
signless Laplacian spectra of it. It is well known that Z(QD2n) = {1, a2n−2}. The group QD2n

admits 2n−2 + 1 distinct centralizers of its non-central elements. Among these, one centralizer
has order 2n−1, while each of the remaining centralizers has order 4. Consequently, the centralizer
graph of QD2n is given by

Γcent(QD2n) ∼= K1 ⊔K2n−2 .
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The corresponding spectra of Γcent(QD2n) are as follows:

σ(A(Γcent(QD2n))) =

(
−1 0 2n−2 − 1

2n−2 − 1 1 1

)
, σ(L(Γcent(QD2n))) =

(
0 2n−2

2 2n−2 − 1

)
,

σ(Q(Γcent(QD2n))) =

(
0 2n−2 − 2 2n−1 − 2
1 2n−2 − 1 1

)
.

Thus, Γcent(QD2n) is adjacency, Laplacian and signless Laplacian integral for any n.

3.6. Comparative study of the centralizer graph Γcent(QD2n) and the commuting graph Γcom(QD2n)

Since QD2n is a CA-group, it follows from the above discussion that

Γcom(QD2n) ∼= K2n−1−2 ⊔ 2n−2K2.

From the known spectra of the commuting graph of QD2n [2, 3], it is established that Γcom(QD2n)
is adjacency, Laplacian, and signless Laplacian integral for every n. Thus, the integrality phenom-
ena of the centralizer graph of QD2n coincides with that of its commuting graph.

3.7. Spectra of Γcent(PSL(2, 2k))

In this section, we consider the centralizer graph of the projective special linear group PSL(2, 2k)
and obtain the adjacency, Laplacian and signless Laplacian spectra of it. The centralizer graph of
PSL(2, 2k) is given by

Γcent(PSL(2, 2k)) ∼= K2k+1 ⊔K2k−1(2k+1) ⊔K2k−1(2k−1).

Hence, the spectra of Γcent(PSL(2, 2k)) are as follows:

σ
(
A(Γcent(PSL(2, 2k)))

)
=

(
−1 2k 2k−1(2k + 1)− 1 2k−1(2k − 1)− 1

22k + 2k − 2 1 1 1

)
,

σ
(
L(Γcent(PSL(2, 2k)))

)
=

(
0 2k + 1 2k−1(2k + 1) 2k−1(2k − 1)
3 2k 2k−1(2k + 1)− 1 2k−1(2k − 1)− 1

)
.

Let 11n (resp. 00n) denote the n × 1 vector with each entry 1 (resp. 0). Also, let Jn (resp. 0n)
denote the matrix of order n with all entries equal to 1 (resp. 0) and In denote the identity matrix
of order n (we will write J (resp. 0) and I if the order is clear from the context). The following
theorem describes the signless Laplacian spectrum of Γcent(PSL(2, 2k)).

Theorem 3.1. Let Γcent(PSL(2, 2k)) be the centralizer graph of the projective special linear
group. Then

(a) 2k − 1 ∈ σ(Q(Γcent(PSL(2, 2k)))) with multiplicity 2k;

(b) 2k−1(2k + 1)− 2 ∈ σ(Q(Γcent(PSL(2, 2k)))) with multiplicity 2k−1(2k + 1)− 1;

(c) 2k−1(2k − 1)− 2 ∈ σ(Q(Γcent(PSL(2, 2k)))) with multiplicity 2k−1(2k − 1)− 1,
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(d) (2k + 1)(2k − 2) ∈ σ(Q(Γcent(PSL(2, 2k)))) with multiplicity 1,

(e) 22k + 2k − 2 ∈ σ(Q(Γcent(PSL(2, 2k)))) with multiplicity 1,

(f) 2k+1 ∈ σ(Q(Γcent(PSL(2, 2k)))) with multiplicity 1.

Proof. With a suitable labeling of the vertices, the signless Laplacian matrix for Γcent(PSL(2, 2k))
can be written as

Q(Γcent(PSL(2, 2k)))

=

 J + (2k − 1)I 0 0
0 J + (2k−1(2k + 1)− 2)I 0
0 0 J + (2k−1(2k − 1)− 2)I

 .

Now, Q(Γcent(PSL(2, 2k)))


−1
1

002k−1

002k−1(2k+1)

002k−1(2k−1)

 = (2k − 1)


−1
1

002k−1

002k−1(2k+1)

002k−1(2k−1)

 .

