Electronic Journal of Graph Theory and Applications 13 (2) (2025), 295-307

, Electronic Journal of
Graph Theory and Applications

On the sigma chromatic number of the ideal-
based zero divisor graphs of the ring of integers
modulo n

Agnes D. Garciano', Reginaldo M. Marcelo, Mari-Jo P. Ruiz', Mark Anthony C. Tolentino
Ateneo de Manila University, Quezon City, Philippines

rmarcelo@ateneo.edu, mtolentino @ateneo.edu

Abstract

The objective of this paper is to investigate a particular graph coloring, called sigma coloring, as
applied to ideal-based zero-divisor graphs. Given a commutative ring R with (nonzero) identity
and a proper ideal I of R, the graph I';(R) is defined as an undirected graph with vertex set
{re R~1:xyelforsomey e R~ I}andedgeset {zy : zy € I}. On the other hand, given
a graph G, a sigma coloring ¢ : V(G) — N is a coloring that satisfies o(u) # o(v) for any two
adjacent vertices u, v in G, where o(z) denotes the sum of all colors ¢(y) among all neighbors y
of a vertex x. The sigma chromatic number of G is denoted by ¢(G) and is defined as the fewest
number of colors needed for a sigma coloring of GG. In this paper, we completely determine the
sigma chromatic number of ideal-based zero-divisor graphs of rings of integers modulo n.
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1. Introduction

Zero-divisor graphs of finite rings continue to be a fascinating topic that interests both graph
and ring theorists. A development in this area is the introduction of ideal-based zero-divisor graphs
as an extension of the usual zero-divisor graphs. Studies on the structure and graph parameters of
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ideal-based zero-divisor graphs have been done, but there are still a broad range of open problems
on this topic that researchers will find promising.

Recall that the zero-divisor graph of a commutative ring R, as defined in [1], is denoted by
I'(R) and is defined as the graph whose vertices are the nonzero zero divisors of R and in which two
vertices = and y are adjacent if and only if xy = 0 in R. The zero-divisor graphs of commutative
rings have been studied with respect to different topics such as domination [2], and sigma colorings
[9], and normalized Laplacian spectrum [12].

In [13], Redmond generalized the notion by defining ideal-based zero-divisor graphs as fol-
lows: Given a commutative ring R with (nonzero) identity and a proper ideal I of R, the graph
I';(R) is defined as an undirected graph with vertex set {v € R~ [ : a2y € [ forsomey € R~ I}
and edge set {zy : zy € I}. Ideal-based zero-divisor graphs have been investigated with respect
to different notions such as parameter and girth [6], domination [11], complementedness [14], and
crosscap [16]. However, there are seemingly few studies that focus on colorings of ideal-based
zero divisor graphs.

On the other hand, given a graph G, a sigma coloring ¢ : V(G) — N is a coloring that satisfies
o(u) # o(v) for any two adjacent vertices u, v in G, where o(x) denotes the sum of all colors
¢(y) among all neighbors y of a vertex x. The sigma chromatic number of G is denoted by o(G)
and is defined as the fewest number of colors needed for a sigma coloring of G. The notion of
sigma coloring was first studied by Chartrand et al. in [4]. Clearly, o(G) < x(G) for any graph
G. Moreover, it has been shown by Dehghan et al. in [5] that for every integer k& > 3, it is NP-
complete to decide whether o(G) = k for a given graph GG. The computational complexity of this
sigma coloring problem motivates a number of works on this topic; see [7, 8, 15]), for example.

Example 1.1. Let R be the ring Zs,, I be the ideal (8) = {0, 8,16}, and G = I';(R). To illustrate,
the elements 2 and 20 of R become vertices of G since 2 - 20 = 16 € I. On the other hand, the
element 3 of R is not a vertex of G since 3 -z ¢ [ forall xt € R~ 1. The graph G is shown in
Figure 1 together with an example of a sigma coloring of G.

