Electronic Journal of Graph Theory and Applications

The local metric dimension of amalgamation of graphs

D. Fitriani, S.W. Saputro
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung, Indonesia.
dinny.fitriani@gmail.com, suhadi@itb.ac.id

Abstract

For any two adjacent vertices u and v in graph G, a set of vertices W locally resolves a graph G if the distance of u and v to some elements of W are distinct. The local metric dimension of G is the minimum cardinality of local resolving sets of G. For $n \in \mathbb{N}$ and $i \in\{1,2, \ldots, n\}$, let H_{i} be a simple connected graph containing a connected subgraph J. Let $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ be a finite collection of simple connected graphs. The subgraph-amalgamation of $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$, denoted by Subgraph - $\operatorname{Amal}\{\mathcal{H} ; J\}$, is a graph obtained by identifying all elements of \mathcal{H} in J. The subgraph J is called as a terminal subgraph of \mathcal{H}. In this paper, we determine general bounds of the local metric dimension of subgraph-amalgamation graphs for any connected terminal subgraphs. We also determine the local metric dimension of Subgraph - Amal\{ $\mathcal{H} ; J\}$ for J is either K_{1} or P_{2}.

Keywords: local basis, local metric dimension, local resolving set, subgraph-amalgamation Mathematics Subject Classification : 05C12, 05C76
DOI: 10.5614/ejgta.2024.12.1.11

1. Introduction

Throughout this paper, all graphs are finite, simple and connected. Let G be a graph. We denote the vertex set and the edge set of G by $V(G)$ and $E(G)$, respectively. The distance between two vertices u and v of G, denoted by $d_{G}(u, v)$, is the length of a shortest path from u to v in G. Let

Received: 17 August 2022, Revised: 26 November 2023, Accepted: 5 April 2024.
$W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a subset of $V(G)$. The representation of v with respect to W is defined as the k-tuple $r(v \mid W)=\left(d_{G}\left(v, w_{1}\right), d_{G}\left(v, w_{2}\right), \ldots, d_{G}\left(v, w_{k}\right)\right)$. The set W is called as a resolving set of G if every two distinct vertices u and v of G has different representations. A resolving set with minimum cardinality is called a basis of G and its cardinality is called as the metric dimension of G, denoted by $\operatorname{dim}(G)$.

The metric dimension was first studied by Slater [34] and independently by Harary and Melter [15]. Since then, this topic has been widely investigated. All graphs with certain metric dimension have been studied in $[9,16,18]$. The metric dimension of certain classes of graph is also determined, including trees [15, 19, 9], cycles [9], unicyclic graphs [24], wheels [6, 7, 32], fans [7], Cayley graphs [12], Jahangir graphs [36], honeycomb networks [22], regular graphs [29], Sierpiński graphs [21], amalgamation of graphs [33], and fullerene graphs [2]. This topic also has been arised in many applications, such as network discovery and verification [5], robotic navigation [10, 19], and mastermind [14]. Some other results on metric dimension can be seen in [$8,17,19,27,30,31,35,37]$

In this paper, we consider a variance of metric dimension, namely local metric dimension. In this version, two different vertices may have the same representation with respect to an ordered subset W of $V(G)$. In case $r(u \mid W) \neq r(v \mid W)$ for every adjacent vertices u and v in G, then the set W is called a local resolving set of G. A local resolving set with minimum cardinality is called a local basis of G and its cardinality is called the local metric dimension of G, denoted by $\operatorname{lmd}(G)$. Since a resolving set of G also a local resolving set of G, then trivially we have $1 \leq \operatorname{lmd}(G) \leq \operatorname{dim}(G)$.

The local metric dimension problem was introduced by Okamoto et al. [23]. They proved that bipartite graphs are the only graphs having local metric dimension one. Moreover, they also showed that $\operatorname{lmd}(G)=n-1$ if and only if G is a complete graph of order n. Furthermore, they also characterized all graphs of order n whose local metric dimension $n-2$. The local metric dimension of some certain particular graphs also has been determined, including graphs with small clique number [1], torus networks [11], regular graphs [28], block graphs [26], bouquet graphs [26], and split graphs [13].

Determining a relation, in terms of local metric dimension, between the origin graph and the resulting graph under a graph operation is also interesting to be considered. The local metric dimension of Cartesian product graphs has been investigated in [23]. Meanwhile, RodríguezVelázquez et al. studied the parameter for corona product graphs [25] and rooted product graphs [26]. The lower and upper bounds on the local metric dimension of the generalized hierarchical product are proved in [20]. Barragán-Ramírez et al. determined the local metric dimension of lexicographic product graphs [3] and strong product graphs [4].

Now, for $n \in \mathbb{N}$ and $i \in\{1,2, \ldots, n\}$, let us consider a simple connected graph H_{i} containing a connected subgraph J. Let $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ be a finite collection of simple connected graphs. The subgraph-amalgamation of $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$, denoted by Subgraph $\operatorname{Amal}\{\mathcal{H} ; J\}$, is a graph obtained by identifying all elements of \mathcal{H} in J. The subgraph J is called as a terminal subgraph of \mathcal{H}. In this paper, we determine general bounds of the local metric dimension of subgraph-amalgamation graphs for any connected terminal subgraphs. We also determine the local metric dimension of Subgraph $-\operatorname{Amal}\{\mathcal{H} ; J\}$ for J is either K_{1} or P_{2}.

2. Subgraph Amalgamation

For $n \in \mathbb{N}$ and $i \in\{1,2, \ldots, n\}$, let H_{i} be a simple connected graph of order $k_{i} \geq 2$ containing a connected subgraph J of order p where $1 \leq p<k_{i}$. Let $V\left(H_{i}\right)=\left\{h_{1}, h_{2}, \ldots, h_{p}, h_{p+1}, \ldots, h_{k_{i}}\right\}$ where $V(J)=\left\{h_{1}, h_{2}, \ldots, h_{p}\right\}$.

Now, let us consider $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$. In this section, we denote $H \cong$ Subgraph $\operatorname{Amal}\{\mathcal{H} ; J\}$. We define $V(H)=V(J) \cup\left\{h_{(i, j)} \mid 1 \leq i \leq n, p+1 \leq j \leq k_{i}\right\}$ and $H_{i}^{\star}=$ $V(J) \cup\left\{h_{(i, j)} \mid p+1 \leq j \leq k_{i}\right\}$.

Figure 1. Subgraph amalgamation of $H_{1}, H_{2}, \ldots, H_{n}$

In Lemma 2.1 below, we prove that every graph $G \in \mathcal{H}$ contibutes at least $\operatorname{lmd}(G)-p$ vertices in a local basis of H. Meanwhile in Lemma 2.2, we provide a local resolving set of subgraphamalgamation H, which is union of local basis of every graph in \mathcal{H}.

Lemma 2.1. Let W be a local basis of $H \cong$ Subgraph $-\operatorname{Amal}\{\mathcal{H} ; J\}$. Then every graph $G \in \mathcal{H}$ contibutes at least $\operatorname{lmd}(G)-p$ vertices in W.

Proof. Suppose that there exists $i \in\{1,2, \ldots, n\}$ such that H_{i} contributes at most $\operatorname{lmd}\left(H_{i}\right)-p-1$ vertices in W. Let $W_{i}=W \cap V\left(H_{i}\right)$ and $S_{i}=\left\{h_{t} \mid h(i, t) \in W_{i}\right\}$. Now, we define $A_{i}=$ $S_{i} \cup V(J)$. Note that $\left|A_{i}\right|<\operatorname{lmd}\left(H_{i}\right)$. Since all vertices of J are in A_{i}, so there exist two adjacent vertices h_{k} and h_{l} in $V\left(H_{i}\right) \backslash V(J)$ satisfying $r\left(h_{k} \mid A\right)=r\left(h_{l} \mid A\right)$, which implies $r\left(h_{(i, k)} \mid\right.$ $\left.W_{i}\right)=r\left(h_{(i, l)} \mid W_{i}\right)$. Since every vertex $z \in V(H) \backslash V\left(H_{i}\right)$ and $u \in V\left(H_{i}\right) \backslash V(J)$ satisfies $d_{H}(z, u)=d_{H}(z, v)+d_{H}(v, u)$ for some $v \in V(J)$, it follows that $r\left(h_{(i, k)} \mid W\right)=r\left(h_{(i, l)} \mid W\right)$, a contradiction.

Lemma 2.2. Let B_{i} be a local basis of H_{i}. Then $W=\bigcup_{i=1}^{n} B_{i}$ be a local resolving set of $H \cong$ Subgraph - Amal\{H; J\}.

Proof. Let us consider an edge $x y \in E(H)$. Then there exists $i \in\{1,2, \ldots, n\}$ such that $x, y \in$ $V\left(H_{i}\right)$. Since every two adjacent vertices in H_{i} are locally resolved by some vertices of B_{i}, we obtain that $W=\bigcup_{i=1}^{n} B_{i}$ is a local resolving set of H.

By considering Lemmas 2.1 and 2.2, we obtain the lower and upper bounds for the local metric dimension of subgraph-amalgamation graphs, which can be seen in theorem below.

Theorem 2.1. For $n \geq 2$ and $i \in\{1,2, \ldots, n\}$, let H_{i} be a simple connected graph containing a connected subgraph J and $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$. Let $|V(J)|=p$. Then

$$
\sum_{i=1}^{n} l m d\left(H_{i}\right)-p n \leq \operatorname{lmd}(\text { Subgraph }-\operatorname{Amal}\{\mathcal{H} ; J\}) \leq \sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)
$$

In the theorem below, we provide a property of subgraph-amalgamation graph H such that its local metric dimension satisfies the upper bound in Theorem 2.1.

Theorem 2.2. For $n \geq 2$ and $i \in\{1,2, \ldots, n\}$, let H_{i} be a simple connected graph containing a connected subgraph J and $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$. If every local basis of $H_{i}(1 \leq i \leq n)$ does not contain all vertices of J and every vertex in J is adjacent to every vertex in $V\left(H_{i}\right) \backslash V(J)$, then $\operatorname{lmd}(S u b g r a p h-\operatorname{Amal}\{\mathcal{H} ; J\})=\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)$.

