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Abstract

Among bipartite graphs with given order and matching number/vertex cover number/edge cover
number/independence number, among multipartite graphs with given order, and among graphs
with given order and chromatic number, we present the graphs having the maximum degree-based
index if that index satisfies certain conditions. We show that those conditions are satisfied by the
general sum-connectivity index χa for all or some a ≥ 0.
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1. Introduction and preliminary results

The vertex set and edge set of a graph G are denoted by V (G) and E(G), respectively. The
order of a graph G is the number of vertices of G. The degree dG(u) of a vertex u in G is the
number of edges incident with u.

A vertex independent set is a set of vertices of G, where no two vertices in that set are adjacent
in G. A matching is a set of edges of G, where no two edges in that set have a vertex in common.
The independence number/matching number of G is the cardinality of a maximum independent
set/matching. An edge cover of a graph G is a set of edges, where each vertex of G is incident
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with at least one edge from that set. A vertex cover of G is a set of vertices, where each edge of G
is incident with at least one vertex from that set. The cardinality of a minimum edge cover/vertex
cover is the edge/vertex cover number. The smallest number of colors needed to color the vertices
of a graph G such that every two adjacent vertices have different colors is the chromatic number
of G.

For k ≥ 2, a graph whose vertices can be partitioned into k sets in such a way that any two ver-
tices in the same set are non-adjacent is called a k-partite graph. It is called complete multipartite
(k-partite) graph if every two vertices from different partite sets are adjacent. We use the notation
Kn1,n2,...,nk

for a complete k-partite graph having partite sets with cardinalities n1, n2, . . . , nk. A
2-partite graph is called a bipartite graph.

Let f(x, y) be a real-valued symmetric function of two variables x and y. We study degree-
based indices defined in the following way for a graph G:

If (G) =
∑

uv∈E(G)

f(dG(u), dG(v)).

The function f(x, y) = (x + y)a where a ∈ R can be used to obtain the general sum-connectivity
index. The general sum-connectivity index of a graph G was introduced by Zhou and Trinajstić
[9]. For a ∈ R, it is defined as

χa(G) =
∑

uv∈E(G)

[dG(u) + dG(v)]
a.

In this paper, we consider χa for a ≥ 0, therefore we mention special cases of χa only for positive
a. For a = 1

2
we get the reciprocal sum-connectivity index, for a = 1 we obtain the first Zagreb

index, and for a = 2 we get the first hyper-Zagreb index. Ali, Zhong and Gutman [2] gave a survey
about the general sum-connectivity index.

Indices defined by a degree-based edge-weight function were studied also by Hu et al. [4] who
presented extremal results for graphs of given order and size. Zhou et al. [10] studied degree-
based indices under the name bond incident degree indices and presented extremal results for
graphs with given order and number of pendant vertices. Extremal results for trees were given by
Ali and Dimitrov [1]. For other works on general degree-based indices, see for example [3], [5],
[6] and [7].

We present our own approach in this area. Let us introduce a function having property Q.

Definition 1.1. A symmetric function f(x, y) of two variables having property Q is any function
satisfying the following conditions:

(i) f(x, y) > 0 for x, y ≥ 1,

(ii) f(x1, y1) ≤ f(x2, y2) for 1 ≤ x1 ≤ x2 and 1 ≤ y1 ≤ y2,

(iii) f(x, y) ≤ f(x+ c, y − c) for x ≥ y, c ≥ 0 and y − c ≥ 1.

Let us give one function which has property Q.
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Lemma 1.1. The function f(x, y) = (x+ y)a has property Q for a ≥ 0.

Proof. (i) Let f(x, y) = (x+ y)a. Since x, y ≥ 1, we get f(x, y) ≥ 2a > 0 for a ≥ 0.

(ii) We obtain ∂f(x,y)
∂x

= a(x+y)a−1 ≥ 0 for x, y ≥ 1 and a ≥ 0. Since f(x, y) is symmetric, we
have ∂f(x,y)

∂y
≥ 0 for a ≥ 0. Thus f(x1, y1) ≤ f(x2, y2) for 1 ≤ x1 ≤ x2 and 1 ≤ y1 ≤ y2.