Figure 1. The graph G = T';(R) (left), where R = Zo4 and I = (8), and a sigma coloring of G (right), where the
color and color sum of each vertex are shown inside and beside the vertex, respectively.
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As previously mentioned, in [9], zero-divisor graphs of rings of integers modulo n were stud-
ied in relation to sigma colorings. An interesting observation from [9] is that the structure of such
zero-divisor graphs allows for a natural way of constructing their sigma colorings using the min-
imum number of colors possible. Given that the notion of ideal-based zero divisor graphs is a
generalization of zero-divisor graphs, it is then natural to ask if the structure of ideal-based zero
divisor graphs can also allow for a similarly natural way of constructing their sigma colorings.

Thus, in this paper, we aim to continue the work done in [9] by investigating the sigma chro-
matic number of ideal-based zero-divisor graphs of rings of integers modulo n. Note that if n has
prime factorization p{'psy? - - - pim, where m, ny, na, ..., N, are positive integers and py, pa, ..., Pm
are distinct primes, then the ring Z,, is isomorphic to Zp;u X Zpgz X+« X ZLynm . Thus, we focus
our attention on such rings.

In Section 2, we review important results from [9] on the structure of I'(Z,,). In Section 3, we
discuss the important relationship between I';(R) and I'(R/I) and we establish results particular
to the structure of I';(Z,,). Finally, in Section 4, we present the main results on the sigma chromatic
number of ideal-based zero-divisor graphs I';(Z,m X Zynz X -« X Zyum).

All graphs considered in this work are simple, undirected, connected, and finite. Unless oth-
erwise stated, notations will follow [3]. If two vertices u and v are adjacent in a graph G, then
we write u ~¢ v. The closed neighborhood Ng[u] of a vertex u in a graph G is given by
N¢lu] = Ng(u)U{u}. Given two sets A and B, we denote by A+ B the set {a+b:a € A, b € B};
in the case that A is a singleton {a}, then we may also write a + B for {a} + B.

2. On the structure of I'(Z,,)

As established in [13], ideal-based zero-divisor graphs are closely related to zero-divisor graphs
of factor rings. Since for a proper ideal I of Z,, the factor ring Z /I is isomorphic to some ring
Z,,, understanding the structure of I'(Z,,) is of primary importance in this work. In this section,
we present important resuls from [9] on the structure of I'(Z,,). The reader may refer to [9] for the
proofs of these results.

m
For this entire section, we let m be a positive integer, and let R = H Zka , where m, nq, no, ...,

k=1
n,, are positive integers and py, po, ..., p,, are distinct primes.

The Sets Ri1,i2,...,im
We define the following sets: For each k € {1,2,...,m}, let i, € {0,1,...,n;}. We denote by

Ri, iy, thesetof all (z1, xa, ..., 2,,) € R such that for each k = 1,2, ..., m, we have

1. T = Olflk = Nk, and
2. p¥|zy and pZ"H fapifipy=0,1,....,np — L.

Note that R, ;.. 5, = {(0,0,...,0)} while the set Ry o is the set of elements that are not zero
divisors of R. Hence,

V(I(R)) = U Riy i im- %))

(il’/L’Q""yim)#(0707"'70)7
(il7i27"'7im)#(n17n27"'7nm)
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For convenience, throughout this paper, we will refer to the sets 12;, ;,
{(0,0,...,0), (n1,n2, ..., ) }, as blocks of V(I'(R)).

Let H = T'(R). We present below some important results on the properties of H in relation to
the blocks R;

11,8255 I

where (i1, 42, ..., 0y, ) &

----- im?

Proposition 2.1 ([9]). Let (iy,iz,...,10m) € {(0,0,...,0), (ny,n2,...,nm)}. The following state-
ments hold.

L. Ifu,v € Ry, iy...ir» then N(u) ~ {v} = N(v) \ {u}.

2. The vertices in R;, ;, . i, are adjacent to all the vertices in RR;
if and only if iy, + Jx, > ng forall k =1,2,....m.

3. The vertices in R;, . ;  form a clique in T'(R) if and only if 2i, > ny, forallk = 1,2,....m

.....

15025005 Jm

Proposition 2.2 ([9]). For (iy, iz, ...,1m) € {(0,0,...,0), (n1,ng, ..., nm) },
Riy g ch e =1 o = D1 ©)
k=1

Corollary 2.1 ([9]). Letu € R;, ;,
le,jz ,,,,, Gmo then degu 7§ deg .

wandv € Ry g, o Af Riyiy iy 7

,,,,,

3. On the structure of I'; (Z,,)

We begin with three important results from [13] that provide key properties of ideal-based
zero-divisor graphs.