Proof. By Theorem 2.1, we only need to show that $\operatorname{lmd}(H) \geq \sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)$.
Suppose that $\operatorname{lmd}(H) \leq\left(\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)\right)-1$ and W be a local basis of H. Let B_{i} be a local basis of H_{i}. Note that B_{i} does not contain all vertices of J. Then there exists $i \in\{1,2, \ldots, n\}$ such that $h_{(i, l)} \notin W$ where $h_{l} \in B_{i}$. Let $B_{i}^{\prime}=B_{i} \backslash\left\{h_{l}\right\}$. Since $\left|B_{i}^{\prime}\right|<\operatorname{lmd}\left(H_{i}\right)$, there exist two adjacent vertices h_{s}, h_{t} in H_{i} satisfying $r\left(h_{s} \mid B_{i}^{\prime}\right)=r\left(h_{t} \mid B_{i}^{\prime}\right)$. Let $B(i)^{\prime}=\left\{h_{(i, k)} \mid h_{k} \in B_{i}^{\prime}\right\}$. Thus, $r\left(h_{(i, s)} \mid B(i)^{\prime}\right)=r\left(h_{(i, t)} \mid B(i)^{\prime}\right)$. Since $d_{H}\left(h_{(i, s)}, h_{j}\right)=d_{H}\left(h_{(i, t)}, h_{j}\right)$ for each $h_{(i, s)}, h_{(i, t)} \in$ $V(H) \backslash V(J)$ and $j \in\{1,2, \ldots, p\}$, we obtain that $r\left(h_{(i, s)} \mid W\right)=r\left(h_{(i, t)} \mid W\right)$, a contradiction.

In order to provide a property of subgraph-amalgamation graph H such that its local metric dimension satisfies the lower bound in Theorem 2.1, we need to prove Theorem 2.3 below. In this theorem, we give a property of subgraph-amalgamation graph whose local metric dimension is equal to $\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-c n$ where $0<c \leq p$. If $c=p$, then we have a subgraph-amalgamation graph H where $\operatorname{lmd}(H)$ is equal to the lower bound in Theorem 2.1

Theorem 2.3. For $n \geq 2$ and $i \in\{1,2, \ldots, n\}$, let H_{i} be a simple connected graph containing a connected subgraph J and $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$. Let $|V(J)|=p \geq 1$ and $V(J)=$ $\left\{h_{1}, h_{2}, \ldots, h_{p}\right\}$. Let C be a non-empty subset of $V(J)$ where $C=\left\{h_{1}, h_{2}, \ldots, h_{c}\right\} . \operatorname{Let} \operatorname{lmd}\left(H_{i}\right) \geq$ $2 c$ and every local basis B_{i} of H_{i} contains $x \in V(J)$ if and only if $x \in C$. If there exists a subset $\left\{h_{p+1}, h_{p+2}, \ldots, h_{p+c}\right\}$ of $B_{i} \backslash C$ such that $d_{H_{i}}\left(h_{j}, h_{p+j}\right)<d_{H_{i}}\left(h_{k}, h_{p+j}\right)$ for every distinct $j, k \in\{1,2, \ldots, c\}$, then $\operatorname{lmd}(S u b g r a p h-\operatorname{Amal}\{\mathcal{H} ; J\})=\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-c n$.

Proof. Suppose that W is a local basis of H satisfying $|W|=\operatorname{lmd}(H) \leq\left(\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-c n\right)-1$. Then there exists $i \in\{1,2, \ldots, n\}$ such that H_{i} contributes at most $\operatorname{lmd}\left(H_{i}\right)-c-1$ vertices in W. Let $S_{i}=W \cap V\left(H_{i}\right)$ and $W_{i}=\left\{h_{j} \in V\left(H_{i}\right) \mid h_{(i, j)} \in S_{i}\right\}$, then $\left|W_{i}\right| \leq \operatorname{lmd}\left(H_{i}\right)-c-1$. Let $A \subseteq C$ where every element of A, say h_{b}, locally resolves some two adjacent vertices in H_{i}^{\star} and there exists $v \in W \backslash H_{i}^{\star}$ which satisfies $d_{H}\left(v, h_{b}\right)=\min \left\{d_{H}(v, w) \mid w \in C\right\}$. Since every local basis B_{i} of H_{i} does not contain all vertices of $V(J) \backslash C$ and $\left|W_{i} \cup A\right|<\left|B_{i}\right|$, there exist two adjacent vertices h_{k}, h_{l} in H_{i} which are not locally resolved by vertices in $W_{i} \cup A$, which implies
$h_{(i, k)}, h_{(i, l)}$ are not locally resolved by vertices in $S_{i} \cup A$. It follows that $h_{(i, k)}, h_{(i, l)}$ are not locally resolved by W, a contradiction.

For $i \in\{1,2, \ldots, n\}$, let $T_{i}=B_{i} \backslash C$. We define $U_{i}=\left\{h_{(i, l)} \mid h_{l} \in T_{i}\right\}$ and $W=\bigcup_{i=1}^{n} U_{i}$. We will show that W is a local resolving set of H.

We consider any two adjacent vertices $h_{(i, s)}, h_{(i, t)} \in V(H) \backslash W$ in two following cases.

- There exist h_{s}, h_{t} in H_{i} which are locally resolved by W_{i}.

Let $h_{l} \in T_{i}$ locally resolves h_{s} and h_{t}. Then it is clear that $h_{(i, s)}, h_{(i, t)}$ in H will be locally resolved by $h_{(i, l)} \in W$.

- Every two adjacent vertices h_{s}, h_{t} in H_{i} are not locally resolved by W_{i}.

Then there exists $h_{j} \in C$ such that $d_{H_{i}}\left(h_{s}, h_{j}\right) \neq d_{H_{i}}\left(h_{t}, h_{j}\right)$. Therefore, we have $d_{H}\left(h_{(i, s)}, h_{j}\right) \neq$ $d_{H}\left(h_{(i, t)}, h_{j}\right)$. We consider $h_{(m, p+j)} \in W$ where $m \in\{1,2, \ldots, n\} \backslash\{i\}$ and $d_{H_{i}}\left(h_{j}, h_{(p+j)}\right)<$ $d_{H_{i}}\left(h_{k}, h_{(p+j)}\right)$ for every distinct $j, k \in\{1,2, \ldots, p\}$. We obtain

$$
\begin{aligned}
d_{H}\left(h_{(i, s)}, h_{(m, p+j)}\right) & =d_{H}\left(h_{(i, s)}, h_{j}\right)+d_{H}\left(h_{j}, h_{(m, p+j)}\right) \\
& =d_{H}\left(h_{(i, s)}, h_{j}\right)+d_{H_{i}}\left(h_{j}, h_{p+j}\right) \\
& \neq d_{H}\left(h_{(i, t)}, h_{j}\right)+d_{H_{i}}\left(h_{j}, h_{p+j}\right) \\
& =d_{H}\left(h_{(i, t)}, h_{j}\right)+d_{H}\left(h_{(j)}, h_{(m, p+j)}\right) \\
& =d_{H}\left(h_{(i, t)}, h_{(m, p+j)}\right) .
\end{aligned}
$$

Then $h_{(i, s)}, h_{(i, t)}$ in H are locally resolved by $h_{(m, p+j)} \in W$.
Therefore, W is a local resolving set of H.
Note that, in Theorem 2.3 above, we consider a graph Subgraph - $\operatorname{Amal}\{\mathcal{H} ; J\}$ where every local basis of $H_{i} \in \mathcal{H}(1 \leq i \leq n)$ contains the same exactly c vertices of J. In theorem below, we can prove that the upper bound of the local metric dimension of such subgraph-amalgamation graph is less than the upper bound in Theorem 2.1.

Theorem 2.4. For $n \geq 2$ and $i \in\{1,2, \ldots, n\}$, let H_{i} be a simple connected graph containing a connected subgraph J and $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$. Let $|V(J)|=p \geq 1$ and C be a non-empty subset of $V(J)$ where $|C|=c$. Let every local basis B_{i} of H_{i} contains $x \in V(J)$ if and only if $x \in C$. Then

$$
\operatorname{lmd}(\text { Subgraph }-\operatorname{Amal}\{\mathcal{H} ; J\}) \leq \sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-c n+c .
$$

Proof. Let us consider any edges $x y \in E(H)$. Then there exists $i \in\{1,2, \ldots, n\}$ such that $x, y \in V\left(H_{i}\right)$. For $i \in\{1,2, \ldots, n\}$, let B_{i} be a local basis of H_{i}. Since every two adjacent vertices in H_{i} are locally resolved by some vertices in B_{i}, we obtain that $W=\bigcup_{i=1}^{n} B_{i}$ is a local resolving set of H. Since $\left|B_{i} \cap B_{j}\right|=c$ for distinct $i, j \in\{1,2, \ldots, n\}$, we have $|W|=\sum_{i=1}^{n}\left|B_{i}\right|-(n-1) c$. Therefore, we obtain

$$
\operatorname{lmd}(H) \leq \sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-c n+c
$$

Next, we will show that the upper bound in Theorem 2.4 is sharp. In order to do so, first, we need to determine the local metric dimension of graph G_{1}, which can be seen in lemma below. The graph G_{1} and its complement are shown in Figure 2.

Figure 2. Graph G_{1} (left) and its complement (right)

Lemma 2.3. Let G_{1} be a connected graph as stated in Figure 2. Then $\operatorname{lmd}\left(G_{1}\right)=3$. Moreover, the set $\left\{f_{1}, f_{2}, f_{3}\right\}$ is the only local basis of G_{1}.

Proof. Let $D=\left\{d_{i} \mid i \in\{1,2,3\}\right\}, E=\left\{e_{i} \mid i \in\{1,2,3\}\right\}, F=\left\{f_{i} \mid i \in\{1,2,3\}\right\}$, and $G=\left\{g_{i} \mid i \in\{1,2,3\}\right\}$. Since G_{1} contains an odd cycle, we have $\operatorname{lmd}\left(G_{1}\right)>1$. We will show that there is no local resolving set of G_{1} whose cardinality is 2 . Suppose that W be a local resolving set of G_{1} with $|W|=2$. We distinguish four cases.

Case 1. $W \subset D \cup F$
Since $|W|=2$, there exists $i \in\{1,2,3\}$ such that $f_{i} \notin W$. So, we obtain that $r\left(e_{i} \mid W\right)=$ $(1,1)=r\left(g_{i} \mid W\right)$.

