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Abstract

Let G be a finite non abelian group. The centralizer graph of G is a simple undirected graph
[.ent(G), whose vertices are the proper centralizers of G and two vertices are adjacent if and only
if their cardinalities are identical [7]. The complement of the centralizer graph is called the co-
centralizer graph. In this paper, we investigate the adjacency and (signless) Laplacian spectra of
centralizer and co-centralizer graphs of some classes of finite non-abelian groups and obtain some
conditions on a group so that the centralizer and co-centralizer graphs are adjacency, (signless)
Laplacian integral. We also demonstrate how the integrality phenomena of these graphs either
align with or differ from those of the commuting and non-commuting graphs of the corresponding
groups.
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1. Introduction

Let G be a finite non-ableian group. In literature, there are many occasions when one associates
a graph to a group G in different ways. For example, a commuting graph of a group GG denoted by
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Leom(G) is a graph with G\ Z(G), where Z (@) is the centre of G, as the vertex set and two vertices
2 and y are adjacent if and only if xy = yx. Similarly, the non-commuting graph is a graph with
G\ Z(G) as the set of vertices and two vertices x and y are adjacent if and only if xy # yx, and
it is denoted by I'.,,,(G). Likewise, non-nilpotent graph, cyclic, non-cyclic and conjugacy class
graphs has also been associated on a group. The centralizer graph of G is a simple undirected
graph I'...:(G), whose vertices are the proper centralizers of G and two vertices are adjacent if
their cardinalities are identical [7]. A brief study is done about the structure of centralizer graph
in [7]. Another definition is given for centralizer graph in [6] where the centralizer graph of GG
is a simple undirected graph with the proper centralizers of GG constituting the vertex set and two
vertices are adjacent if they are same, and its complement graph is called non-centralizer graph.
In this article, we consider the centralizer graph defined in [7]. Also, we define the complement
of that graph as the co-centralizer graph and denote it by ['..,.;(G) . A group G is called a CA-
group if the centralizer C;(x) of every non-central element x € G is abelian. Examples of CA-
groups include the generalized quaternion group, the dihedral group, the quasidihedral group, the
metacyclic group, and the projective special linear group, among others. Further details and various
properties of CA-groups can be found in [9, 10, 11].

For a simple graph H on n vertices, the adjacency matrix A(H) is a matrix of order n,
whose (i, 7)-th entry is 1, if the i-th vertex is adjacent to the j-th vertex; otherwise it is 0. Also,
the Laplacian (resp. signless Laplacian) matrix of H is defined as L(H) = D(H) — A(H) (resp.
Q(H) = D(H) + A(H)), where D(H) is the diagonal matrix of order n, with degree of the i-th
vertex as the i-th diagonal entry.

If M is a symmetric matrix, then the characteristic polynomial of M has only real zeroes.
We will represent this family of eigenvalues (known as the spectrum) as

_ ( fmoopr )
opNy — y
mip Mo - mp
where i1, 12, . . ., 11, are the distinct eigenvalues of M and my, mo, ..., m, are the corresponding

multiplicities. Since each of A(H), L(H) and Q(H ) is symmetric, we will refer the corresponding
spectrum as the adjacency, the Laplacian and the signless Laplacian spectrum, respectively.

In [2], the adjacency spectrum of the commuting graph of some finite non-abelian groups is
discussed. In [3], the Laplacian and signless Laplacian spectra of the commuting graph of some
finite non-abelian groups is investigated, whereas the Laplacian spectrum of the non-commuting
graph of some finite non-abelian groups is determined in [4]. In [8], the Laplacian spectrum of
unitary cayley graphs are discussed. For other related results the reader can look into [2, 3, 4, 8]
and the references therein.