Theorem 3.1 ([13]). Let I be an ideal of a ring R, and let x,y € R — I. Then:

l. If o + I is adjacent to y + I in I'(R/I), then x is adjacent to y in I';(R).
2. Ifvisadjacent toy inU'j(R) and v + I # y + I, then x + I is adjacent to y + I in I'(R/1).
3. IfwisadjacenttoyinT;(R) and x + [ =y + I, then 2%,y € I.

Corollary 3.1 ([13]). If z and y are (distinct) adjacent vertices in T'[(R), then all (distinct) ele-
ments of x + I and y + I are adjacent in T;(R). If x*> € I, then all the distinct elements of x + I
are adjacent in I'j(R).

The following proposition from [13] provides an important relationship between I';(R) and
L(R/I).

Proposition 3.1 ([13]). Let I be an ideal of a ring R. Let A C R be a set of coset representatives
of R/I that are in V(I'(R/I)). For each i € I, define a graph G; with vertex set {a + i : a € A},
and where a + i ~g, b+t ifand only if a + I ~rr/r) b+ I (i.e, ab € I).

Then I'1(R) = G, where G is defined as follows:

=lve)=Jwa+n, 3)

el a€A

and where E(G) is defined as follows:
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1. E(G) contains all the edges in G; for each i € I,
2. for distinct a,b € A and for anyi,j € I, a+i ~q b+ jifand only ifa+ 1 ~r/n b+ 1,
3. fora € A and distincti,j € I, a+i ~qg a+ j ifand only if a® € I.

We also recall the following definition from [13]: Using the notation in Proposition 3.1, we
call the subset a + I a column of T';( R). Moreover, a + I is called a connected column if a* € I.

m

For the rest of this section, we let R = H Zka, where m, ny, na, ..., N, are positive integers
k=1
and pq, po, ..., pm are distinct primes. Moreover, let  be a proper ideal given by
I'=(p1") x (p3?) x - x {p"), )

where ¢; € {0,1,...,n;} fori € {1,2,...,m}. Moreover, we set G = I';/(R) and H = I'(R/I).
Finally, we assume that [ is not prime so that G is not empty (see Proposition 2.2 in [13]).

The Sets S;, 4,....i,.

Consider R/I:

R/I = {(x1,$2, s T) + 1 2, € {0,1,..,piF — 1} C szk fork=1,2, ...,m}. (5)
Then R/1 = Ligr X Ly X -+ X Lipem, and we can choose the set A of coset representatives to
come from [[;*,{0,1,...,p;* — 1}. In the previous section, we defined the set R;, ;, . ;,., which
consists of elements of R. In R/I, we can construct a similar set, which will consist of cosets.
We define instead a collection of coset representatives as follows. If i, € {0,1,...,ex} for each
ke {1,2,...,m}, and (41,72, ...,7m) & {(0,0,...,0),(e1,€2,...,em)}, let R} , . be the set
of all (x1, xa, ..., T,,) € A such that for each k = 1,2, ..., m, we have

1. T = Olflk = €L, and

2. p¥|xy and pZ"H fapifipy=0,1,...,e; — 1.

Then the blocks of I'(R/I) are the sets {x + [ : x € R; ,, ,; }, whereid, € {0,1,..., e} for
all k € {1, 2., m} and (O, 0,.., O) 7& (7:1, 19, «ees ’Lm) 7é (617 €9, ..., Gm).

We now consider G = I';(R). We define the set S;, ;, ;. C R as

stm

Sitsigosim = R; o+

11,02,5000

= U [(z1, 22, ..., ) + 1]

/
(x17$27~--,$m)€Ri1,i2 ,,,,, im

= U {(ﬁl,:cg,,xm)—i-zzéf} (6)

’
(xla$27---7$m)ERi171'27‘“"1',,n

By Proposition 3.1,
V(G) = U Sy igorivn - @)

(il77;27“"@'"1,)75(0707'“70)
(il71.27"'72'771);&(617627"'76777«)
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Thus, the collection {S;, ,..i.. = 4 € {0,1,...,ex} forallk € {1,2,...,m}, and (0,0,...,0) #

as blocks of V(T;(R)).
Before we proceed, we provide a summary of the different notations that have been introduced
so far.