Case 2. $W \subset D \cup E \cup G$
Then $D \backslash W \neq \emptyset$ and $E \backslash W \neq \emptyset$. Let $d_{i}, e_{j} \notin W$. Note that d_{i} and e_{j} are adjacent. So, we obtain that $r\left(d_{i} \mid W\right)=(1,1)=r\left(e_{j} \mid W\right)$.

Case 3. $W=\left\{e_{i}, f_{j}\right\}$ where $i, j \in\{1,2,3\}$.
Then two adjacent vertices f_{k}, g_{l} satisfy $r\left(f_{k} \mid W\right)=(1,1)=r\left(g_{l} \mid W\right)$ with $k, l \in\{1,2,3\}$ and $k \neq i, l \neq j$.

Case 4. $W=\left\{f_{i}, g_{j}\right\}$ where $i, j \in\{1,2,3\}$.
Then two adjacent vertices e_{k}, e_{l} satisfy $r\left(e_{k} \mid W\right)=(1,1)=r\left(e_{l} \mid W\right)$ with $k, l \in\{1,2,3\} \backslash\{i\}$
and $k \neq l$.

By all cases above, we conclude that W is not local resolving set of G_{1}. Since there is no local resolving set of G_{1} with 2 elements, we obtain that $\operatorname{lmd}\left(G_{1}\right) \geq 3$.

Now, we will construct a local resolving set of G_{1} with 3 vertices. Define $B=\left\{f_{1}, f_{2}, f_{3}\right\}$. The representation of all vertices in G_{1} with respect to B are as follows.

$$
\begin{array}{lll}
r\left(d_{1} \mid B\right)=(1,2,2) & r\left(e_{2} \mid B\right)=(1,2,1) & r\left(f_{3} \mid B\right)=(1,1,0) \\
r\left(d_{2} \mid B\right)=(2,1,2) & r\left(e_{3} \mid B\right)=(1,1,2) & r\left(g_{1} \mid B\right)=(1,1,1) \\
r\left(d_{3} \mid B\right)=(2,2,1) & r\left(f_{1} \mid B\right)=(0,1,1) & r\left(g_{2} \mid B\right)=(1,1,1) \\
r\left(e_{1} \mid B\right)=(2,1,1) & r\left(f_{2} \mid B\right)=(1,0,1) & r\left(g_{3} \mid B\right)=(1,1,1)
\end{array}
$$

Since there are no two adjacent vertices of G_{1} having the same representation, we obtain that B is a local resolving set of G_{1}, which implies $\operatorname{lmd}\left(G_{1}\right) \leq 3$.

Next, we will show that there is no local resolving set of G_{1} with 3 vertices, except $\left\{f_{1}, f_{2}, f_{3}\right\}$. Let $W^{\prime} \subset V\left(G_{1}\right)$ with $\left|W^{\prime}\right|=3$ and W^{\prime} contains q vertices in F with $0 \leq q \leq 2$. We distinguish three cases.

Case 1. $q=0$

- $W^{\prime} \cap G=\emptyset$

If $W^{\prime}=E$, then two adjacent vertices $d \in D$ and $g \in G$ satisfy $r\left(d \mid W^{\prime}\right)=(1,1,1)=$ $r\left(g \mid W^{\prime}\right)$. Otherwise, let $e_{i} \notin W(i \in\{1,2,3\})$. Then we obtain $r\left(e_{i} \mid W^{\prime}\right)=(1,1,1)=$ $r\left(g_{i} \mid W^{\prime}\right)$.

- $W^{\prime} \cap G \neq \emptyset$

Then there exist $d \in D$ and $e \in E$ which are not element of W^{\prime}. Then we obtain $r(d \mid$ $\left.W^{\prime}\right)=(1,1,1)=r\left(e \mid W^{\prime}\right)$.

Case 2. $q=1$

- $W^{\prime} \cap G=\emptyset$

If $W^{\prime} \cap D=\emptyset$, then two adjacent vertices $d \in D$ and $g \in G$ satisfy $r\left(d \mid W^{\prime}\right)=(1,1,1)=$ $r\left(g \mid W^{\prime}\right)$. Otherwise, let $e_{i} \notin W(i \in\{1,2,3\})$. Then we obtain $r\left(e_{i} \mid W^{\prime}\right)=(1,1,1)=$ $r\left(g_{i} \mid W^{\prime}\right)$.

- $W^{\prime} \cap G \neq \emptyset$

If $W^{\prime} \cap E=\emptyset$, then there exist two distinct vertices of E which are adjacent to W^{\prime}. Otherwise, all three vertices of D are adjacent to W^{\prime}.

Case 3. $q=2$
Let two distinct vertices $f_{j}, f_{k} \in W^{\prime}$ where $j, k \in\{1,2,3\}$.

- $W^{\prime} \cap D \neq \emptyset$

Then for $l \in\{1,2,3\} \backslash\{j, k\}$, we have e_{l} is adjacent to W^{\prime}. So, for $g \in G$, we obtain $r\left(e_{l} \mid W^{\prime}\right)=(1,1,1)=r\left(g \mid W^{\prime}\right)$.

- $W^{\prime} \cap G \neq \emptyset$

Then two adjacent vertices d_{j}, e_{k} satisfy $r\left(d_{j} \mid W^{\prime}\right)=r\left(e_{k} \mid W^{\prime}\right)$.

- $W^{\prime} \cap E \neq \emptyset$

Let $e_{i} \in W^{\prime}$. If $i=j$, then two adjacent vertices d_{j}, e_{k} satisfy $r\left(d_{j} \mid W^{\prime}\right)=r\left(e_{k} \mid W^{\prime}\right)$. Otherwise, two adjacent vertices d_{k}, e_{j} satisfy $r\left(d_{k} \mid W^{\prime}\right)=r\left(e_{j} \mid W^{\prime}\right)$.

By all cases above, W^{\prime} is not local resolving set of G_{1}.
Now, we are ready to give an existence of $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ and a terminal subgraph J of H_{i}, such that the local metric dimension of $\operatorname{Subgraph}-\operatorname{Amal}\{\mathcal{H} ; J\}$ is equal to the upper bound of Theorem 2.4.

Theorem 2.5. For $n \geq 2$ and $i \in\{1,2, \ldots, n\}$, let $H_{i} \cong G_{1}$, J be a terminal subgraph of H_{i} with $V(J)=\left\{f_{1}, f_{2}, e_{3}\right\}$, and $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$. Then lmd $($ Subgraph $-\operatorname{Amal}\{\mathcal{H} ; J\})=n+2$.

Proof. In this case, $C=\left\{f_{1}, f_{2}\right\}$ and $c=|C|=2$. By Theorem 2.4, $\operatorname{lmd}(H) \leq \sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-$ $c n+c=n+2$. Now, we will prove that $\operatorname{lmd}(H) \geq \sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-c n+c=n+2$.

Let $x_{(i, j)} \in V(H) \backslash V(J)$ whenever $x_{j} \in V\left(H_{i}\right) \backslash V(J)$ and W be a local resolving set of H. We consider two conditions below.

1. Two adjacent vertices d_{1} and e_{2} are not locally resolved by J. It follows that $d_{(i, 1)}$ and $e_{(i, 2)}$ in H are not locally resolved by $V(H) \backslash H_{i}^{\star}$. Since f_{3} is an element of local basis of G_{1} and f_{3} locally resolves d_{1} and e_{2}, we obtain that $f_{(i, 3)}$ locally resolves $d_{(i, 1)}$ and $e_{(i, 2)}$. Thus, $f_{(i, 3)} \in W$ for $1 \leq i \leq n$.
2. For $j \in\{1,2\}$, two adjacent vertices e_{j} and g_{j} are not locally resolved by $J \backslash\left\{f_{j}\right\}$. According to Lemma 2.3, f_{j} is an element of a local basis of G_{1}. Note that if $f_{j} \notin W$, then $e_{(i, j)}$ and $g_{(i, j)}$ are not locally resolved by $V(H) \backslash H_{i}^{\star}$ since $d_{H}\left(v, e_{(i, j)}\right)<d_{H}\left(v, f_{j}\right)+d_{H}\left(f_{j}, e_{(i, j)}\right)$ and $d_{H}\left(v, g_{(i, j)}\right)=d_{H}\left(v, f_{j}\right)+d_{H}\left(f_{j}, g_{(i, j)}\right)$ with $v \in V(H) \backslash H_{i}^{\star}$. So, f_{j} must be in W for $j \in\{1,2\}$.

By two conditions above, we obtain that $\operatorname{lmd}(H) \geq n+2$.
In the next theorem, we will provide an existence of $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ and a terminal subgraph J of H_{i}, such that the local metric dimension of $\operatorname{Subgraph}-\operatorname{Amal}\{\mathcal{H}, J\}$ is not equal to both upper bound of Theorem 2.4 and lower bound of Theorem 2.1. In order to do so, first, we need to determine the local metric dimension of graph G_{2}, which can be seen in Lemma 2.4 below. The lemma is proved by using the similar argument of Lemma 2.3. Meanwhile, the graph G_{2} and its complement are shown in Figure 2. Note that, the graph G_{2} can be obtained from G_{1} by adding an edge $f_{1} f_{3}$.

Lemma 2.4. Let G_{2} be a connected graph as stated in Figure 3. Then $\operatorname{lmd}\left(G_{2}\right)=3$. Moreover, the set $\left\{f_{1}, f_{2}, f_{3}\right\}$ is the only local basis of G_{2}.

Theorem 2.6. For $n \geq 2$ and $i \in\{1,2, \ldots, n\}$, let $H_{i} \cong G_{2}$, J be a terminal subgraph of H_{i} with $V(J)=\left\{f_{1}, f_{2}, e_{3}\right\}$, and $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$. Then lmd $($ Subgraph $-\operatorname{Amal}\{\mathcal{H} ; J\})=n+1$.

Figure 3. Graph G_{2} (left) and its complement (right)

Proof. In this case, $C=\left\{f_{1}, f_{2}\right\}$ and $c=|C|=2$. Note that, $\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-c n=n<n+1<$ $\sum_{i=1}^{n} l m d\left(H_{i}\right)-c n+c=n+2$.

Now, we will prove that $l m d(H) \geq n+1$. Let $x_{(i, j)} \in V(H) \backslash V(J)$ whenever $x_{j} \in V\left(H_{i}\right) \backslash$ $V(J)$ and W be a local resolving set of H. We consider two conditions below.