A graph is called adjacency (respectively (signless) Laplacian) integral if the adjacency (re-
spectively (signless) Laplacian) spectrum consists entirely of integers. In this article, we consider
some finite non-abelian groups, namely the generalized quaternion group, the dihedral group, the
quasidihedral group, the metacyclic group, and the projective special linear group, and investigate
the adjacency, (signless) Laplacian spectra of centralizer and co-centralizer graphs of them. More-
over, we obtain some conditions so that their centralizer and co-centralizer graphs are adjacency,
(signless) Laplacian integral and demonstrate the ways in which the integrality phenomena of these
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graphs either coincide with or deviate from those of the commuting and non-commuting graphs of
the corresponding groups.

2. Preliminaries

Consider Qq, =< z,y : 2*" = 1,2" = y?,yxr = 2~y >, be the generalized quaternion group
of order 4n, where n >2,and Z (Q4n) {1,2"}. Then Q4n can be written as A U B, where
A={1,z,2% ... ,2*" '} and B = {y, 2y, 2%y, ..., 2*" "1y}, where each element of B is of order
4. It has n + 1 distinct centralizers with one of cardinality 2n and others are of cardinality 4. For
illustration, we note that for any z € Z(Q4,),and 1 <1i < 2n — 1,

Cou () = Cq,(2'2)
Z(Qun) Uz Z(Qan) Ur*Z(Qan) U ... Uz" ' Z(Qun)
{1, 2"} uz{l, 2"} uz*{1,2"}U...Uz" 12"}

{1,2"} U{z, 2"} u{a? 2" u. . U {a" 2?1t}
Qn—l}‘

= {l,2,2% ... .2
Moreover, for 1 < 7 < n,

CQ4n (yx]) = CQ477. (ny]Z) = Z(Q4n) U yij(Q4n)
= {1, 2"} Uya?{1,2"}
= {1, 2"} U {ya?, yz" 7},

Therefore, from the definition of centralizer graph, it follows that I"..,;(Q4,) is a graph with
n + 1 vertices where one component is K, and the other is an isolated vertex, i.e., ['cepni(Qan) =
K, U K. As co-centralizer graph is the complement of this graph, therefore I' et (Qun) = K .

The following result gives the adjacency characteristics polynomial for K, ,, ;. and will be
useful to derive some of our main results.

Lemma 2.1. [5] The adjacency characteristics polynomial of the complete multipartite graph

Ky po,...pn » where py +po + ... +p, = N is:

Pay(\) = AV | T+ p2) sz H (A +p))] - (1)
i=1 = j=1,5#1

3. Spectra of centralizer graphs of some finite non-abelian groups

3.1. Spectra of T cent(Qun)

In this section, we consider the centralizer graph of (), and obtain the adjacency, Laplacian and
signless Laplacian spectra of it. It is well known (see [1, 3]) that when G = K, then 0(Q(G)) =
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(2n—2 n—2

1 n_l).whenG:KmluKmQI_I...LJKml,then

—1 mi—1 meg—1 ... m—1

o(A(G)) = zl:mi—l 1 1 1

Similarly, if G = 1 K,,,, U b K, U ... Ul K, , then

0 my mo my
TLEV=1 S0 b —1) blma—1) . lm—1)

Therefore, the spectra of I'cepy (Q4r,) are

-1 0 n-—1

oCan@a) = (, 7 1Y) o = (5 7).

n—1
(Q(Teent (Qun))) = (‘f n-2 2Hn- ”) .

n—1
Thus, ['ceni(Qu4n) is adjacency, Laplacian and signless Laplacian integral for any n.

3.2. Comparative study of the centralizer graph T cont(Quy,) and the commuting graph U com (Qun)

As established earlier, ()4, is a non-abelian CA-group that possesses n + 1 distinct centralizers
of non-central elements. Among these, one centralizer has order 2n, while each of the remaining
ones has order 4. Since |Z(Q4,)| = 2 and all centralizers of its non-central elements are abelian,
it follows that

Fcom(@4n) = K2n72 U nK2-

The spectra of I'con(Q4n) have been explicitly determined in [2, 3], where it is shown that its
adjacency, Laplacian, and signless Laplacian spectra are integral for all values of n. Thus, the
integrality phenomena of the centralizer graph of ()4, is consistent with that of its commuting
graph.