Notation Definition
R I, Z,, ating
M, N1, Ny ooy Ny, € L7775 P1, P2,y ..., Dy are distinct primes

1 (pTt) x (p5?) x -+ x (ptm), a proper ideal of R,
e; € {0,1,...,n;}Vi; I is assumed to be a prime ideal
G I'/(R)
H  T(R/D)
A [ ,{0,1, ..., pi* — 1}, set of coset representatives for R/

G Giveni € I:
V(G) ={z+i:2 €A}, EG) ={{z+i,y+i}:xyel}
Riy.in (@1, zm) € R:ap = 0if i, = ng; pi¥|lag and plF T f oy if i = 0, ..., my, — 1}
R, . {(x1, ..., zm) € Az = 0if iy = e pif |z andp}j“ka ifip=0,....,e, — 1}
Sitim i +1

—olm

Table 1. Summary of different notations.

Example 3.1. Let R = 73 X Z3, which is isomorphic to the ring considered in Example 1.1. Cor-
respondingly, let [ = 0 x Zs = {(0,0), (0, 1), (0,2)}, which is an ideal of R. Then the set of coset
representatives for R/I can be chosen to be {0,1,...,7} x {0} and A = {(2,0),(4,0), (6,0)}.
Note that R,y = {(2,1),(6,1),(2,2),(6,2)} but Ry, = {(2,0),(6,0)}. Similarly, Ry =
{(4,1),(4,2)} but Ry, = {(4,0)}. Since ey = 3 and e; = 0, G can be constructed from the
sets R} o and Ry ; this is in light of Proposition 3.1 and Equation (7). We present the graph of G
in Figure 2, where the sets R, . , S;, i, and subgraphs G; are also illustrated.

11,12’

Observation 3.1. For (iq,...,1,) with iy € {0,1,...,ex} forall k € {1, ...,m},

|Sisigsim | = |I| X |R; . (8)

11,825+, im

The following lemma is an analog of Proposition 2.1 for ideal-based zero divisor graphs.

Lemma 3.1. Suppose (i1, 12, ..., im), (1, J2, s Jm) & {(0,0,...,0), (€1, €2, ..., e ) } and that iy, ji, €
{0,1,...,ex} forall k € {1,...,m}. Then the following statements hold.

L. Ifu,v € Siy 4y, i then Ng(u) N {v} = Ng(v) \ {u}.

2. Suppose (i1,i2, ..., 0m) # (J1,J2, -, Jm)- Two vertices u € Sy, 4,
and only if iy + jp > e forallk =1,2,....m.

3. Two distinct vertices in S;,
1,2,....m.

im andv S Sj17j2 ----- Jm l‘f

-----

are adjacent in G if and only if 21, > ey for all k =

----- im
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Proof.
1.

3.

Si.u Si.t]
f \
Go,0) )
10 5.0)
\. J
~ N
G 0,1
Y (0,1)+Rio
\ J
Go,2)
' 0,2) + R]
(0,2)+ Ry 2.2)
Figure 2. The graph G = T';(R), where R = Zy3 X Zz and I = 0 X Zs.
Suppose u € x + [ and v € y + [ for some z,y € R; ;. Itis sufficient to show that

Neg(u) ~{v} C Ng(v) ~ {u}. Letw € Ng(u) ~ {v}, which 7inmplies that (w+ I(u+1) =
(w+1)(z+1)=1.

Case 1. Suppose u ~gvandw + I =y + 1.

Then (x+1)(y+1) = (u+1)(v+1) = I and we must have vy € I. Since 2,y € R ;, ;.
we must have 2i;, > ¢, forall k € {1,2, ..., m} by Proposition 2.1. It follows that 22, 3? € I
andthat (x+ I)(x+1)=(y+1)(y+1I)=1.Sincew+I=y+I,then (w+I)(v+1)=

(y + I)(y + I) = I, which implies that w € Ng(v).

Case 2. Suppose u Agvorw+ I # y+ 1.