1. Two adjacent vertices d_{1} and e_{2} are not locally resolved by J. It follows that $d_{(i, 1)}$ and $e_{(i, 2)}$ in H are not locally resolved by $V(H) \backslash H_{i}^{\star}$. Since f_{3} is an element of local basis of G_{2} and f_{3} locally resolves d_{1} and e_{2}, we obtain that $f_{(i, 3)}$ locally resolves $d_{(i, 1)}$ and $e_{(i, 2)}$. Thus, it must be $f_{(i, 3)} \in W$ for $1 \leq i \leq n$.
2. Two adjacent vertices e_{1} and g_{1} are not locally resolved by $J \backslash\left\{f_{1}\right\}$. According to Lemma 2 , f_{1} is an element of a local basis of G_{2}. Note that, if $f_{1} \notin W$, then $e_{(i, 1)}$ and $g_{(i, 1)}$ are not locally resolved by $V(H) \backslash H_{i}^{\star}$ since $d_{H}\left(v, e_{(i, 1)}\right)<d_{H}\left(v, f_{1}\right)+d_{H}\left(f_{1}, e_{(i, 1)}\right)$ and $d_{H}\left(v, g_{(i, 1)}\right)=d_{H}\left(v, f_{1}\right)+d_{H}\left(f_{1}, g_{(i, 1)}\right)$ with $v \in V(H) \backslash H_{i}^{\star}$. So, f_{1} must be in W.

By two conditions above, we obtain that $\operatorname{lmd}(H) \geq n+1$.
Now, we will construct a local resolving set of H with $n+1$ vertices. Define $B=\left\{f_{1}\right\} \cup\left\{f_{(i, 3)} \mid\right.$ $1 \leq i \leq n\}$. The representation of all vertices in H with respect to B are as follows.

$$
\begin{array}{rrr}
r\left(f_{1} \mid B\right) & =(0,2, \ldots, 2) & r\left(e_{(2,1)} \mid B\right)=(2,2,1,2, \ldots, 2) \\
r\left(f_{2} \mid B\right) & =(1,1, \ldots, 1) & r\left(e_{(2,2)} \mid B\right)=(1,3,1,3, \ldots, 3) \\
r\left(e_{3} \mid B\right) & =(1,2, \ldots, 2) & r\left(f_{(2,3)} \mid B\right)=(2,2,0,2, \ldots, 2) \\
r\left(d_{(1,1)} \mid B\right) & =(1,2,3, \ldots, 3) & r\left(g_{(2,1)} \mid B\right)=(1,2,1,2, \ldots, 2) \\
r\left(d_{(1,2)} \mid B\right) & =(2,2,2, \ldots, 2) & r\left(g_{(2,2)} \mid B\right)=(1,2,1,2, \ldots, 2) \\
r\left(d_{(1,3)} \mid B\right) & =(2,1,3, \ldots, 3) & r\left(g_{(2,3)} \mid B\right)=(1,2,1,2, \ldots, 2) \\
r\left(e_{(1,1)} \mid B\right) & =(2,1,2, \ldots, 2) & r\left(d_{(k, 1)} \mid B\right)=(1,3,3, \ldots, 3,2,3, \ldots, 3) \\
r\left(e_{(1,2)} \mid B\right) & =(1,1,3, \ldots, 3) & r\left(d_{(k, 2)} \mid B\right)=(2,2,2, \ldots, 2,2,2, \ldots, 2) \\
r\left(f_{(1,3)} \mid B\right) & =(2,0,2, \ldots, 2) & r\left(d_{(k, 3)} \mid B\right)=(2,3,3, \ldots, 3,1,3, \ldots, 3) \\
r\left(g_{(1,1)} \mid B\right) & =(1,1,2, \ldots, 2) & r\left(e_{(k, 1)} \mid B\right)=(2,2,2, \ldots, 2,1,2, \ldots, 2) \\
r\left(g_{(1,2)} \mid B\right) & =(1,1,2, \ldots, 2) & r\left(e_{(k, 2)} \mid B\right)=(1,3,3, \ldots, 3,1,3, \ldots, 3) \\
r\left(g_{(1,3)} \mid B\right) & =(1,1,2, \ldots, 2) & r\left(f_{(k, 3)} \mid B\right)=(2,2,2, \ldots, 2,0,2, \ldots, 2) \\
r\left(d_{(2,1)} \mid B\right) & =(1,3,2,3, \ldots, 3) & r\left(g_{(k, 1)} \mid B\right)=(1,2,2, \ldots, 2,1,2, \ldots, 2) \\
r\left(d_{(2,2)} \mid B\right) & =(2,2,2,2, \ldots, 2) & r\left(g_{(k, 2)} \mid B\right)=(1,2,2, \ldots, 2,1,2, \ldots, 2) \\
r\left(d_{(2,3)} \mid B\right) & =(2,3,1,3, \ldots, 3) & r\left(g_{(k, 3)} \mid B\right)=(1,2,2, \ldots, 2,1,2, \ldots, 2)
\end{array}
$$

where $k \in\{3,4, \ldots, n\}$ and $d_{H}\left(v_{(k, l)}, f_{(i, 3)}\right)=d_{G_{2}}\left(v_{l}, f_{3}\right)$ for each $v_{l} \in D \cup E \cup F \cup G$ where $i=k$. Since there are no two adjacent vertices of H having the same representations, we obtain that B is a local resolving set of H, which implies $\operatorname{lmd}(H) \leq n+1$.

3. Vertex Amalgamation

For $n \in \mathbb{N}$ and $i \in\{1,2, \ldots, n\}$, let H_{i} be a simple connected graph of order $k_{i} \geq 2$ containing a connected subgraph J of order p where $1 \leq p<k_{i}$. In this section, let $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ where J only consists of one vertex. The graph Subgraph $-\operatorname{Amal}\{\mathcal{H}, J\}$ then is called as a vertex amalgamation graph.

Let $V\left(H_{i}\right)=\left\{h, h_{2}, \ldots, h_{k_{i}}\right\}$ where $V(J)=\{h\}$. In this section, we denote $H \cong$ Subgraph$\operatorname{Amal}\{\mathcal{H} ; J\}$. We define $V(H)=\{h\} \cup\left\{h_{(i, j)} \mid 1 \leq i \leq n, 2 \leq j \leq k_{i}\right\}, H(i)=\left\{h_{(i, j)} \mid 2 \leq j \leq\right.$ $\left.k_{i}\right\}$, and $H_{i}^{\star}=\{h\} \cup H(i)$. We also define:

- $\mathcal{S}=\{A \in \mathcal{H} \mid A$ is not bipartite and there exists a local basis of A containing $h\}$
- $\mathcal{T}=\{A \in \mathcal{H} \mid A$ is not bipartite and every local basis of A does not contain $h\}$

From now on, let $s=|\mathcal{S}|, t=|\mathcal{T}|$, and $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{s}, H_{s+1}, \ldots, H_{s+t}, H_{s+t+1}, \ldots, H_{n}\right\}$ where $\mathcal{S}=\left\{H_{1}, H_{2}, \ldots, H_{s}\right\}$ and $\mathcal{T}=\left\{H_{s+1}, H_{s+2}, \ldots, H_{s+t}\right\}$.

Proposition 3.1. For $s+t \geq 1$, there exist two adjacent vertices $h_{(i, j)}$ and $h_{(i, k)}$ satisfying $d_{H}\left(h_{(i, j)}, h\right)=d_{H}\left(h_{(i, k)}, h\right)$ where $i \in\{1,2, \ldots, s+t\}$ and $j, k \in\left\{2,3, \ldots, k_{i}\right\}$.

Proof. Since $s+t \geq 1$, for $i \in\{1,2, \ldots, s+t\}$, we have H_{i} is not bipartite and contains an odd cycle C. We distinguish two cases.

Case 1. $h \in V(C)$
Then there exist two adjacent vertices $h_{j}, h_{k} \in V(C) \backslash\{h\}$ satisfying $d_{H_{i}}\left(h_{j}, h\right)=d_{H_{i}}\left(h_{k}, h\right)$. We
obtain that $d_{H}\left(h_{(i, j)}, h\right)=d_{H}\left(h_{(i, k)}, h\right)$.
Case 2. $h \notin V(C)$
Let $h_{l} \in V(C)$ such that $d_{H_{i}}\left(h_{l}, h\right)=\min \left\{d_{H_{i}}(v, h) \mid v \in V(C)\right\}$. Then there exist two adjacent vertices $h_{j}, h_{k} \in V(C) \backslash\left\{h_{l}\right\}$ satisfying $d_{H_{i}}\left(h_{j}, h_{l}\right)=d_{H_{i}}\left(h_{k}, h_{l}\right)$ and

$$
\begin{aligned}
d_{H_{i}}\left(h_{j}, h\right) & =d_{H_{i}}\left(h_{j}, h_{l}\right)+d_{H_{i}}\left(h_{l}, h\right) \\
& =d_{H_{i}}\left(h_{k}, h_{l}\right)+d_{H_{i}}\left(h_{l}, h\right) \\
& =d_{H_{i}}\left(h_{k}, h\right) .
\end{aligned}
$$

Therefore, we obtain that $d_{H}\left(h_{(i, j)}, h\right)=d_{H}\left(h_{(i, k)}, h\right)$.
In the next two lemmas, we provide some properties of local basis of the vertex amalgamation graph H.

Lemma 3.1. Let W be a local basis of H. If $s+t \geq 1$, then
(i) $W \cap H(i) \neq \emptyset$ for every $i \in\{1,2, \ldots, s+t\}$; and
(ii) $W \cap H(j)=\emptyset$ for every $j \in\{s+t+1, s+t+2, \ldots, n\}$.