3.3. Spectra of T cepi(Doay)

In this section, we consider the centralizer graph of the dihedral group D,, =< z,y : 2" =
y* = 1,yry~! = 27! > and obtain the adjacency, Laplacian and signless Laplacian spectra of it.
For odd values of n, we have | Z(Ds,,)| = 1, and the group Dy, admits n + 1 distinct centralizers
of non-central elements. Among these, one centralizer is of order n, while each of the remaining
centralizers has order 2. Consequently, the centralizer graph I'cc,, (D2y,) takes the form K L K,
when 7 is odd.

On the other hand, when 7 is even, we obtain | Z(Ds,)| = 2, and Dy, possesses 5 + 1 distinct
centralizers of non-central elements. In this case, exactly one centralizer has order n, while all
others are of order 4. Therefore, for even n, the centralizer graph I'cen (Do, ) is given by K U K 2,
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Therefore, if n is odd, then

-1 0 n-1

o) = (7 ] 7Y oD = (5 ")

(Q(Teent (Dan))) = ((1) n-2 2(n1— 1)) |

Similarly, if n is even, then

| I3

(AT (Do) = (5_—11 (1) %Il), a(L(Fcem(Dzn))F(g

)

N3

e}

Thus, ['cent (D25,) is adjacency, Laplacian, and signless Laplacian integral for all n.

3.4. Comparative study of the centralizer graph I ceni(Day,) and the commuting graph U cop (Day,)

Since Do, is a CA-group, by the discussion in the previous section regarding the structure of
Leent (D2n), it follows that

anl LJ nKl, if nis Odd7
Fcom(D2n) =
K, 2 U 5Ky, ifniseven.

In [2, 3], the adjacency, Laplacian, and signless Laplacian spectra of I'co, (D2, ) were determined,
and from those results it is evident that the commuting graph of D,,, is adjacency, Laplacian, and
signless Laplacian integral for all n. Thus, the property of integrality exhibited by I'com(Day,) is
consistent with that of .y (Day,).

Remark 3.1. Let us consider the metacyclic group Ms,, =< a,b : a? = b* = 1,bab™! =
a”! >, where p > 2. It can be easily observed that for even p (respectively for odd p) the
corresponding centralizer graph is same as that of the centralizer graph of dihedral group D,,, for
even n (respectively for odd n), and is independent of ¢. Therefore the adjacency, Laplacian and
signless Laplacian spectra of My, is exactly same as the corresponding spectra of Ds,,.

3.5. Spectra of T ¢epni (Q Dan)

In this section, we consider the centralizer graph of the quasidihedral group Q) Don =< a, b :
a?' =2 = 1,bab~! = a¥ "' >, where n > 4, and obtain the adjacency, Laplacian and
signless Laplacian spectra of it. It is well known that Z(QDsn) = {1,a2" "}. The group QDan
admits 272 + 1 distinct centralizers of its non-central elements. Among these, one centralizer
has order 2", while each of the remaining centralizers has order 4. Consequently, the centralizer
graph of ) Do is given by

Fcent(QDQ") = KU K2n—2-
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The corresponding spectra of I'ceyt (QQ Dan ) are as follows:

rATan(@) = (5", 1 7T etiam@Da = (5 L5,

n—2 __ n—1 _
7(Q(Ceent(@D2r))) = <(1) 22 2).

Thus, I'.ent (Q Dor) is adjacency, Laplacian and signless Laplacian integral for any n.

3.6. Comparative study of the centralizer graph T ceni (Q) Dor ) and the commuting graph T com (Q Dan )
Since () Dy is a CA-group, it follows from the above discussion that

Fcom(QD2"> %J KQn—l,Q |_| 27172[(2'

From the known spectra of the commuting graph of () Do« [2, 3], it is established that I".qp, (QQ Dan )
is adjacency, Laplacian, and signless Laplacian integral for every n. Thus, the integrality phenom-
ena of the centralizer graph of ) Do~ coincides with that of its commuting graph.