Therefore, (2k−1) is an eigenvalue of Q(Γcent(PSL(2, 2k))), and the following set V1 lists the
set of 2k linearly independent eigenvectors corresponding to the eigenvalue 2k − 1;

V1 =




−1
1

002k−1

002k−1(2k+1)

002k−1(2k−1)

 ,


−1
0
1

002k−2

002k−1(2k+1)

002k−1(2k−1)

 , . . . ,


−1

002k−1

1
002k−1(2k+1)

002k−1(2k−1)




.

Again, Q(Γcent(PSL(2, 2k)))


002k+1

−1
1

002k−1(2k+1)−2

002k−1(2k−1)

 = (2k−1(2k+1)−2)


002k+1

−1
1

002k−1(2k+1)−2

002k−1(2k−1)

 . There-

fore, (2k−1(2k + 1)− 2) is an eigenvalue of Q(Γcent(PSL(2, 2k))), and the set V2 gives 2k−1(2k +
1)− 1 linearly independent eigenvectors corresponding to it;

V2 =




002k+1

−1
1

002k−1(2k+1)−2

002k−1(2k−1)

 ,


002k+1

−1
0
1

002k−1(2k+1)−3

002k−1(2k−1)

 , . . . ,


002k+1

−1
002k−1(2k+1)−2

1
002k−1(2k−1)




.
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Similarly,

Q(Γcent(PSL(2, 2k)))


002k+1

002k−1(2k+1)

−1
1

002k−1(2k−1)−2

 = (2k−1(2k − 1)− 2)


002k+1

002k−1(2k+1)

−1
1

002k−1(2k−1)−2

 .

Therefore, (2k−1(2k − 1) − 2) is an eigenvalue of Q(Γcent(PSL(2, 2k))), and the set set V3

gives (2k−1(2k − 1)− 1) linearly independent eigenvectors corresponding to it;

V3 =




002k+1

002k−1(2k+1)

−1
1

002k−1(2k−1)−2

 ,


002k+1

002k−1(2k+1)

−1
0
1

002k−1(2k−1)−3

 , . . . ,


002k+1

002k−1(2k+1)

−1
002k−1(2k−1)−2

1




.

Moreover,

Q(Γcent(PSL(2, 2k)))

 002k+1

002k−1(2k+1)

112k−1(2k−1)

 = (2k + 1)(2k − 2)

 002k+1

002k−1(2k+1)

112k−1(2k−1)

 ,

Q(Γcent(PSL(2, 2k)))

 002k+1

112k−1(2k+1)

002k−1(2k−1)

 = (22k + 2k − 2)

 002k+1

112k−1(2k+1)

002k−1(2k−1)

 ,

Q(Γcent(PSL(2, 2k)))

 112k+1

002k−1(2k+1)

002k−1(2k−1)

 = (2k+1)

 112k+1

002k−1(2k+1)

002k−1(2k−1)

 .

Therefore, (2k+1)(2k−2), (22k+2k−2), and (2k+1) are the eigenvalues of Q(Γcent(PSL(2, 2k)))

with

 002k+1

002k−1(2k+1)

112k−1(2k−1)

 ,

 002k+1

112k−1(2k+1)

002k−1(2k−1)

 , and

 112k+1

002k−1(2k+1)

002k−1(2k−1)

 as the corresponding eigenvec-

tors, respectively.

We note that V1∪V2∪V3∪


 002k+1

002k−1(2k+1)

112k−1(2k−1)

∪


 002k+1

112k−1(2k+1)

002k−1(2k−1)

∪


 112k+1

002k−1(2k+1)

002k−1(2k−1)


is a set of mutually orthogonal eigenvectors for Γcent(PSL(2, 2k)). Since the order of Γcent(PSL(2, 2k))
is 22k + 2k + 1, the result follows.

Thus, Γcent(PSL(2, 2k)) is adjacency, Laplacian and signless Laplacian integral for any k.
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3.8. Comparative study of the centralizer graph Γcent(PSL(2, 2k)) and the commuting graph
Γcom(PSL(2, 2k))

It follows from [2, 3] that,

Γcom(PSL(2, 2k)) ∼= (2k + 1)K2k−1 ⊔ 2k−1(2k + 1)K2k−2 ⊔ 2k−1(2k − 1)K2k ,

and this graph is adjacency, Laplacian, and signless Laplacian integral for all values of k. Hence,
the integrality phenomena of the commuting graph of PSL(2, 2k) is consistent with that of its
centralizer graph Γcent(PSL(2, 2k)).