Proof. We distinguish two cases of proof.
(i) $W \cap H(i) \neq \emptyset$ for every $i \in\{1,2, \ldots, s+t\}$

Suppose that $W \cap H(i)=\emptyset$ for some $i \in\{1,2, \ldots, s+t\}$. Let $w \in W$. Note that $w \notin$ $H(i)$. By Proposition 3.1, there exist two adjacent vertices $h_{(i, j)}$ and $h_{(i, k)}$ in H satisfying $d_{H}\left(h_{(i, j)}, h\right)=d_{H}\left(h_{(i, k)}, h\right)$. So, we have

$$
\begin{aligned}
d_{H}\left(h_{(i, j)}, w\right) & =d_{H}\left(h_{(i, j)}, h\right)+d_{H}(h, w) \\
& =d_{H}\left(h_{(i, k)}, h\right)+d_{H}(h, w) \\
& =d_{H}\left(h_{(i, k)}, w\right)
\end{aligned}
$$

Therefore, we obtain $r\left(h_{(i, j)} \mid W\right)=r\left(h_{(i, k)} \mid W\right)$, a contradiction.
(ii) $W \cap H(j)=\emptyset$ for every $j \in\{s+t+1, s+t+2, \ldots, n\}$

Suppose that there exists $j \in\{s+t+1, s+t+2, \ldots, n\}$ such that $W \cap H(j) \neq \emptyset$. Let $w \in H(j)$ be an element of W. We consider $W^{\prime}=W \backslash\{w\}$. We will show that W^{\prime} is still a local resolving set of H.
By considering (i), let $S=\{x \in W \mid x \in H(i), 1 \leq i \leq s+t\}$. Note that, by the definition of W^{\prime}, we also have that $S \subseteq W^{\prime}$. Let x, y be two adjacent vertices in $V(H) \backslash W^{\prime}$. So, there exists $i \in\{1,2, \ldots, n\}$ such that $x, y \in H_{i}^{\star}$. We distinguish two cases.

Case 1. $i \in\{1,2, \ldots, s+t\}$.
By (i), we have that x, y are locally resolved by vertices in S. It follows that both vertices are locally resolved by W^{\prime}.

Case 2. $i \in\{s+t+1, s+t+2, \ldots, n\}$.
Since every H_{i} with $i \in\{s+t+1, s+t+2, \ldots, n\}$ is bipartite, we have $\operatorname{lmd}\left(H_{i}\right)=1$. Let B_{i} be a local basis of H_{i}. Then for every $v \in V\left(H_{i}\right)$, there exists B_{i} where $B_{i}=\{v\}$. Thus, $d_{H_{i}}\left(x^{\prime}, v\right) \neq d_{H_{i}}\left(y^{\prime}, v\right)$ for every two adjacent vertices $x^{\prime}, y^{\prime} \in V\left(H_{i}\right) \backslash\{v\}$. Let $v=h$, we obtain that $d_{H_{i}}\left(x^{\prime}, h\right) \neq d_{H_{i}}\left(y^{\prime}, h\right)$. Consider two vertices $x, y \in H_{i}^{\star}$ which are corresponded to $x^{\prime}, y^{\prime} \in V\left(H_{i}\right) \backslash\{v\}$, respectively. For any $z \in W^{\prime}$, we obtain that

$$
\begin{aligned}
d_{H}(x, z) & =d_{H}(x, h)+d_{H}(h, z) \\
& =d_{H_{i}}\left(x^{\prime}, h\right)+d_{H}(h, z) \\
& \neq d_{H_{i}}\left(y^{\prime}, h\right)+d_{H}(h, z) \\
& =d_{H}(y, h)+d_{H}(h, z) \\
& =d_{H}(y, z) .
\end{aligned}
$$

So, $r\left(x \mid W^{\prime}\right) \neq r\left(y \mid W^{\prime}\right)$. Then every two adjacent vertices $x, y \in V(H) \backslash W^{\prime}$ are locally resolved by vertices in W^{\prime}. In both cases, we obtain that W^{\prime} is a local resolving set of H, a contradiction.

Lemma 3.2. Let W be a local basis of H. If $s>1$ or $t \geq 1$, then $h \notin W$.
Proof. Let W be a local basis of H where $h \in W$. We consider $W^{\prime}=W \backslash\{h\}$. We will show that W^{\prime} is also a local resolving set of H.

Let x and y be two adjacent vertices in $V(H) \backslash W^{\prime}$. By considering properties in Lemma 3.1, we have that x and y are locally resolved by vertices in W^{\prime}. Thus, we have a contradiction.

From proposition and lemmas above we have the following theorem.
Theorem 3.1. For $n \geq 2$ and $i \in\{1,2, \ldots, n\}$, let H_{i} be a simple connected graph of order at least 2 containing a subgraph J and $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$. Let $J=K_{1}$ where $V(J)=\{h\}$. Let $\mathcal{S}=\{A \in \mathcal{H} \mid A$ is not bipartite and there exists a local basis of A containing $h\}$ and $\mathcal{T}=\{A \in \mathcal{H} \mid A$ is not bipartite and every local basis of A does not contain $h\}$. If $s=|\mathcal{S}|$, $t=|\mathcal{T}|$ and the first $s+t$ elements in \mathcal{H} are from $\mathcal{S} \cup \mathcal{T}$, then

$$
\operatorname{lmd}(\text { Subgraph }- \text { Amal }\{\mathcal{H} ; J\})= \begin{cases}1, & s=t=0 \\ \operatorname{lmd}\left(H_{s}\right), & s=1 \text { and } t=0 \\ \sum_{i=1}^{s+t} \operatorname{lmd}\left(H_{i}\right)-s, & s \geq 2 \text { or } t \geq 1\end{cases}
$$

Proof. Let $H \cong$ Subgraph $-\operatorname{Amal}\{\mathcal{H} ; J\}$. If $s=t=0$, then every graph H_{i} is bipartite. It follows that H is also bipartite. Okamoto et al. [23] have been proved that the local metric dimension of any bipartite graphs is 1 .

Now, assume $s \geq 1$ or $t \geq 1$. Let $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{s}, H_{s+1}, \ldots, H_{s+t}, H_{s+t+1}, \ldots, H_{n}\right\}$ where $\mathcal{S}=\left\{H_{1}, H_{2}, \ldots, H_{s}\right\}$ and $\mathcal{T}=\left\{H_{s+1}, H_{s+2}, \ldots, H_{s+t}\right\}$. We have two cases.

Case 1. $s=1$ and $t=0$.
First, we will show that $\operatorname{lmd}(H) \leq \operatorname{lmd}\left(H_{s}\right)$ by constructing a local resolving set with $\operatorname{lmd}\left(H_{s}\right)$ vertices. Let B_{s} be a local basis of H_{s} containing h. We define $B_{s}^{\prime}=B_{s} \backslash\{h\}$ and $W=\left\{h_{(s, t)} \mid\right.$ $\left.h_{t} \in B_{s}^{\prime}\right\} \cup\{h\}$. Let us consider any two adjacent vertices $h_{(i, j)}, h_{(i, k)} \in V(H) \backslash W$. If $i=s=1$, then h_{j} and h_{k} are locally resolved by B_{s}, which implies $h_{(1, j)}, h_{(1, k)}$ are locally resolved by W. Now, we assume that $i \in\{2,3, \ldots, n\}$. We obtain that H_{i} is a bipartite graph. Since there exists a local basis of H_{i} containing exactly one vertex h, then $h_{(i, j)}, h_{(i, k)}$ of H are locally resolved by $h \in W$. Thus, W is a local resolving set of H.

Next, we will show that $\operatorname{lm} d(H) \geq \operatorname{lmd}\left(H_{s}\right)$. Suppose that $\operatorname{lmd}(H) \leq\left(\operatorname{lmd}\left(H_{s}\right)\right)-1$. Let S be a local basis of H. So, $|S| \leq \operatorname{lmd}\left(H_{s}\right)-1$. By Lemma 3.1 (ii), $S \cap H_{i}=\emptyset, i \in\{2,3, \ldots, n\}$. We define a subset U of $V\left(H_{s}\right)$ as $\{h\} \cup\left\{h_{j} \mid h_{(s, j)} \in S\right\}$. Since $|U|=|S| \leq \operatorname{lmd}\left(H_{s}\right)-1$, there exist two adjacent vertices $h_{k}, h_{l} \in V\left(H_{s}\right)$ satisfying $r\left(h_{k} \mid U\right)=r\left(h_{l} \mid U\right)$. It follows that $r\left(h_{(s, k)} \mid S\right)=r\left(h_{(s, l)} \mid S\right)$, a contradiction.

Case 2. $s \geq 2$ or $t \geq 1$.
First, we will show that $\operatorname{lmd}(H) \leq \sum_{i=1}^{s+t} \operatorname{lmd}\left(H_{i}\right)-s$ by constructing a local resolving set with $\sum_{i=1}^{s+t} \operatorname{lmd}\left(H_{i}\right)-s$ vertices. Since $s \geq 2$ or $t \geq 1$ for $i \in\{1,2, \ldots, s+t\}, H_{i}$ is not bipartite and $\operatorname{lmd}\left(H_{i}\right)>1$.

- $s \geq 1$ and $i \in\{1,2, \ldots, s\}$

Let B_{i} be a local basis of H_{i} containing h. Then we define $W_{i}=\left\{h_{(i, j)} \mid h_{j} \in B_{i} \backslash\{h\}\right\}$.

- $t \geq 1$ and $i \in\{s+1, s+2, \ldots, s+t\}$

Let C_{i} be a local basis of H_{i}. We define $W_{i}=\left\{h_{(i, j)} \mid h_{j} \in C_{i}\right\}$.
Now, define $W=\bigcup_{i=1}^{s+t} W_{i}$. Note that W satisfies Lemmas 3.1 and 3.2. Let us consider any two adjacent vertices $x, y \in V(H) \backslash W$. Note that there exists $i \in\{1,2, \ldots, n\}$ such that $x, y \in H_{i}^{\star}$.

- $s \neq 0$ and $i \in\{1,2, \ldots, s\}$

If $d_{H}(x, h) \neq d_{H}(y, h)$, then it is clear that x, y are locally resolved by vertices in $W \backslash W_{i}$. Otherwise, x, y are locally resolved by vertices in W_{i}.

- $t \neq 0$ and $i \in\{s+1, s+2, \ldots, s+t\}$

Then x, y are locally resolved by vertices in W_{i}.

- $s+t<n$ and $i \in\{s+t+1, s+t+2, \ldots, n\}$

Since x, y are locally resolved by the vertex h, it implies that they are locally resolved by all vertices in W.

Therefore, W is a local resolving set of H.
Next, suppose that $\operatorname{lmd}(H) \leq\left(\sum_{i=1}^{s+t} \operatorname{lmd}\left(H_{i}\right)-s\right)-1$. Let W be a local basis of H. By Lemma 3.1 (ii) and Lemma 3.2, we have $W \cap H(j)=\emptyset$ for every $j \in\{s+t+1, s+t+2, \ldots, n\}$ and $h \notin W$. Since $|W| \leq \sum_{i=1}^{s+t} l m d\left(H_{i}\right)-s-1$, we obtain two possibilities.