(iii) We have f(x+ c, y − c) = [(x+ c) + (y − c)]a = f(x, y).
Hence f(x, y) = (x+ y)a has property Q for a ≥ 0.

Definition 1.2 is similar to Definition 1.1. The first two points are the same in both definitions,
the third point is different and Definition 1.2 has a new point (iv).

Definition 1.2. A symmetric function f(x, y) of two variables having property P is any function
satisfying the following conditions:

(i) f(x, y) > 0 for x, y ≥ 1,

(ii) f(x1, y1) ≤ f(x2, y2) for 1 ≤ x1 ≤ x2 and 1 ≤ y1 ≤ y2,

(iii) f(x, y) ≥ f(x+ c, y − c) for x ≥ y, c ≥ 0 and y − c ≥ 1,

(iv) g(x1, y1) = f(x1 + c, y1 + c′) − f(x1, y1) ≥ f(x2 + c, y2 + c′) − f(x2, y2) = g(x2, y2) for
1 ≤ x1 ≤ x2, 1 ≤ y1 ≤ y2 and c, c′ ≥ 0.

We show that the function f(x, y) = (x+ y)a has property P if 0 ≤ a ≤ 1.

Lemma 1.2. The function f(x, y) = (x+ y)a has property P for 0 ≤ a ≤ 1.

Proof. The proofs that f satisfies conditions (i), (ii) and (iii) of Definition 1.2 are the same as in
the proof of Lemma 1.1. It remains to prove that f satisfies condition (iv) of Definition 1.2. We
obtain

g(x, y) = f(x+ c, y + c′)− f(x, y) = (x+ y + c+ c′)a − (x+ y)a,

thus
∂g(x, y)

∂x
= a[(x+ y + c+ c′)a−1 − (x+ y)a−1].

For 0 ≤ a ≤ 1, we get (x + y + c + c′)a−1 ≤ (x + y)a−1. So ∂g(x,y)
∂x

≤ 0 for 0 ≤ a ≤ 1. The
function f(x, y) is symmetric, thus g(x, y) is also symmetric. So ∂g(x,y)

∂y
≤ 0 for 0 ≤ a ≤ 1.

Therefore g(x1, y1) = f(x1 + c, y1 + c′)− f(x1, y1) ≥ f(x2 + c, y2 + c′)− f(x2, y2) = g(x2, y2)
for 1 ≤ x1 ≤ x2, 1 ≤ y1 ≤ y2 and c, c′ ≥ 0. Hence f(x, y) = (x + y)a has property P for
0 ≤ a ≤ 1.

We compare If of two graphs which differ only by one edge.

Lemma 1.3. Let f(x, y) be a function satisfying conditions (i) and (ii) of Definitions 1.1 and 1.2.
Then If (G) < If (G+ v1v2), where v1, v2 are any two non-adjacent vertices of a connected graph
G.
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Proof. Let G′ be the graph G + v1v2. For any uv ∈ E(G), we have dG′(u) ≥ dG(u) ≥ 1
and dG′(v) ≥ dG(v) ≥ 1. The function f satisfies part (ii) of Definitions 1.1 and 1.2, therefore
f(dG′(u), dG′(v)) ≥ f(dG(u), dG(v)). Since dG′(v1) ≥ 1, dG′(v2) ≥ 1 and f satisfies part (i) of
Definitions 1.1 and 1.2, we have f(dG′(v1), dG′(v2)) > 0. Thus

If (G
′) =

∑
uv∈E(G′)

f(dG′(u), dG′(v))

= f(dG′(v1), dG′(v2)) +
∑

uv∈E(G)

f(dG′(u), dG′(v))

>
∑

uv∈E(G)

f(dG′(u), dG′(v))

≥
∑

uv∈E(G)

f(dG(u), dG(v))

= If (G).

2. Bipartite graphs with given matching number/vertex cover number/edge cover number/
independence number

For the matching number ν of any graph, we have 1 ≤ ν ≤ ⌊n
2
⌋. The only connected bipartite

graphs with matching number 1 are stars, therefore we investigate bipartite graphs for 2 ≤ ν ≤
⌊n
2
⌋.