4. Spectra of co-centralizer graphs of some finite non-abelian groups

4.1. Spectra of Γcent(Q4n)

In this section, we consider the co-centralizer graph of Q4n and obtain the adjacency, Lapla-
cian and signless Laplacian spectra of it. It is well known (see [1]) that the adjacency spectra of

a complete bipartite graph Km,n is
( √

mn −
√
mn 0

1 1 m+ n− 2

)
. As it is already observed

in Section 2, Γcent(Q4n) = K1,n. Therefore, σ(A(Γcent(Q4n))) =

( √
n −

√
n 0

1 1 n− 1

)
.

Therefore, Γcent(Q4n) is adjacency integral if n is a perfect square. Also, by Lemma 5 of [8],

σ(L(Γcent(Q4n))) =

(
0 1 1 + n
1 n− 1 1

)
. Since, for a bipartite graph the Laplacian spectrum

coincides with the signless Laplacian spectrum, we have σ(L(Γcent(Q4n))) = σ(Q(Γcent(Q4n))).
Thus, Γcent(Q4n) is Laplacian and signless Laplacian integral for any value of n.

4.2. Comparative study of the co-centralizer graph Γcent(Q4n) and the non-commuting graph
Γcom(Q4n)

In [4, 12, 13], the spectra of Γcom(Q4n) have been thoroughly investigated, and it has been
shown that this graph is integral precisely when (n− 1)(5n− 1) is a perfect square. On the other
hand, Γcent(Q4n) is integral whenever n is a perfect square. Hence, the integrality phenomenon
differs between the two graphs.

It is further observed that both Γcom(Q4n) and Γcent(Q4n) are Laplacian integral for all values
of n. Moreover, Γcom(Q4n) is signless Laplacian integral exactly when (8n2 − 16n + 9) is a
perfect square, whereas Γcent(Q4n) is signless Laplacian integral for every n. Thus, once again,
the integrality behavior of these two graphs exhibits a clear distinction.

4.3. Spectra of Γcent(D2n)

In this section, we consider the co-centralizer graph of dihedral group D2n and obtain the
adjacency, Laplacian and signless Laplacian spectra of it. The co centralizer graph of D2n is

Γcent(D2n) =

{
K1,n, if n is odd,
K1,n

2
, if n is even.
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Therefore, σ(A(Γcent(D2n))) =


( √

n −
√
n 0

1 1 n− 1

)
, if n is odd,( √

n
2

−
√

n
2

0
1 1 n

2
− 1

)
, if n is even.

Thus, Γcent(D2n)

is adjacency integral if n is a perfect square for odd n, and n
2

is a perfect square for even n.
As discussed in Subsection 4.1, it can be seen that

σ(L(Γcent(D2n))) = σ(Q(Γcent(D2n))) =


(

0 1 + n 1
1 1 n− 1

)
, if n is odd,(

0 1 + n
2

1
1 1 n

2
− 1

)
, if n is even.

Hence for any value of n, Γcent(D2n)) is both Laplacian and signless Laplacian integral.

Remark 4.1. By virtue of Remark 3.1, we can conclude that the adjacency, Laplacian and signless
Laplacian spectrum of Γcent(M2pq) is exactly same as the corresponding spectrum of Γcent(D2n).

4.4. Comparative study of the co-centralizer graph Γcent(D2n) and the non-commuting graph
Γcom(D2n)

In [4, 12, 13], the spectra of Γcom(D2n) have been studied in detail. The comparison with
Γcent(D2n) reveals distinct integrality phenomena, which we summarize below.

(i) When n is odd: The graph Γcom(D2n) is integral if and only if (n− 1)(5n− 1) is a perfect
square, whereas Γcent(D2n) is integral precisely when n itself is a perfect square. Thus,
for odd n, the integrality phenomenon differs between the two graphs. Both Γcom(D2n)
and Γcent(D2n) are Laplacian integral for all values of n. Moreover, Γcom(D2n) is signless
Laplacian integral when (8n2 − 16n + 9) is a perfect square, while Γcent(D2n) is signless
Laplacian integral for every n. Hence, the distinction in integrality persists in the signless
Laplacian case.

(ii) When n is even: The graph Γcom(D2n) is integral if and only if
(
n
2
− 1

)(
5n
2
− 1

)
is a per-

fect square, while Γcent(D2n) is integral precisely when n
2

is a perfect square. Thus, for even
n, the integrality phenomenon again differs between the two graphs. Both the graphs are
Laplacian integral for all values of n. Furthermore, Γcom(D2n) is signless Laplacian inte-
gral exactly when (2n2 − 8n + 9) is a perfect square, whereas Γcent(D2n) remains signless
Laplacian integral for all n. Once again, the two graphs exhibit distinct integrality behavior.