3.7. Spectra of T pent(PSL(2,2%))

In this section, we consider the centralizer graph of the projective special linear group P.SL(2, 2%)
and obtain the adjacency, Laplacian and signless Laplacian spectra of it. The centralizer graph of
PSL(2,2%) is given by

Fcent(PSL(Q, Qk)) = K2k+1 ] KQk—1(2k+1) L sz—l(Qk_l).
Hence, the spectra of Teen (PSL(2,2%)) are as follows:

1 ok ok=l(9k 1 1) _ 1 92k=1(2k _ 1) _ 1
0 (A(Teen(PSL(2,2%)))) = (22k+2k_2 ! ( 1 ) ( 1 ) >

0 28+1  2k1(2F41) 2k=1(2k —1)
J<L(Fcent(PSL(2a Qk)))) = (3 2k 2]671(2’6 + 1) -1 2k71(2k _ 1) _ 1) :

Let 1,, (resp. ©,) denote the n x 1 vector with each entry 1 (resp. 0). Also, let J,, (resp. 0,,)
denote the matrix of order n with all entries equal to 1 (resp. 0) and I,, denote the identity matrix
of order n (we will write J (resp. 0) and [ if the order is clear from the context). The following
theorem describes the signless Laplacian spectrum of T'p.,,;(PSL(2, 2%)).

Theorem 3.1. Let I'..,.;(PSL(2,2%)) be the centralizer graph of the projective special linear

group. Then

(@) 28 — 1 € 0(Q(Tent(PSL(2,2%)))) with multiplicity 2;
(b) 2871(2% + 1) — 2 € 0(Q(Teent(PSL(2,2%)))) with multiplicity 28~ (28 + 1) — 1;
(€) 287128 — 1) — 2 € 0(Q(Teens (PSL(2,2%)))) with multiplicity 2*~1(2F — 1) — 1,
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(d) (28 +1)(2% = 2) € 0(Q(Teens(PSL(2,2%)))) with multiplicity 1,
(e) 2% + 2% — 2 € o(Q(T eent(PSL(2,2%)))) with multiplicity 1,
() 2" € o(Q(T eens(PSL(2,2%)))) with multiplicity 1.

Proof. With a suitable labeling of the vertices, the signless Laplacian matrix for I'.,.;(PSL(2, 2%))

can be written as

Q(Teent(PSL(2,2%)))

J+(2F -1 0 0
= 0 J+ (281 2F +1) - 2)1 0
0 0 J+ (28128 — 1) —2)I
—1 —1
1 1
Now, Q(Teent(PSL(2,2%))) Oy =(2F-1) x4
(0]21%1(2“_1) @21%1(21@_,_1)
@21@—1(%,1) @2k—1(2k,1)

Therefore, (2F — 1) is an eigenvalue of Q (T cens(PSL(2, 2

%)), and the following set V; lists the

set of 2* linearly independent eigenvectors corresponding to the eigenvalue 2% — 1;

_ 3
—1 01 —1
1 1 ®2k_]_
‘/1 = ®2k,1 ) (') 9 )ty 1
@Qk—1(2k+l) @2k—1(2k+1)
o1 (9h_y Oge1(gr gy o1 (9h 1
( ) 1ok ( )
\ 2 (2 —1) )
Ogx 1y 0k 44
—1 —1
Again, Q(Teent(PSL(2,2%))) 1 = (2F1(2F4+1)-2) 1 There-
@2k—l(2k+1),2 2k—l(2k+1),2
2k—1(2k‘,1) @21%—1(21@,1)

fore, (2871(2% + 1) — 2) is an eigenvalue of Q(T s (PSL(2,
1) — 1 linearly independent eigenvectors corresponding to it;

x4y 1 gk 44
1 —1
0
‘/2 — 1 5 1 cey (0)2k—1(2k+1)_2
0o _ 1
G?)I;ki?l;:l)l 2 21102 11)—3 Ogr1 ok
\ (26-1) Oy 21 -1 /|