Theorem 2.1. Let G be a bipartite graph of order n and matching number ν, where 2 ≤ ν ≤ ⌊n
2
⌋.

If f has property Q, then
If (G) ≤ ν(n− ν) f(ν, n− ν)

with equality if and only if G is Kν,n−ν .

Proof. Let G′ be a graph with the largest If among graphs of order n and matching number ν. For
the partite sets V1 and V2 of G′, we can assume that |V1| ≤ |V2|. We show that G′ is Kν,n−ν .

Assume to the contrary that G′ is not Kν,n−ν . We have |V1| ≥ ν (otherwise if |V1| < ν, then the
matching number of G′ would be less than ν). We also know that G′ is not a subgraph of Kν,n−ν ,
(if G′ would be a subgraph of Kν,n−ν , from Lemma 1.3, we obtain If (G

′) < If (Kν,n−ν) since If
increases when adding edges to a graph). So ν < |V1| ≤ |V2|.

We denote any matching in G′ with ν edges by M ′. For j = 1, 2, let V ν
j be the subset of

Vj having ν vertices incident with the edges in M ′. We get |Vj| = ν + lj where lj ≥ 1 (and
2ν + l1 + l2 = n). Clearly, a vertex v1 ∈ V1 \ V ν

1 and a vertex v2 ∈ V2 \ V ν
2 are not adjacent,

otherwise we would have the matching M ′ ∪ {v1v2} in G′ containing ν + 1 edges.
We define H ′ which is a graph with V (H ′) = V (G′) and having all the edges between V ν

1 and
V ν
2 , between V ν

1 and V2 \ V ν
2 , and between V1 \ V ν

1 and V ν
2 . Then G′ is a subgraph of H ′, so by

Lemma 1.3, we get If (G′) < If (H
′). Note that H ′ has matching number at least ν + 1. We get
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dH′(v) = ν+l2 for v ∈ V ν
1 , dH′(v) = ν+l1 for v ∈ V ν

2 , and dH′(v) = ν for v ∈ V (H ′)\(V ν
1 ∪V ν

2 ).
Note that n− ν = ν + l1 + l2. We obtain

If (Kν,n−ν)− If (H
′)

=
∑

uv∈E(Kν,n−ν)

f(dKν,n−ν (u), dKν,n−ν (v))−
∑

uv∈E(H′)

f(dH′(u), dH′(v))

= ν(n− ν) f(ν, n− ν)− ννf(ν + l1, ν + l2)− νl1f(ν, ν + l1)− νl2 f(ν, ν + l2)

= ν2[f(ν, ν + l1 + l2)− f(ν + l1, ν + l2)] + νl1[f(ν, ν + l1 + l2)− f(ν, ν + l1)]

+ νl2[f(ν, ν + l1 + l2)− f(ν, ν + l2)].

Since the function f satisfies Definition 1.1 (ii), we get

f(ν, ν + l1 + l2) ≥ f(ν, ν + l1) and f(ν, ν + l1 + l2) ≥ f(ν, ν + l2).

The function f has property Q, thus from part (iii) of Definition 1.1, we obtain

f(ν, ν + l1 + l2) ≥ f(ν + l1, ν + l2).

Thus If (Kν,n−ν)− If (H
′) ≥ 0. We get If (G′) < If (H

′) ≤ If (Kν,n−ν). which means that G′ does
not have the largest If . We have a contradiction. Hence G′ is Kν,n−ν and

If (Kν,n−ν) = ν(n− ν) f(ν, n− ν).

We denote the independence number by α, the vertex cover number by β and the edge cover
number by β′. From [8], we know that for any graph with n vertices,

α + β = n.

If G does not contain isolated vertices, we have

ν + β′ = n.

If G is a bipartite graph without isolated vertices, then

α = β′, so ν = β;

see [8]. Thus, by Theorem 2.1, we get Corollary 2.1.

Corollary 2.1. Let G be a bipartite graph of order n and vertex cover number β, where 2 ≤ β ≤
⌊n
2
⌋. If f has property Q, then

If (G) ≤ β(n− β) f(β, n− β)

with equality if and only if G is Kβ,n−β .
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In Theorem 2.1, 2 ≤ ν ≤ ⌊n
2
⌋, thus⌈n

2

⌉
≤ β′ ≤ n− 2.