4.5. Spectra of Quasidihedral group Γcent(QD2n)

In this section, we consider the co-centralizer graph of the Quasidihedral group QD2n , where
n ≥ 4, and obtain its adjacency, Laplacian and signless Laplacian spectra. Since Γcent(QD2n) =
K1,2n−2 , it follows that

σ(A(Γcent(QD2n))) =

( √
2n−2 −

√
2n−2 0

1 1 2n−2 − 1

)
.
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Thus, Γcent(QD2n) is adjacency integral, if 2n−2 is a perfect square. Also, σ(L(Γcent(QD2n))) =

σ(Q(Γcent(QD2n))) =

(
2n−2 + 1 0 1

1 1 2n−2 − 1

)
, showing that for any value of n, Γcent(QD2n))

is both Laplacian and signless Laplacian integral.

4.6. Comparative study of the co-centralizer graph Γcent(QD2n) and the non-commuting graph
Γcom(QD2n)

In [4, 12], the Laplacian and signless Laplacian spectra of Γcom(QD2n) have been discussed in
detail. It is observed that both Γcent(QD2n) and Γcom(QD2n) are Laplacian integral for all values
of n. However, Γcom(QD2n) is signless Laplacian integral only when (22n−1 − 2n+2 + 9) is a
perfect square, whereas Γcent(QD2n) is signless Laplacian integral for every n. Thus, once again,
the integrality behavior of the two graphs differs from each other.

4.7. Spectra of Γcent(PSL(2, 2k))

As observed in Subsection 3.7, Γcent(PSL(2, 2k)) is the complete tripartite graph
K2k+1,2k−1(2k−1),2k−1(2k+1). Therefore, by equation (1) we get,

P
A(Γcent(PSL(2,2k))

(λ) = λ2k+22k−2[λ3 − {24k−2 + 23k + 3× 22k−2}λ+

(−25k−1 − 24k−1 + 23k−1 + 22k−1)].

Hence, we have the following theorem which describes the adjacency spectrum of Γcent(PSL(2, 2k)).

Theorem 4.1. Let Γcent(PSL(2, 2k)) be the co-centralizer graph of the projective special linear
group. Then σ(A(Γcent(PSL(2, 2k)))) consists of

(a) 0 with multiplicity 2k + 22k − 2;

(b) three roots of the equation x3−(24k−2+3(22k−2)+23k)x+(−25k−1−24k−1+23k−1+22k−1) =
0.

Also,

σ(L(Γcent(PSL(2, 2k))))

=

(
0 22k 2k−1 + 22k−1 + 1 22k−1 + 3(2k−1) + 1 22k + 2k + 1
1 2k 2k−1(2k + 1)− 1 2k−1(2k − 1)− 1 2

)
Thus, Γcent(PSL(2, 2k)) is Laplacian integral for all values of k. The following theorem de-

scribes the signless Laplacian spectrum of Γcent(PSL(2, 2k)).

Theorem 4.2. Let Γcent(PSL(2, 2k)) be the co-centralizer graph of the projective special linear
group PSL(2, 2k). Then its signless Laplacian spectrum consists of:

(a) 22k with multiplicity 2k,

(b) (2k−1 + 22k−1 + 1) with multiplicity 2k−1(2k + 1)− 1,

(c) 3× 2k−1 + 22k−1 + 1 with multiplicity 2k−1(2k − 1)− 1, and
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(d) the three eigenvalues of the matrix

LP =

 22k 2k−1(2k + 1) 2k−1(2k − 1)
2k + 1 2k−1 + 22k−1 + 1 2k−1(2k − 1)
2k + 1 2k−1(2k + 1) 3× 2k−1 + 22k−1 + 1

 .

Proof. With a suitable labeling of the vertices, the signless Laplacian matrix for Γcent(PSL(2, 2k))
can be written as

Q(Γcent(PSL(2, 2k))) =

 22kI J J
J (2k−1 + 22k−1 + 1)I J
J J (3(2k−1) + 22k−1 + 1)I

 .

Now, Q(Γcent(PSL(2, 2k)))


−1
1

002k−1

002k−1(2k+1)

002k−1(2k−1)

 = 22k


−1
1

002k−1

002k−1(2k+1)

002k−1(2k−1)

 .