2k+1
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Similarly,
() ()
@21%1(21@_1_1) @21%1(21@_1_1)
Q(Teent(PSL(2,2%))) —1 = (2128 - 1) - 2) —1
1 1
2k—1(2k_1)_2 2k—1(2k_1)_2

Therefore, (271(2% — 1) — 2) is an eigenvalue of Q(Tcent(PSL(2,2%))), and the set set V3
gives (2F71(2¥ — 1) — 1) linearly independent eigenvectors corresponding to it;

(
®2k+1 0 2k+1 ®2k+1
k—1(9k
@Qkfl(gk_;'_l) 2 _(i +1) @Qkfl(gk_;'_l)
Vs = —1 ) Y —1
0
1 1 @Qk—l(Qk_l)_Q
@21@—1(21@_1)_2 ®2k_1(2k_1)_3 1
Moreover,
_ O _ Oy
Q(Fcent(PSL(2a Qk))) ®2k—1(2k+1) = (2k + 1)(2k - 2) @2’€—1(2k’+1) s
]121@—1(21@71) ﬂzk—l(Qkil)
o1 g 44
Q(Fcent(PSL(2a 2k))) ]].2k—1§2k+1) - (22k + 2k - 2) ]]_2k71(2k+1) ;
@Qk—l(Qk_l) @Qkfl(Qk_l)
]12k+1 ]12]“+1
Q(Leent(PSL(2, Qk))) @zk—1(2k+1) = (2k+1) ®2k’—1(2k+1)
@21@—1(21@71) @21@—1(21@71)
Therefore, (2°+1)(2%—2), (22 +2F—2), and (2**!) are the eigenvalues of Q(Tcent (PSL(2,2%)))
Ogx 1y 0or 11 Lok q
with | Og-1orqyy |, | Lor—1ovyry |5 and | Ogr-1orgy as the corresponding eigenvec-
]].2k71(2k_1) 2k—1(2k_1) 2k71(2k_1)
tors, respectively.
Ogx 1y gk 14 Doy
We note thatV1UV2UV3U @2k71(2k+1) U ]]-2’6*1@]“4-1) U ®2k71(2k+1)
]].Qkfl(gk_l) @Qk—l(gk_l) ®2k71(2k_1)
is a set of mutually orthogonal eigenvectors for I'..,.; (PSL(2,2%)). Since the order of T'p.ps (PSL(2,2%))
is 22k 4+ 9k 4+ 1 the result follows. O

Thus, Teen: (PSL(2,2%)) is adjacency, Laplacian and signless Laplacian integral for any .
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3.8. Comparative study of the centralizer graph T....(PSL(2,2%)) and the commuting graph
[eom(PSL(2,2%))
It follows from [2, 3] that,

Ceom(PSL(2,2%)) 2 (28 + 1) Kopr_y U 287128 + D) Kor_y U 287128 — 1) Ky,

and this graph is adjacency, Laplacian, and signless Laplacian integral for all values of k. Hence,
the integrality phenomena of the commuting graph of PSL(2,2%) is consistent with that of its
centralizer graph .o (PSL(2,2%)).

4. Spectra of co-centralizer graphs of some finite non-abelian groups

4.1. Spectra of T ceni(Qun)

In this section, we consider the co-centralizer graph of ()4, and obtain the adjacency, Lapla-

cian and signless Laplacian spectra of it. It is well known (see [1]) that the adjacency spectra of

vmn —y/mn 0
1

1 min—92 | As it is already observed

a complete bipartite graph K, ,, is (
1 n—1

Therefore, I'.e,i(Q4n) is adjacency integral if n is a perfect square. Also, by Lemma 5 of [8],

O(L(Tent(Qun))) = (1) " i 1 L —il_ " > . Since, for a bipartite graph the Laplacian spectrum

in Section 2, Teent(Qun) = K1, Therefore, o(A(Teent(Qun))) = (\/15 —vn 0 )

coincides with the signless Laplacian spectrum, we have 0(L(Teent(Qun))) = 0(Q(Teent(Qun)))-
Thus, Icent(Qun) is Laplacian and signless Laplacian integral for any value of n.