First, if u g v, then u(w — v) & I since uwv ¢ I while uw € I. Then w — v & I and we
musthavew+ 1 #y+ 1. Thenw+1 € Ny(z+I)~{y+ 1} = Ny(y+1)~{x+1}by
Proposition 2.1(i). Then (w + I)(v+ 1) = (w+ I)(v+ 1) = I and w € Ng(v).

First, we musthave u € v+ forsomez € R} ;, , andv € y+[forsomey € R , . .
Clearly, x+1I # y—+1. Then Theorem 3.1(i)-(ii) and Proposition 2.1(ii) imply that i, + 7 > ey
forallk =1,2,...,mifandonlyifu+I =x+ [ andy+ [ = v+ [ are adjacent in I'(R/I)

if and only if u ~¢g v.

We consider two cases.

Case 1. Suppose u € x + I and v € y + I for some distinct z,y € R} ; ;. Again, we
have x + I # y + I. Then Theorem 3.1(i)-(ii) and Proposition 2.1(iii) imply that 2i; > e
forallk =1,2,...,mifandonlyifu+7 =z +Iandy+ [ = v+ I are adjacentin ['(R/I)
if and only if u ~¢ v.
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Case 2. Suppose u,v € z + I for some distinct x,y € R} ,, ;. Then u ~¢g v if and only

if uv € I if and only if 22 € I if and only if 2i;, > ¢, forall k = 1,2, ..., m. []

The following is an immediate consequence of Lemma 3.1.

Corollary 3.2. Under the same conditions as in Lemma 3.1:

1. All the vertices in S;, ;,....i,, are adjacent to all the vertices in S}, j,.. ;.. if and only if ij, +
Jk = epforallk =1,2,...,m.
2. Theverticesin Sy, 4,.. i, forma clique in U1 (R) ifand only if 2iy, > ey, forallk = 1,2, ..., m.

Example 3.2. Consider R = Zys X Zs2 with I = (2%) x (3'). Figure 3 shows T1(R) depicted
using the blocks S;, ;, with their subsets (i, j) + R;, ;,, where (i, j) € I. The subgraphs G ; ;), as

defined in Proposition 3.1, are also shown. Note that, by Corollary 3.2, the block S, 1 is a clique.

Soa Sao - B
g R, Ry R Riy
Gz |(0,3)+ Rf, (0,3) 4+ Rb 0,3) + R} (0,3) + Ry
Geany ||(4,0) + Rj (4,0) + Rj, 4,0) + R} (4,0) + R,
Guz |(4,3)+ R, (4,3)+ Rig (4,3) + R1, (4,3)+ Rip

Figure 3. The ideal-based zero-divisor graph of R = Zgs x Zs» with I = (22) x (3!) depicted using blocks of
V(I'7(R)) and the subgraphs G/; ;). The vertices in the green sets are pairwise adjacent; thus, the block S; ; is a
clique.

The following lemma is a version of Lemma 4.1 in [10], which with Proposition 2.2, provides
the degree of vertices in G.

Lemma 3.2. Letu € x+ 1 C S, 4, .. € V(G) for some x € R, . . Then

yeen 7,1,’L'2,4..,Z

) x[T+degy(z+ D] -1, if2ig > e, Vk € {1,...,m},
degg(u) = { |I| x degy(x+ 1),  otherwise. ©)

302



On the sigma chromatic number of the ideal-based zero divisor graphs | A. D. Garciano et al.

Proof. Recall the graphs G;, where 7 € I, described in Proposition 3.1. With our choice of coset
representatives, note that € V(G)). Then degy (v + I) = degg, (v + i) = |Ng, (v + )| for any
1€ 1.

Suppose u € Gj, where j € I; then u = x + j. We first consider the case where 27, >
e forall k € {1,2,...,m}. Then 2% € I and x + I is a connected column; that is, (z + i1) ~g
(x + i9) for any distinct iq,i5 € I. Then

Ng(u) = [UNGi(x—l—i) U{z+i:i#j} (10)

iel

and it follows that

degg(u) = [ZIN@@H)I )|+ (=1, an

iel

(| -1) = [ZdegH +1)

el

from which the desired conclusion follows.
On the other hand, suppose 2i;, < e, for some k € {1,2,...,m}. Then = + I is not a connected
column and N¢(u) = J,c; Na, (¢ + ©). The desired conclusion follows similarly. O

Theorem 3.2. Suppose v € S;, 4, i, andv € S;, j,
of V(G). Then degu = degv if and only if S;, 4,
1,2,...,m}).