1. There exists $i \in\{1,2, \ldots, s\}$ such that $\left|W \cap H_{i}^{\star}\right| \leq \operatorname{lmd}\left(H_{i}\right)-2$

Let $W_{i}=W \cap H_{i}^{\star}$ and $S_{i}=\left\{h_{j} \mid h_{(i, j)} \in W_{i}\right\} \cup\{h\}$. Since $\left|S_{i}\right|<\operatorname{lmd}\left(H_{i}\right)$, then there exists two adjacent vertices h_{k}, h_{l} in H_{i} which are not locally resolved by S_{i}. It follows that $h_{(i, k)}, h_{(i, l)}$ are not locally resolved by W_{i}, which implies $r\left(h_{(i, k)} \mid W\right)=r\left(h_{(i, l)} \mid W\right)$.
2. There exists $i \in\{s+1, s+2, \ldots, s+t\}$ such that $\left|W \cap H_{i}^{\star}\right| \leq \operatorname{lmd}\left(H_{j}\right)-1$

Let $W_{i}=W \cap H_{i}^{\star}$ and $S_{i}=\left\{h_{j} \mid h_{(i, j)} \in W_{i}\right\} \cup\{h\}$. Note that, $\left|S_{i}\right|=\operatorname{lmd}\left(H_{i}\right)$. However, every local basis of H_{i} does not contain h. It follows that S_{i} is not a local resolving set of H_{i}. Then there exists two adjacent vertices h_{k}, h_{l} in H_{i} which are not locally resolved by S_{i}. It follows that $h_{(i, k)}, h_{(i, l)}$ are not locally resolved by W_{i}, which implies $r\left(h_{(i, k)} \mid W\right)=$ $r\left(h_{(i, l)} \mid W\right)$.

By both possibilities above, we have a contradiction.

4. Edge Amalgamation

For $n \in \mathbb{N}$ and $i \in\{1,2, \ldots, n\}$, let H_{i} be a simple connected graph of order $k_{i} \geq 2$ containing a connected subgraph J of order p where $1 \leq p<k_{i}$. In this section, let $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ where $J \cong P_{2}$. Since P_{2} has only one edge, the graph Subgraph $-\operatorname{Amal}\{\mathcal{H}, J\}$ then is called as an edge amalgamation graph.

Let $V\left(H_{i}\right)=\left\{h_{1}, h_{2}, \ldots, h_{k_{i}}\right\}$ where $V(J)=\left\{h_{1}, h_{2}\right\}$. In this section, we denote $H \cong$ Subgraph - Amal $\{\mathcal{H} ; J\}$. We define $V(H)=\left\{h_{1}, h_{2}\right\} \cup\left\{h_{(i, j)} \mid 1 \leq i \leq n, 3 \leq j \leq k_{i}\right\}$, $H(i)=\left\{h_{(i, j)} \mid 3 \leq j \leq k_{i}\right\}$, and $H_{i}^{\star}=\left\{h_{1}, h_{2}\right\} \cup H(i)$.

According to Theorem 2.1, we obtain the bounds for the local metric dimension of any edge amalgamation graphs, which can be seen in theorem below.

Theorem 4.1. For $n \geq 2$ and $i \in\{1,2, \ldots, n\}$, let H_{i} be a simple connected graph of order at least 3 and $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$. Then

$$
\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-2 n \leq \operatorname{lmd}\left(\text { Subgraph }-\operatorname{Amal}\left\{\mathcal{H} ; P_{2}\right\}\right) \leq \sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right) .
$$

In this section, we will show that all values between the lower and upper bound in Theorem 4.1 are achievable. In order to do so, we need to determine the local metric dimension of graphs G_{3}, G_{4}, and G_{5}. The graph G_{3} and its complement are illustrated in Figures 4. Meanwhile the graphs G_{4} and G_{5} can be seen in Figures 5 and 6, respectively.

First, let us consider the graph G_{3}. Let $N_{3}=\left\{a_{1}, a_{2}\right\}, O_{3}=\left\{a_{3}, a_{4}\right\}, P_{3}=\left\{a_{5}, a_{6}\right\}, R_{3}=$ $\left\{a_{7}, a_{8}\right\}$, and $S_{3}=\left\{a_{9}, a_{10}, a_{11}, a_{12}\right\}$. Now, we are ready to determine the local metric dimension of G_{3}.

Lemma 4.1. Let G_{3} be a connected graph as stated in Figure 4. Then $\operatorname{lmd}\left(G_{3}\right)=4$. Moreover the set $\left\{a_{1}, a_{2}, a_{7}, a_{8}\right\}$ is a local basis of G_{3}.

Proof. Since G_{3} contains an odd cycle, we have $\operatorname{lmd}\left(G_{3}\right)>1$. Next, we will show that there is no local resolving set of G_{3} with 2 elements. Suppose that W be a local resolving set of G_{3} with

Figure 4. Graph G_{3} (left) and its complement (right)
$|W|=2$. We obtain two cases.

Case 1. $W \cap S_{3}=\emptyset$.
Then there exist two distinct vertices $x, y \in O_{3} \cup P_{3}$ which are adjacent to both vertices in W. Therefore, we have $r(x \mid W)=(1,1)=r(y \mid W)$.

Case 2. $W \cap S_{3} \neq \emptyset$.
Let $W=\{x, y\}$ where $x \in S_{3}$. If $y \in N_{3} \cup O_{3}$, then we have $r\left(a_{5} \mid W\right)=(1,1)=r\left(a_{6} \mid W\right)$. Otherwise, we have $r\left(a_{3} \mid W\right)=(1,1)=r\left(a_{4} \mid W\right)$. By all cases above, we obtain that W is not local resolving set of G_{3}. Therefore, we can conclude that $\operatorname{lmd}\left(G_{3}\right) \geq 3$. However, we will also show that there is no local resolving set of G_{3} with cardinality 3 . Suppose that W^{\prime} be a local resolving set of G_{3} with $\left|W^{\prime}\right|=3$. Note that, at least one vertices of S_{3} are not in W^{\prime}. Without loss of generality, let $a_{9} \notin W^{\prime}$. Let $\left|W^{\prime} \cap S_{3}\right|=j$ where $j \in\{0,1,2,3\}$. Then there exist $j+1$ vertices $z_{1}, \ldots, z_{j+1} \in O_{3} \cup P_{3}$ which are adjacent to every vertex in W^{\prime}. If $j=0$, we have $r\left(z_{1} \mid W^{\prime}\right)=(1,1)=r\left(a_{9} \mid W^{\prime}\right)$. Otherwise, $r\left(z_{1} \mid W^{\prime}\right)=(1,1)=r\left(z_{2} \mid W^{\prime}\right)$. Thus, W^{\prime} is not local resolving set of G_{3}. Since there is no local resolving set of G_{3} with cardinality 3, we obtain that $\operatorname{lmd}\left(G_{3}\right) \geq 4$.

Next, we will show that $\operatorname{lmd}\left(G_{3}\right) \leq 4$. Define $W^{\prime \prime}=\left\{a_{1}, a_{2}, a_{7}, a_{8}\right\}$. The representation of all vertices in G_{3} with respect to $W^{\prime \prime}$ are as follows.

$$
\begin{array}{lll}
r\left(a_{1} \mid W^{\prime \prime}\right)=(0,1,2,1) & r\left(a_{3} \mid W^{\prime \prime}\right)=(2,1,1,1) & r\left(a_{9} \mid W^{\prime \prime}\right)=(1,1,1,1) \\
r\left(a_{2} \mid W^{\prime \prime}\right)=(1,0,1,2) & r\left(a_{4} \mid W^{\prime \prime}\right)=(1,2,1,1) & r\left(a_{10} \mid W^{\prime \prime}\right)=(1,1,1,1) \\
r\left(a_{7} \mid W^{\prime \prime}\right)=(2,1,0,1) & r\left(a_{5} \mid W^{\prime \prime}\right)=(1,1,1,2) & r\left(a_{11} \mid W^{\prime \prime}\right)=(1,1,1,1) \\
r\left(a_{8} \mid W^{\prime \prime}\right)=(1,2,1,0) & r\left(a_{6} \mid W^{\prime \prime}\right)=(1,1,2,1) & r\left(a_{12} \mid W^{\prime \prime}\right)=(1,1,1,1)
\end{array}
$$

Since there are no two adjacent vertices of G_{3} having the same representation, we conclude that
$W^{\prime \prime}$ is a local resolving set of G_{3}.

Figure 5. Graph G_{4}

Next, let us consider the graph G_{4}. Let $N_{4}=\left\{b_{1}, b_{2}, b_{3}\right\}, O_{4}=\left\{c_{i} \mid 1 \leq i \leq t, t \geq 1\right\}$, $P_{4}=\left\{d_{1}, d_{2}, d_{3}\right\}$. Now, we are ready to determine the local metric dimension of G_{4}.

Lemma 4.2. Let G_{4} be a connected graph as stated in Figure 5. Then $\operatorname{lmd}\left(G_{4}\right)=$ 4. Moreover, every local resolving set of G_{4} contains at least two vertices of N_{4} and at least two vertices of P_{4}.

Proof. Let W be a local resolving set of G_{4}. If $\left|W \cap N_{4}\right| \leq 1$ (or $\left|W \cap P_{4}\right| \leq 1$), then there exist two distinct vertices $x, y \in N_{4}$ (or $x, y \in P_{4}$) which are not element of W. Since x and y are adjacent, and for every $z \in V\left(G_{4}\right) \backslash\{x, y\}, d_{G_{4}}(x, z)=d_{G_{4}}(y, z)$, we have $r(x \mid W)=r(y \mid W)$, a contradiction. So, it must be $\left|W \cap N_{4}\right| \geq 2$ and $\left|W \cap P_{4}\right| \geq 2$, which implies $\operatorname{lmd}\left(G_{4}\right) \geq 4$.