4.2. Comparative study of the co-centralizer graph T en(Qan) and the non-commuting graph
Fcom(Q4n)

In [4, 12, 13], the spectra of I'com(Q4n) have been thoroughly investigated, and it has been
shown that this graph is integral precisely when (n — 1)(5n — 1) is a perfect square. On the other
hand, Ten(Q4n) is integral whenever n is a perfect square. Hence, the integrality phenomenon
differs between the two graphs.

It is further observed that both I'cop, (Q4r,) and Ieeny (Q4r,) are Laplacian integral for all values
of n. Moreover, T'com(Qy,) is signless Laplacian integral exactly when (8n? — 16n + 9) is a
perfect square, whereas ['cent(Q4n) is signless Laplacian integral for every n. Thus, once again,
the integrality behavior of these two graphs exhibits a clear distinction.

4.3. Spectra of m

In this section, we consider the co-centralizer graph of dihedral group D, and obtain the
adjacency, Laplacian and signless Laplacian spectra of it. The co centralizer graph of D, is

- K., ifnisodd,
Fcent(DQn) - { KL%? if n 1s even.
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( v =y 0 ., ifnis odd,
1 1 n-1
B \/g 0 if n is even
1 1 -1 )’ '
is adjacency integral if n is a perfect square for odd n, and 3 is a perfect square for even n.
As discussed in Subsection 4.1, it can be seen that

Therefore, 0 (A(T cent(D2n))) = Thus, I ceni (Dan)

|3

(1) ﬁ" nil . ifnis odd,
U(L(Fcent(D%))) = U(Q(Fcent(D%))) = 0 1+2 1
5 e
1 1 %_1), if n is even.

Hence for any value of n, I'.e,s( Doy, )) is both Laplacian and signless Laplacian integral.

Remark 4.1. By virtue of Remark 3.1, we can conclude that the adjacency, Laplacian and signless
Laplacian spectrum of I'c.,,; (Ms,,) is exactly same as the corresponding spectrum of It (Day,).

4.4. Comparative study of the co-centralizer graph T..ni(Da,) and the non-commuting graph
I_‘com(l)2n)

In [4, 12, 13], the spectra of ', (D2,) have been studied in detail. The comparison with
[cent (Do) reveals distinct integrality phenomena, which we summarize below.

(i) When n is odd: The graph I'co, (Do) is integral if and only if (n — 1)(5n — 1) is a perfect
square, whereas I'ceni(D2y,) is integral precisely when n itself is a perfect square. Thus,
for odd n, the integrality phenomenon differs between the two graphs. Both e (Day)
and [cept (D2y,) are Laplacian integral for all values of n. Moreover, ['con, (Dsy,) is signless
Laplacian integral when (8n? — 16n + 9) is a perfect square, while Tcepni (D2, is signless
Laplacian integral for every n. Hence, the distinction in integrality persists in the signless
Laplacian case.

(i) When n is even: The graph ', (D>,) is integral if and only if (g — 1) (57” — 1) is a per-
fect square, while I'cey (D2, ) is integral precisely when 7 is a perfect square. Thus, for even
n, the integrality phenomenon again differs between the two graphs. Both the graphs are
Laplacian integral for all values of n. Furthermore, I'co(D2,) is signless Laplacian inte-
gral exactly when (2n2 — 8n + 9) is a perfect square, whereas I .oy (D2, ) remains signless
Laplacian integral for all n. Once again, the two graphs exhibit distinct integrality behavior.