Proof. Suppose S;, i,..... = S}, jo....im- By Lemma 3.1, we have Ng(u) \ {v} = Ng(v) ~ {u}.
If u ~¢ v, then deg(u ) = |[Ne(u) ~ {v} U{v}| = |Ng(u) ~ {v}|+1=|Ng(v) ~{u}|+1=
|[Na(v) \ {u}] U {u}| = degg(v).

On the other hand, if u g v, then Ng(u) = Ng(u) N {v} and Ng(v) = Ng(v) \ {u}, from
which the conclusion follows.

Now, suppose Si, iy....in. 7 Sj.js,....im- MOTEOVET, suppose u € x + I forsome x € R’
and v € y + I for some y € R; .. Since R, #R

J1,J25--2Jm 11,82,---,m ]1]2 ----- Jm?

degy(x + I) # degy (y + I). We consider the following cases:

e WhEE Sy iy i1 Sy jn are blocks
= Sjijorjm (L€ i = Ji forall k €

.....

-----

11,825+, im

Corollary 2.1 implies that

1. If 2i;, > ey, and 2j, > e forall k € {1,2,...,m}, then Lemma 3.1 implies the desired
conclusion.

2. If 2iy, < ey, and 2j;, < ey, for some ki, ko € {1,2,...,m}, then Lemma 3.1 also implies
the desired conclusion.

3. Without loss of generality, suppose 2i;, > e for all & € {1,2,...,m} and that there is a
J € {1,2,...,m} for which 2i; < e;. Then, by Lemma 3.1, deg(v) is divisible by || while
deg(u) is not. The conclusion follows. ]

4. The sigma chromatic number of I';(Z,,)

In [10], Mallika et al. established a relationship between the chromatic numbers of I';(R)
and I'(R/I). More specifically, Mallika et al. proved that 2 < y(I'(R/I)) < x(I';(R)) <
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|I| x x(I'(R/I)). Moreover, they proved that x(I'(R/I)) = x(I';(R)) if I';(R) has no connected
columns. In this section, we establish similar results for the sigma chromatic number of ideal-based
zero-divisor graphs of rings of integers modulo 7.

We begin by recalling the following important observation.

Observation 4.1 (Chartand et al. [4]). If H is a complete subgraph of order k in a graph G such
that N{u| = Nv] for every two vertices u and v of H, then o(G) > k.

In this section, we will establish a formula for the sigma chromatic number of ideal-based zero-
m

divisor graphs. As in the previous section, we let m be a positive integer and R = H Zp:k , where

k=1

m,ny,Na, ..., Ny, are positive integers and pq, po, ..., Py, are distinct primes. Moreover, let / be a
proper ideal given by

I=(pi') x (p5*) x - x (pir), (12)

where ¢; € {0,1,....,n;} fori € {1,2,...,m}. Since I is proper, we must have (eq, s, ..., €,,) #
(n1,n2, ...,ny) (i.e. I is not the zero ideal).

By Proposition 2.2 in [13], we also do not need to consider prime ideals as they would produce
empty ideal-based zero-divisor graphs. Thus, we do not consider the case where e¢; = 1 for exactly
onei € {1,2,...,m} and e; = 0 for all j # 1.

Note that if m = n; = 1, then R = Z,, is a field and the only ideals are {0} and (1), both of
which we do not need to consider. On the other hand, if m = 1 and n; > 2, then the only relevant
ideals to consider for the ring Zprlu are those of the form <p’f>, where 2 < k < nq; such cases fall
under Theorem 4.2. Thus, the case m = 1 is not considered in the following result, which involves
one class of ideals.

Theorem 4.1. Let m > 2 and let R = HZka, where p1,ps, ..., pm are distinct primes and
k=1

ni,Na, ..., Ny, are positive integers. Let I = (pi') x (p3?) x -+ (p&m). If e, = ej, =+ =¢;, =1

for some j1, ja, ..., js, with2 < s < m, and e; = 0 for i & {j1, ja, ..., js }, then o(T';(R)) = 1.