Since ν + β′ = n, Theorem 2.1 states that if G is a bipartite graph with n vertices and matching
number n− β′, then

If (G) ≤ (n− β)β f(n− β, β)

Therefore, we get Corollary 2.2.

Corollary 2.2. Let G be a bipartite graph of order n and edge cover number/independence number
β′, where ⌈n

2
⌉ ≤ β′ ≤ n− 2. If f has property Q, then

If (G) ≤ β′(n− β′) f(β′, n− β′)

with equality if and only if G is Kβ′,n−β′ .

From Lemma 1.1, we know that the function f(x, y) = (x + y)a has property Q. Thus, using
Lemma 1.1 and Theorem 2.1, we obtain Corollary 2.3 for the matching number. From Lemma 1.1
and Corollary 2.1, we get Corollary 2.3 for the vertex cover number.

Corollary 2.3. Among bipartite graphs with n vertices and matching number/vertex cover number
ν, where 2 ≤ ν ≤ ⌊n

2
⌋, Kν,n−ν is the unique graph with the maximum χa for a ≥ 0.

From Lemma 1.1 and Corollary 2.2, we get Corollary 2.4.

Corollary 2.4. Among bipartite graphs with n vertices and edge cover number/independence num-
ber β′, where ⌈n

2
⌉ ≤ β′ ≤ n− 2, Kβ′,n−β′ is the unique graph with the maximum χa for a ≥ 0.

3. Multipartite graphs with given order and graphs with given chromatic number

Let us consider the index If for a function f which has property P .

Theorem 3.1. Let G be any k-partite graph with n vertices where 2 ≤ k ≤ n. If f has property
P , then

If (G) ≤ If (Kn1,n2,...,nk
).

with equality if and only if G is Kn1,n2,...,nk
, where |ni − nj| ≤ 1, 1 ≤ i < j ≤ k and n1 + n2 +

· · ·+ nk = n.

Proof. Let G′ be any k-partite graph of order n having the maximum If index. The function f
has property P , thus f satisfies Definition 1.2 (i) and (ii), so by Lemma 1.3, If increases when
adding edges to a graph. Thus any two vertices of G′ from distinct partite sets are adjacent. So G′

is Kn1,n2,...,nk
, where n1, n2, . . . , nk are some positive integers. Let us prove that |ni − nj| ≤ 1,

where 1 ≤ i < j ≤ k.
Assume to the contrary that |ni − nj| ≥ 2 for some i, j, where 1 ≤ i < j ≤ k. We can assume

that n1 ≥ n2 + 2 (and n2 ≥ 1). Let us investigate If (G
′) − If (G

′′) for G′ = Kn1,n2,...,nk
and

G′′ = Kn1−1,n2+1,...,nk
.
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For i = 1, 2, . . . , k, let V ′
i and V ′′

i be the i-th partite set of G′ and G′′, respectively. For any
vertex v′ ∈ V ′

1 and any w′ ∈ V ′
2 , we obtain dG′(v′) = n−n1 and dG′(w′) = n−n2. For any vertex

v′′ ∈ V ′′
1 and any w′′ ∈ V ′′

2 , we obtain dG′′(v′′) = n− (n1 − 1) and dG′′(w′′) = n− (n2 + 1). For
any other vertex z, we have dG′(z) = dG′′(z). Therefore, we obtain

If (G
′′)− If (G

′)

=
∑

v′′∈V ′′
1 ,w′′∈V ′′

2

f(dG′′(v′′), dG′′(w′′))−
∑

v′∈V ′
1 ,w

′∈V ′
2

f(dG′(v′), dG′(w′))

+
∑

v′′∈V ′′
1 ,z′′∈V ′′

3 ∪...∪V ′′
k

f(dG′′(v′′), dG′′(z′′)) +
∑

w′′∈V ′′
2 ,z′′∈V ′′

3 ∪...∪V ′′
k

f(dG′′(w′′), dG′′(z′′))