4.5. Spectra of Quasidihedral group T s (QQ Dan )

In this section, we consider the co-centralizer graph of the Quasidihedral group () Ds», where
n > 4, and obtain its adjacency, Laplacian and signless Laplacian spectra. Since I'e,,i (Q Dan) =
K gn—2, it follows that

oCent@en) = (VT T L)
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Thus, Teent (QDon ) is adjacency integral, if 272 is a perfect square. Also, 0(L(Teent(QDan))) =
n—2
0(Q(Trent(QDan))) = ( 2 1+ 1 (1) 2%21_ ] ) , showing that for any value of n, I'e,s (Q Dan))

is both Laplacian and signless Laplacian integral.

4.6. Comparative study of the co-centralizer graph U ceni(Q Don) and the non-commuting graph
I_‘com (QDQ” )

In [4, 12], the Laplacian and signless Laplacian spectra of I'¢,, (QQ D2 ) have been discussed in
detail. It is observed that both [cept (QQDon ) and T'cop (QQ Don ) are Laplacian integral for all values
of n. However, T, (QD2n) is signless Laplacian integral only when (22"~1 — 272 4 9) is a
perfect square, whereas I'cent () Don) is signless Laplacian integral for every n. Thus, once again,
the integrality behavior of the two graphs differs from each other.

4.7. Spectra of T cent(PSL(2,2F))

As observed in Subsection 3.7, [ieni(PSL(2,2%)) is the complete tripartite graph
Kok 1 9512k 1) 25-1(2r41)- Therefore, by equation (1) we get,

(A) = /\2k+22’€—2[)\3 _ {24k—2 + 238 4 3 % 22k:—2}/\ +
(_25k71 . 24]671 4 23]4:71 4 22]671)].

Py (PsL@om)

Hence, we have the following theorem which describes the adjacency spectrum of I, (PSL(2, 2¥)).

Theorem 4.1. Let I'..,,,(PSL(2,2%)) be the co-centralizer graph of the projective special linear

group. Then o(A(L cent(PSL(2,2F)))) consists of
(@) 0 with multiplicity 2% + 22F — 2;
3_ 24]@72_}_3(22]672)_'_23]{/‘)1,_’_(_25]671_24k71+23k71_}_22k‘71) —

(b) three roots of the equation x
0.

Also,

O(L(Fcent(PSL(Z Qk))))

B 0 22k 2]{71_}_22]’971_'_1 22k71_’_3(2k71)+1 22k+2k+1
o\l o2k 2kl2b 1)1 22— 1) —1 2

Thus, T'ceni(PSL(2,2%)) is Laplacian integral for all values of k. The following theorem de-
scribes the signless Laplacian spectrum of I' ... (PSL(2, 2F)).

Theorem 4.2. Let I'..,,;(PSL(2,2%)) be the co-centralizer graph of the projective special linear
group PSL(2,2%). Then its signless Laplacian spectrum consists of:

(a) 22% with multiplicity 2F,

(b) (281 + 221 4+ 1) with multiplicity 281 (28 + 1) — 1,

(c) 3 x 21 221 4 1 with multiplicity 2¥=1(2% — 1) — 1, and
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(d) the three eigenvalues of the matrix

22k 2k71(2k + 1) 2]671(2’{ - 1)
'QP — 2k + 1 2]{?71 + 22k71 + 1 2]{71(2]6 _ 1)
2]@ +1 2k—1(2k + 1) 3 % 2k—1 + 22k—1 +1

Proof. 'With a suitable labeling of the vertices, the signless Laplacian matrix for I..,..(PSL(2, 2¥))

can be written as

B 22k[ J J
Q(Tent(PSL(2,2F))) = T (2 T 2 )] ¥
L J BE+ 2T I
1 1
Now, QT (PSLZ.2) | Oy | =2| 0y,
iy Opigeen)
Ogr—1(2x 1) Oor—1(2%_1)

Therefore, 22 is an eigenvalue of Q(T s (PSL(2, 2%))) with the following set S; of 2* linearly

independent eigenvectors;
(

—1 —1 -1 )
1 ? 2’“71
Sy = O , 1
1 @2k—21k 2: 1 M ®2k—1 2k 11
—@ ( + ) 2k—1(2k+1) —GD ( i )
k—1(9k _ P k—1(9k _
\ 2 (2 1) 2k—1(2k71) 2 (2 1) )
Similarly,
Ok 41 g 44
Q(Teont(PSL(2,27))) 1 = (b1 4 921 4 1) 1 ,