Proof. 1tis sufficient to consider the case where (eq, s, ..., €5; €541, ..., ) = (1,1,...,1;0,0, ..., 0);
that is, we only consider the ideal

I'=(p1) x (p2) X -+ X {ps) x (1) x (1) x -+ x (1). (13)
Consider R/I; we pick the coset representatives so that

R/I ={(x1,29,...;xm)+I : 2 € {0,1,2,..,pp — 1} C Zp:k Vk=1,..,s,
and z = 0 for k = s+ 1,...,m, if such k exist.}. (14)

Then R/I = Z,, X Ly, X -+ X Lp, X Ly X -+ X L.
Let G = I';(R). As defined in the previous section, V(G) can be partitioned into blocks
Siyig..iz00...00 Where i € {0, 1} for k € {1,2, .., s} & (0,0, ...,0) # (i1,42,...,15) # (1,1,...,1).
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If 2i, > ey, forall k € {1,2,...,m}, then (i, 12, ...,i5) = (1,1,...,1). This implies, by Corollary
3.2, that any two vertices belonging to the same block are not adjacent.

Now, we let ¢ be a coloring of G for which ¢(v) = 1 for all v € V(G). Then o(v) = degq(v)
for all v € V(G). Let v and v be adjacent vertices in G. Then v and v belong to different blocks.
By Theorem 3.2, we have o(u) # o(v). Therefore, ¢ is a sigma coloring of GG that uses only one
color. 0

Theorem 4.2. Let m > 1 and let R = HZka, where pi,pa, ..., pm are distinct primes and
k=1

Ny, Ng, ..., Ny are positive integers. Let | = _(p§1> X (p5?) X -+ (pim). If nj > e; > 2 for at least
one j € {1,2,...,m}, then

o(TH(R)) = 11| x o(C(R/1)) = 1] x [ [pi’“‘f?“@k - 1>} . (1)

Proof. Let G = I';(R). Recall the partition of V' (G) given by {Si, 4. 4, = ix € {0,1,...;ex} Vk €
{1,2,...,m},and (0,0, ...,0) # (i1, 42, ..., 7m) # (€1, €2, ..., €m)}, as described in Section 3.

Since n; > e; > 2 for at least one j € {1,...,m}, we have (0,0,...,0) # ([, [ 2], ..., [%])

.....

_ [k
2

[ 1)} - (16)

,,,,,

By Corollary 3.2, S'is a clique in G. For u,v € S, then u ~¢ v and Lemma 3.1(i) implies that
Nlu] = [N(u) ~ {v}] U{u, v} = [N(v) ~ {u}] U {u, v} = Nv]. (17)

By Observation 4.1, o(G) > |S|.
Let d = A(G) + 1. We now define a coloring ¢ of G as follows:

1. If 2i; < e; forsome j € {1,2,...,m}, set c(Si, iy,...ir.) = {1}
2. If 2i, > ep forall k € {1,2,...,m}, set

(Siviinyin) = {1, d, &%, ..., dSiiziml =1y, (18)

To illustrate, the sigma coloring depicted in Figure 1 has been constructed using the preceding
definition. By Proposition 2.2, for all (iy, is, ..., i,,) satisfying 2i), > e for all k € {1,2,...,m},
we have |R/[%1H%2W .... (%m” > |Ri, i, .|, which implies that [S| > |S; ;, Thus, c uses
exactly | S| colors.

Suppose u ~¢ v. By the choice of colors (see Lemma 4.1 in [4]), deg, u # deg. v implies
that o(u) # o(v). Now, suppose deg, u = deg, v. By Theorem 3.2, u and v belong to the same
block, say S;, i, 4,,- By Lemma 3.1(iii), we must have 2i;, > e for all £ € {1,2,...,m}. This
implies that the vertices in S;, ;, . ,,, form a clique in G. Then

----- 'Lm|'

77777

o(u) =c(v) + Z clx) and o(v)=c(u)+ Z c(x). (19)

zENg(u)~{v} xENg(v)~{u}
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By Lemma 3.1(i), we have Z c(x) = Z c¢(x). Moreover, by the construction of
2€Ng(u)~{v} 2E€Ng (v)~{u}

¢, we have ¢(v) # c¢(u); consequently, o(u) # o(v). Therefore, c is a sigma coloring that uses | S|

colors. ]
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