Next, we will show that $\operatorname{lmd}\left(G_{4}\right) \leq 4$. Define $W^{\prime}=\left\{b_{1}, b_{2}, d_{1}, d_{2}\right\}$. Let us consider two adjacent vertices $u, v \in V\left(G_{4}\right) \backslash W^{\prime}$. If $d_{G_{4}}\left(u, b_{1}\right) \neq d_{G_{4}}\left(v, b_{1}\right)$, then we obtain $r\left(u \mid W^{\prime}\right) \neq r(v \mid$ $\left.W^{\prime}\right)$. Otherwise, we have $u=b_{3}$ and $v=c_{1}$. Since $d_{G_{4}}\left(u, d_{1}\right)=d_{G_{4}}\left(v, d_{1}\right)+1$, we also obtain $r\left(u \mid W^{\prime}\right) \neq r\left(v \mid W^{\prime}\right)$. Thus, W^{\prime} is a local resolving set of G_{4}.

Figure 6. Graph G_{5}

Lemma 4.3. Let G_{5} be a connected graph as stated in Figure 6. Then $\operatorname{lmd}\left(G_{5}\right)=2$ where $\left\{e_{5}, e_{6}\right\}$ is a local basis of G_{5}. If a local resolving set B of G_{5} contains e_{1} or e_{2}, then $|B| \geq 3$. Moreover, the set $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a local resolving set of G_{5}.

Proof. Since G_{5} contains an odd cylce, we have $\operatorname{lmd}\left(G_{5}\right)>1$. Next, we will construct a local resolving set of G_{5} with 2 vertices. Define $W=\left\{e_{5}, e_{6}\right\}$. The representation of all vertices in G_{5} with respect to W are as follows.

$$
\begin{array}{llll}
r\left(e_{1} \mid W\right)=(2,1) & r\left(e_{3} \mid W\right)=(2,2) & r\left(e_{5} \mid W\right)=(0,1) & r\left(e_{7} \mid W\right)=(1,1) \\
r\left(e_{2} \mid W\right)=(1,2) & r\left(e_{4} \mid W\right)=(2,2) & r\left(e_{6} \mid W\right)=(1,0) & r\left(e_{8} \mid W\right)=(1,1)
\end{array}
$$

Since there are no two adjacent vertices having the same representation, we conclude that W is a local resolving set of G_{5}.

Next, we will show that every local basis B of G_{5} satisfies $e_{i} \notin B$ for $i \in\{1,2\}$. Suppose that $e_{1} \in B$ or $e_{2} \in B$. If $e_{1}, e_{2} \in B$, then two adjacent vertices e_{3} and e_{8} are not locally resolved by B, a contradiction. Now, we assume that either $e_{1} \in B$ or $e_{2} \in B$. For $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}$, let $e_{i} \in B$ and $e_{j} \notin B$. Let $D=\left\{e_{3}, e_{4}, e_{4+i}\right\}$. If $B \cap D \neq \emptyset$, then two adjacent vertices e_{j} and e_{8} are not locally resolved by B. Otherwise, two adjacent vertices e_{j} and e_{3} are not locally resolved by B. Thus, we have that B is not local resolving set of G_{5}.

Now, let $S=\left\{e_{1}, e_{2}, e_{3}\right\}$. The representation of all vertices in G_{5} with respect to S are as follows.

$$
\begin{array}{llll}
r\left(e_{1} \mid S\right)=(0,1,1) & r\left(e_{3} \mid S\right)=(1,1,0) & r\left(e_{5} \mid S\right)=(2,1,2) & r\left(e_{7} \mid S\right)=(1,1,1) \\
r\left(e_{2} \mid S\right)=(1,0,1) & r\left(e_{4} \mid S\right)=(1,1,2) & r\left(e_{6} \mid S\right)=(1,2,2) & r\left(e_{8} \mid S\right)=(1,1,1)
\end{array}
$$

Since there are no two adjacent vertices having the same representation, we conclude that S is a local resolving set of G_{5}.

Now, we are ready to show that all values between the lower and upper bound in Theorem 4.1 are achievable, which can be seen in theorem below.

Theorem 4.2. For $n \geq 2$ and $i \in\{1,2, \ldots, n\}$, there exist simple connected graph H_{i} of order at least 3 and $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ such that $\operatorname{lmd}\left(S u b g r a p h-\operatorname{Amal}\left\{\mathcal{H} ; P_{2}\right\}\right)=k$ for every integer k satisfying $\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-2 n<k<\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)$.

Proof. Let us consider a finite collection $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ where $H_{i}=G_{3}$. Let $a_{1} a_{2}$ be the terminal edge from every H_{i} and $H \cong S u b g r a p h-\operatorname{Amal}\left\{\mathcal{H} ; P_{2}\right\}$. We will show that $\operatorname{lmd}(H)=$ $\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-2 n$. By Theorem 2.1, we only need to show that $\operatorname{lmd}(H) \leq \sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-2 n$.

Define $W=\bigcup_{i=1}^{n}\left\{a_{(i, 7)}, a_{(i, 8)}\right\}$. Let us consider any two adjacent vertices $x_{1}, x_{2} \in V(H) \backslash$ W. Then there exists $i \in\{1,2, \ldots, n\}$ such that $x_{1}, x_{2} \in H_{i}^{\star}$. Let $y_{1}, y_{2} \in V\left(H_{i}\right)$ which are corresponded to $x_{1}, x_{2} \in V(H)$, respectively. It is clear that y_{1} is also adjacent to y_{2} in H_{i}. If a_{7} or a_{8} is locally resolves y_{1} and y_{2}, then it follows that x_{1} and x_{2} are locally resolves by W. Otherwise, y_{1} and y_{2} are locally resolved by a_{1} or a_{2}.

- y_{1} and y_{2} are locally resolved by a_{1}

Then for $l \in\{1,2, \ldots, n\} \backslash\{i\}$, we have

$$
\begin{aligned}
d_{H}\left(x_{1}, a_{(l, 8)}\right) & =d_{H}\left(x_{1}, a_{1}\right)+d_{H}\left(a_{1}, a_{(l, 8)}\right) \\
& =d_{H_{i}}\left(y_{1}, a_{1}\right)+d_{H_{i}}\left(a_{1}, a_{8}\right) \\
& \neq d_{H_{i}}\left(y_{2}, a_{1}\right)+d_{H_{i}}\left(a_{1}, a_{8}\right) \\
& =d_{H}\left(x_{2}, a_{1}\right)+d_{H}\left(a_{1}, a_{(l, 8)}\right) \\
& =d_{H}\left(x_{2}, a_{(l, 8)}\right)
\end{aligned}
$$

- y_{1} and y_{2} are locally resolved by a_{2}

Then for $l \in\{1,2, \ldots, n\} \backslash\{i\}$, we have

$$
\begin{aligned}
d_{H}\left(x_{1}, a_{(l, 7)}\right) & =d_{H}\left(x_{1}, a_{2}\right)+d_{H}\left(a_{2}, a_{(l, 7)}\right) \\
& =d_{H_{i}}\left(y_{1}, a_{2}\right)+d_{H_{i}}\left(a_{2}, a_{7}\right) \\
& \neq d_{H_{i}}\left(y_{2}, a_{2}\right)+d_{H_{i}}\left(a_{2}, a_{7}\right) \\
& =d_{H}\left(x_{2}, a_{2}\right)+d_{H}\left(a_{2}, a_{(l, 7)}\right) \\
& =d_{H}\left(x_{2}, a_{(l, 7)}\right)
\end{aligned}
$$

Therefore, W is a local resolving set of H. It implies that $\operatorname{lmd}(H)=\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-2 n$.
To obtain an edge amalgamation graph whose local metric dimension is $k=\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-$ $2 n+q$ for $1 \leq q \leq 2 n$, we replace some H_{i} in \mathcal{H} by G_{4} or G_{5} according to the parity of q. For $l \in\{1,2, \ldots, n\}$, we distinguish two cases.

Case 1. $q=2 l$
Let $\mathcal{H}^{\prime}=\left\{H_{1}^{\prime}, H_{2}^{\prime}, \ldots, H_{n}^{\prime}\right\}$ be a finite collection which is obtain from \mathcal{H} by replacing l elements of \mathcal{H} by G_{4}. Choose the terminal edge $c_{t} c_{t+1}$ for G_{4} and $a_{1} a_{2}$ for G_{3}.

Case 2. $q=2 l-1$
Let $\mathcal{H}^{\prime}=\left\{H_{1}^{\prime}, H_{2}^{\prime}, \ldots, H_{n}^{\prime}\right\}$ be a finite collection which is obtain from \mathcal{H} by replacing $l-1$ elements of \mathcal{H} by G_{4} and an element of \mathcal{H} by G_{5}. Choose the terminal edge $e_{1} e_{2}$ for $G_{5}, c_{t} c_{t+1}$ for G_{4}, and $a_{1} a_{2}$ for G_{3}.

By Lemma 4.1, the graph G_{3} has a local basis S_{3} containing a_{1}, a_{2}. However, by Lemmas 4.2 and $4.3, G_{4}$ and G_{5} do not have a local basis containing c_{t}, c_{t+1} and e_{1}, e_{2}, respectively. So, for G_{4} and G_{5}, we consider a minimum resolving set S_{4} and S_{5}, respectively, containing two vertices of their terminal edge. Note that, $\left|S_{4}\right| \geq \operatorname{lmd}\left(G_{4}\right)+2$ and $\left|S_{5}\right| \geq \operatorname{lmd}\left(G_{5}\right)+1$. Thus, by using the similar argument with the proof of Lemma 2.1, the graphs G_{3}, G_{4}, and G_{5} must contribute at least $\operatorname{lmd}\left(G_{3}\right)-2, \operatorname{lmd}\left(G_{4}\right)$, and $\operatorname{lmd}\left(G_{5}\right)-1$ vertices to a resolving set of Subgraph - Amal $\left\{\mathcal{H}^{\prime}, P_{2}\right\}$, respectively.

Now, we will construct a resolving set of Subgraph $-\operatorname{Amal}\left\{\mathcal{H}^{\prime}, P_{2}\right\}$ with $\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-$ $2 n+q$ vertices. Let B_{3}, B_{4}, and B_{5} be the set of vertices in $\operatorname{Subgraph}-\operatorname{Amal}\left\{\mathcal{H}^{\prime}, P_{2}\right\}$ which are corresponded to vertices a_{7} and a_{8} of G_{3}, vertices b_{1}, b_{2}, d_{1}, and d_{2} of G_{4}, and vertex e_{3} of
G_{5}, respectively. Then, define $B=B_{3} \cup B_{4} \cup B_{5}$. Note that, for q is even, we have $B_{5}=\emptyset$. Let $H \cong S u b g r a p h-A \operatorname{mal}\left\{\mathcal{H}^{\prime}, P_{2}\right\}$. Let us consider any two adjacent vertices $x_{1}, x_{2} \in V(H) \backslash B$. Then there exists $i \in\{1,2, \ldots, n\}$ such that $x_{1}, x_{2} \in H_{i}^{\prime \star}$. Let $H_{i}^{\prime} \cong G_{j}$ where $j \in\{3,4,5\}$. If x_{1}, x_{2} are resolved by B_{j}, then we are done. Otherwise, x_{1}, x_{2} then are resolved by a vertex in terminal edge of H_{i}^{\prime}. We distinguish two cases.