Therefore, 22k is an eigenvalue of Q(Γcent(PSL(2, 2k))) with the following set S1 of 2k linearly
independent eigenvectors;

S1 =




−1
1

02k−1

002k−1(2k+1)

002k−1(2k−1)

 ,


−1
0
1

002k−2

002k−1(2k+1)

002k−1(2k−1)

 , . . . ,


−1

002k−1

1
002k−1(2k+1)

002k−1(2k−1)




.

Similarly,

Q(Γcent(PSL(2, 2k)))


002k+1

−1
1

002k−1(2k+1)−2

002k−1(2k−1)

 = (2k−1 + 22k−1 + 1)


002k+1

−1
1

002k−1(2k+1)−2

002k−1(2k−1)

 ,

shows that (2k−1 + 22k−1 + 1) is an eigenvalue of Q(Γcent(PSL(2, 2k))) and in this way we can
construct the following set S2 of 2k−1(2k+1)−1 linearly independent eigenvectors corresponding
to (2k−1 + 22k−1 + 1);

S2 =




002k+1

−1
1

002k−1(2k+1)−2

002k−1(2k−1)

 ,


002k+1

−1
0
1

002k−1(2k+1)−3

002k−1(2k−1)

 , . . . ,


002k+1

−1
002k−1(2k+1)−2

1
002k−1(2k−1)




.
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Moreover,

Q(Γcent(PSL(2, 2k)))


002k+1

002k−1(2k+1)

−1
1

002k−1(2k−1)−2

 = (3(2k−1) + 22k−1 + 1)


002k+1

002k−1(2k+1)

−1
1

002k−1(2k−1)−2

 .

So, (3(2k−1) + 22k−1 +1) is an eigenvalue of Q(Γcent(PSL(2, 2k))), and the following set S3 lists
2k−1(2k − 1)− 1 independent eigenvectors corresponding to this eigenvalue;

S3 =




002k+1

002k−1(2k+1)

−1
1

002k−1(2k−1)−2

 ,


002k+1

002k−1(2k+1)

−1
0
1

002k−1(2k−1)−3

 , . . . ,


002k+1

002k−1(2k+1)

−1
002k−1(2k−1)−2

1




.

Thus, we have obtained 2k+2k−1(2k+1)−1+2k−1(2k−1)−1 = 2k+22k−2 eigenvalues of
Q(Γcent(PSL(2, 2k))). Moreover, we note that all the eigenvectors constructed so far, are orthog-

onal to

 112k+1

002k−1(2k+1)

002k−1(2k−1)

 ,

 002k+1

112k−1(2k+1)

002k−1(2k−1)

 and

 002k+1

002k−1(2k+1)

112k−1(2k−1)

 . Therefore, these three vectors

span the remaining three eigenvectors of Q(Γcent(PSL(2, 2k))). Thus, the remaining eigenvectors

of Q(Γcent(PSL(2, 2k))) are of the form

 a112k+1

b112k−1(2k+1)

c112k−1(2k−1)

 , for some (a, b, c) ̸= (0, 0, 0). There-

fore if µ is an eigenvalue of Q(Γcent(PSL(2, 2k))) with eigenvector

 a112k+1

b112k−1(2k+1)

c112k−1(2k−1)

 , then a, b, c

are the solution of the following system of equation(
22k

)
a+

(
2k−1 × (2k + 1)

)
b+

(
2k−1 × (2k − 1)

)
c = 0

(2k + 1)a+
(
2k−1 + 22k−1 + 1

)
b+

(
2k−1 × (2k − 1)

)
c = 0

(2k + 1)a+
(
2k−1 × (2k + 1)

)
b+

(
3× 2k−1 + 22k−1 + 1

)
c = 0.

Therefore, the remaining three eigenvalues of Q(Γcent(PSL(2, 2k))) are the eigenvalues of the
matrix LP .

Hence, by Theorem 4.2, Γcent(PSL(2, 2k)) is signless Laplacian integral if LP have integral
spectrum.
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5. Conclusion

In this article, we have investigated the adjacency, (signless) Laplacian spectra of centralizer
and co-centralizer graphs of the generalized quaternion group, the dihedral group, the quasidi-
hedral group, the metacyclic group, and the projective special linear group. We also obtained
conditions under which these graphs will be adjacency, (signless) Laplacian integral and we have
demonstrated how the integrality phenomena of these graphs either align with or differ from those
of the commuting and non-commuting graphs of the corresponding groups.
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