−
∑

v′∈V ′
1 ,z

′∈V ′
3∪...∪V ′

k

f(dG′(v′), dG′(z′))−
∑

w′∈V ′
2 ,z

′∈V ′
3∪...∪V ′

k

f(dG′(w′), dG′(z′))

= (n1 − 1)(n2 + 1)f(n− n1 + 1, n− n2 − 1)− n1n2f(n− n1, n− n2)

+ (n1 − 1)
k∑

i=3

ni f(n− n1 + 1, n− ni) + (n2 + 1)
k∑

i=3

ni f(n− n2 − 1, n− ni)

− n1

k∑
i=3

ni f(n− n1, n− ni)− n2

k∑
i=3

ni f(n− n2, n− ni)

= n1n2[f(n− n1 + 1, n− n2 − 1)− f(n− n1, n− n2)]

+ (n1 − n2 − 1)f(n− n1 + 1, n− n2 − 1)

+ (n1 − n2 − 2)
k∑

i=3

ni[f(n− n1 + 1, n− ni)− f(n− n1, n− ni)]

+ (n2 + 1)
k∑

i=3

ni[f(n− n1 + 1, n− ni)− f(n− n1, n− ni)]

− (n2 + 1)
k∑

i=3

ni[f(n− n2, n− ni)− f(n− n2 − 1, n− ni)]

+
k∑

i=3

ni[f(n− n2, n− ni)− f(n− n1, n− ni)].

The function f has property P , thus from part (iii) of Definition 1.2, we obtain

f(n− n1 + 1, n− n2 − 1) ≥ f(n− n1, n− n2).

Since the function f satisfies Definition 1.2 (i), we get

f(n− n1 + 1, n− n2 − 1) > 0.

The function f satisfies Definition 1.2 (ii), thus

f(n− n1 + 1, n− ni) ≥ f(n− n1, n− ni) and f(n− n2, n− ni) ≥ f(n− n1, n− ni).
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The function f has property P , so from part (iv) of Definition 1.2, we have

f(n− n1 + 1, n− ni)− f(n− n1, n− ni) ≥ f(n− n2, n− ni)− f(n− n2 − 1, n− ni)

Thus If (G′′)− If (G
′) > 0, so If (G

′′) > If (G
′), which means that G′ does not have the largest If .

We have a contradiction. Hence, |ni − nj| ≤ 1.

We use Theorem 3.1 to get a sharp upper bound for graphs with given chromatic number.

Theorem 3.2. Let G be any graph with n vertices and chromatic number γ where 2 ≤ γ ≤ n. If
f has property P , then

If (G) ≤ If (Kn1,n2,...,nγ )

with equality if and only if G is Kn1,n2,...,nγ , where |ni − nj| ≤ 1, 1 ≤ i < j ≤ γ and n1 + n2 +
· · ·+ nγ = n.

Proof. Let G′ be any graph of order n and chromatic number γ having the maximum If index. The
graph G′ contains no edges connecting the vertices in the same color class, thus G′ is a γ-partite
graph. Hence, by Theorem 3.1, G′ is Kn1,n2,...,nγ , where |ni − nj| ≤ 1 and 1 ≤ i < j ≤ γ.

From Lemma 1.2, we know that the function f(x, y) = (x+ y)a has property P for 0 ≤ a ≤ 1.
Thus, using Lemma 1.2 and Theorem 3.1, we obtain the following corollary.

Corollary 3.1. Among k-partite graphs with n vertices where 2 ≤ k ≤ n, Kn1,n2,...,nk
where

n1 + n2 + · · · + nk = n and |ni − nj| ≤ 1 for 1 ≤ i < j ≤ k, are the graphs with the maximum
χa for 0 ≤ a ≤ 1.

From Lemma 1.2 and Theorem 3.2, we obtain Corollary 3.2.

Corollary 3.2. Among graphs with n vertices and chromatic number γ where 2 ≤ γ ≤ n,
Kn1,n2,...,nγ where n1 + n2 + · · · + nγ = n and |ni − nj| ≤ 1 for 1 ≤ i < j ≤ γ, are the
graphs with the maximum χa for 0 ≤ a ≤ 1.
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