Ogr—1(9% 1) 2

21@—1(21@_1)

Ogr—1(9% 1) 2
@gk—1(2k_1)

shows that (2¥=1 + 2%*~1 4 1) is an eigenvalue of Q(T cep;(PSL(2,2%))) and in this way we can
construct the following set S, of 25~1(2% 4-1) — 1 linearly independent eigenvectors corresponding

to (2871 4+ 22k=1 4 1),

(058 )
@2k+1 2_1_1 @2k+1
—1 -1
0
SQ - 1 5 1 ) 2k71(2k+1)_2
0oyr—
(I?)k = Ogr—1(2t41)-3 () 1
k—1(9k _ k—1(9k_
\ 2 (2k—-1) @2k71(2k_1) 2 (2k—-1) )
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x4y O 44
2k—1(2k+1) 2k—1(2k+1)
Q(Leent(PSL(2,2%))) -1 = (3(2]%1) 4221 4 1) —1
1 1

Ogr-1(2 1) 2 Ogr-1(2 1) 2

So, (3(2F71) +22%=1 4 1) is an eigenvalue of Q (T s (PSL(2,2%))), and the following set Sj lists

2F=1(2%¥ — 1) — 1 independent eigenvectors corresponding to this eigenvalue;

(

\

Ogx 1y

®2k—1(2k+1)

—1
1
Oor—1(20_1)—2

Ogr 1y

@2k—1(2k+1)

Ogx 1y

—1

’ 0

1

Ogr—1(2%_1)_3

®2k—1(2k+1)

—1

@21@—1(216,1),2
1

Ve

Thus, we have obtained 2% +2*71(2F + 1) — 14 2F71(2F — 1) — 1 = 2% + 22 — 2 eigenvalues of
QT eent(PSL(2,2%))). Moreover, we note that all the eigenvectors constructed so far, are orthog-

112k+1 ®2k+1 ®2k+1
onal to | Ogr-1(9641y |, Dor—1orq1y | and | @Oge-1(9x41) | . Therefore, these three vectors
2k—1(2k,1) 2k—1(2k,1) | ]1219—1(2k71)
span the remaining three eigenvectors of Q (I cen:(PSL(2,2%))). Thus, the remaining eigenvectors
[ allyryy

of Q(Lcent(PSL(2,2%))) are of the form | bllye1(9611) | , for some (a,b,c) # (0,0,0). There-

L C]lzk-fl (2k—1)

a]l2k+1
fore if 11 is an eigenvalue of Q(Tcens (PSL(2,2%))) with eigenvector | bllos-1641y | , thena, b, c

Cﬂ2k71(2k,1)
are the solution of the following system of equation
(%) a+ (2" " x 2"+ 1)) b+ (25" x (2" 1))
2"+ Da+ 2"+ 22T+ )b+ (2" x (2 - 1))
1

Cc
C
2"+ Da+ (2" x 2"+ 1)) b+ (3x 25422 4 1) ¢

Therefore, the remaining three eigenvalues of Q(I'cn:(PSL(2,2F))) are the eigenvalues of the
matrix £p. OJ

Hence, by Theorem 4.2, I'..,,(PSL(2,2*)) is signless Laplacian integral if £p have integral
spectrum.
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5. Conclusion

In this article, we have investigated the adjacency, (signless) Laplacian spectra of centralizer
and co-centralizer graphs of the generalized quaternion group, the dihedral group, the quasidi-
hedral group, the metacyclic group, and the projective special linear group. We also obtained
conditions under which these graphs will be adjacency, (signless) Laplacian integral and we have
demonstrated how the integrality phenomena of these graphs either align with or differ from those
of the commuting and non-commuting graphs of the corresponding groups.
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