Case 1. $H_{i}^{\prime} \cong G_{3}$
Let $y_{1}, y_{2} \in V\left(H_{i}^{\prime}\right)$ which are corresponded to $x_{1}, x_{2} \in V(H)$, respectively. Then it is clear that a_{1} or a_{2} is locally resolves y_{1} and y_{2}. Note that, in H, the vertex a_{1} of H_{i}^{\prime} can be identified by c_{t} or c_{t+1} of H_{r}^{\prime} where $H_{r}^{\prime} \cong G_{4}$. So, x_{1}, x_{2} are locally resolved by vertices in B_{4}.

Case 2. $H_{i}^{\prime} \cong G_{5}$
Let $y_{1}, y_{2} \in V\left(H_{i}^{\prime}\right)$ which are corresponded to $x_{1}, x_{2} \in V(H)$, respectively. Then it is clear that e_{1} or e_{2} is locally resolves y_{1} and y_{2}. Note that, in H, the vertex e_{1} of H_{i}^{\prime} can be identified by a_{1} or a_{2} of H_{r}^{\prime} where $H_{r}^{\prime} \cong G_{3}$, or by c_{t} or c_{t+1} of H_{r}^{\prime} where $H_{r}^{\prime} \cong G_{4}$. So, x_{1}, x_{2} are locally resolved by vertices in B_{3} or B_{4}.

Conclusion

Let $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ be a finite collection of simple connected graphs, where H_{i} is a graph containing a connected subgraph J. In this paper, we consider the subgraph-amalgamation graphs Subgraph $-\operatorname{Amal}\{\mathcal{H} ; J\}$. This graph is constructed by taking all elements of \mathcal{H}, then identifying all of them on J. We provide the lower and upper bounds of $\operatorname{lmd}($ Subgraph $\operatorname{Amal}\{\mathcal{H} ; J\})$ for any structures of J. These bounds are functions of $\operatorname{lmd}\left(H_{i}\right)(1 \leq i \leq n)$. We also provide some properties of Subgraph $-\operatorname{Amal}\{\mathcal{H} ; J\}$ whose local metric dimension is equal to some values, including the upper and lower bound values.

Furthermore, we consider Subgraph - Amal $\{\mathcal{H} ; J\}$ for certain structure of J. For J is a vertex $\left(J=K_{1}\right)$, we determine an exact value of the local metric dimension of Subgraph-Amal $\{\mathcal{H} ; J\}$. In case J is an edge $\left(J=P_{2}\right)$, we provide the lower and upper bounds of $\operatorname{lmd}($ Subgraph Amal $\{\mathcal{H} ; J\})$. Moreover, we show that all values between those bounds are achievable.

For future work, we provide an interesting question that is whether all between the lower and upper bounds in Theorem 2.1 are achievalbe if the order of J is at least 3. The problem is stated as follows.

Problem 1. Let J be a connected graph of order $p \geq 3$. Does there exist $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ where H_{i} is a connected graph containing J, such that for every integer t with $\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)-$ $p n<t<\sum_{i=1}^{n} \operatorname{lmd}\left(H_{i}\right)$, we have $\operatorname{lmd}(\operatorname{Subgraph}-\operatorname{Amal}\{\mathcal{H} ; J\})=t$?

Acknowledgement

The authors are thankful to the anonymous referee for some comments that helped to improve the presentation of the manuscript.

References

[1] G. Abrishami, M.A. Henning, and M. Tavakoli, Local metric dimension for graphs with small clique numbers, Discrete Math. 345 (2022), 112763.
[2] S. Akhter and R. Farooq, Metric dimension of fullerene graphs, Electron. J. Graph Theory Appl. 7 (1) (2019), 91-103.
[3] G.A. Barragán-Ramírez, A. Estrada-Moreno, Y. Ramírez-Cruz, and J.A. RodríguezVelázquez, The local metric dimension of the lexicographic product of graphs, Bull. Malays. Math. Sci. Soc. 42 (2019), 2481-2496.
[4] G.A. Barragán-Ramírez and J.A. Rodríguez-Velázquez, The local metric dimension of the strong product graphs, Graph Combin. 32 (2016), 1263-1278.
[5] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalák, and L.S. Ram, Network discovery and verification, IEEE Journal on Selected Areas in Communications 24(12) (2006), 2168-2181.
[6] P.S. Buszkowski, G. Chartrand, C. Poisson, and P. Zhang, On k-dimensional graphs and their bases, Period. Math. Hungar. 46(1) (2003), 9-15.
[7] J. Caceres, C. Hernando, M. Mora, M.L. Puertas, I.M. Pelayo, C. Seara, and D.R. Wood, On the metric dimension of some families of graphs, Electron. Notes Discrete Math. 22 (2005), 129-133.
[8] J. Caceres, C. Hernando, M. Mora, M.L. Puertas, I.M. Pelayo, C. Seara, and D.R. Wood, On the metric dimension of cartesian product of graphs, SIAM J. Discrete Math. 21(12) (2007), 423-441.
[9] G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graphs, Discrete Appl. Math. 105 (2000), 99-113.
[10] G. Chartrand and P. Zhang, The theory and application of resolvability in graphs, Comput. Math. Appl. 39 (2000), 19-28.
[11] J.A. Cynthia and Ramya, The local metric dimension of torus network, International Journal of Pure and Applied Mathematics 120(7) (2018), 225-233.
[12] M. Fehr, S.Gosselin, and O.R. Oellermann, The metric dimension of Cayley digraphs, Discrete Math. 306 (2006), 31-40.
[13] D. Fitriani, A. Rarasati, S.W. Saputro, E.T. Baskoro, The local metric dimension of split and unicyclic graphs, Indones. J. Combin. 6(1) (2022), 50-57.
[14] W. Goodard, Mastermind revisited, J. Combin. Math. Combin. Comput. 51 (2003), 215-220.
[15] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars. Combin. 2 (1976), 191-195.
[16] C. Hernando, M. Mora, I.M. Pelayo, C. Seara, and D.R. Wood, Extremal Graph Theory for Metric Dimension and Diameter, The Electron. J. Combin. 17 (2010), \sharp R30.
[17] H. Iswadi, E.T. Baskoro, and R. Simanjuntak, On the metric dimension of corona product of graphs, Far East J. Math. Sci. 52(2) (2011), 155-170.
[18] M. Jannesari and B. Omoomi, Characterization of n-vertex graphs with metric dimension $n-3$, Math. Bohem. 134 (2011), 1-23.
[19] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70(3) (1996), 217-229.
[20] S. Klavžar and M. Tavakoli, Local metric dimension of graphs: Generalized hierarchical product and some applications, Appl. Math. Comput. 364 (2020), 124676.
[21] S. Klavžar and S. Zemljic, On distances in Sierpiński graphs: Almost-extreme vertices and metric dimension, Appl. Anal. Discrete Math. 7 (2013), 72-82.
[22] P. Manuel, B. Rajan, I. Rajasingh, and C. Monica M., On minimum metric dimension of honeycomb networks, J. Discrete Algorithms. 6 (2008), 20-27.
[23] F. Okamoto, B. Phinezy, and P. Zhang, The local metric dimension of a graph Math. Bohem., 135 (2010), 239-255.
[24] C. Poisson and P. Zhang, The metric dimension of unicyclic graphs, J. Combin. Math. Combin. Comput. 40 (2002), 17-32.
[25] J.A. Rodríguez-Velázquez, G.A. Barragán-Ramírez, and C.G. Gómez, On the local metric dimension of corona product graphs Bull. Malays. Math. Sci. Soc., 39 (2013), 157-173.
[26] J.A. Rodríguez-Velázquez, C.G. Gómez, and G.A. Barragán-Ramírez, Computing the local metric dimension of a graph from the local metric dimension of primary subgraphs, Comput. Math. 92(4) (2015), 686-693.
[27] J.A. Rodríguez-Velázquez, D. Kuziak, I.G. Yero, and J.M. Sigarreta, The metric dimension of strong product graphs, Carpathian J. Math. 31(2) (2015), 261-268.
[28] S.W. Saputro, On local metric dimension of $(n-3)$-regular graph, J. Combin. Math. Combin. Comput. 98 (2016), 43-54.
[29] S.W. Saputro, On the metric dimension of biregular graph, J. Inform. Process. 25 (2017), 634-638.
[30] S.W. Saputro, N. Mardiana, and I.A. Purwasih, The metric dimenison of comb product graphs, Math. Vesnik 69 (2017), 248-258.
[31] S.W. Saputro, R. Simanjuntak, S. Uttunggadewa, H. Assiyatun, and E.T. Baskoro, The metric dimension of the lexicographic product of graphs, Discrete Math. 313 (2013), 1045-1051.
[32] B. Shanmukha, B. Sooryanarayana, and K.S. Harinath, Metric dimension of wheels, Far East J. Appl. Math. 8:3 (2002), 217-229.
[33] R. Simanjuntak, S. Uttunggadewa, and S.W. Saputro, Metric dimension for amalgamation of graphs, LNCS 8986 Combin. Algorithms. (2015), 330-337.
[34] P.J. Slater, Leaves of trees, Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory, and Computing., Congr. Numer. 14 (1975), 549-559.
[35] T. Vetrík and A. Ahmad, Computing the metric dimension of the categorial product of some graphs Int. J. Comput. Math., (2015)
[36] I. Tomescu and I. Javaid, On the metric dimension of the Jahangir graph, Bull. Math. Soc. Sci. Math. Roumanie 4 (2007), 371-376.
[37] I.G. Yero, D. Kuziak, and J.A. Rodríguez-Velázquez, On the metric dimension of corona products graphs, Comput. Math. Appl. 61:9 (2011), 2793-2798.

