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Abstract

The objective of this paper is to investigate a particular graph coloring, called sigma coloring, as
applied to ideal-based zero-divisor graphs. Given a commutative ring R with (nonzero) identity
and a proper ideal I of R, the graph ΓI(R) is defined as an undirected graph with vertex set
{x ∈ R ∖ I : xy ∈ I for some y ∈ R ∖ I} and edge set {xy : xy ∈ I}. On the other hand, given
a graph G, a sigma coloring c : V (G) → N is a coloring that satisfies σ(u) ̸= σ(v) for any two
adjacent vertices u, v in G, where σ(x) denotes the sum of all colors c(y) among all neighbors y
of a vertex x. The sigma chromatic number of G is denoted by σ(G) and is defined as the fewest
number of colors needed for a sigma coloring of G. In this paper, we completely determine the
sigma chromatic number of ideal-based zero-divisor graphs of rings of integers modulo n.
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1. Introduction

Zero-divisor graphs of finite rings continue to be a fascinating topic that interests both graph
and ring theorists. A development in this area is the introduction of ideal-based zero-divisor graphs
as an extension of the usual zero-divisor graphs. Studies on the structure and graph parameters of
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ideal-based zero-divisor graphs have been done, but there are still a broad range of open problems
on this topic that researchers will find promising.

Recall that the zero-divisor graph of a commutative ring R, as defined in [1], is denoted by
Γ(R) and is defined as the graph whose vertices are the nonzero zero divisors of R and in which two
vertices x and y are adjacent if and only if xy = 0 in R. The zero-divisor graphs of commutative
rings have been studied with respect to different topics such as domination [2], and sigma colorings
[9], and normalized Laplacian spectrum [12].

In [13], Redmond generalized the notion by defining ideal-based zero-divisor graphs as fol-
lows: Given a commutative ring R with (nonzero) identity and a proper ideal I of R, the graph
ΓI(R) is defined as an undirected graph with vertex set {x ∈ R∖ I : xy ∈ I for some y ∈ R∖ I}
and edge set {xy : xy ∈ I}. Ideal-based zero-divisor graphs have been investigated with respect
to different notions such as parameter and girth [6], domination [11], complementedness [14], and
crosscap [16]. However, there are seemingly few studies that focus on colorings of ideal-based
zero divisor graphs.

On the other hand, given a graph G, a sigma coloring c : V (G) → N is a coloring that satisfies
σ(u) ̸= σ(v) for any two adjacent vertices u, v in G, where σ(x) denotes the sum of all colors
c(y) among all neighbors y of a vertex x. The sigma chromatic number of G is denoted by σ(G)
and is defined as the fewest number of colors needed for a sigma coloring of G. The notion of
sigma coloring was first studied by Chartrand et al. in [4]. Clearly, σ(G) ≤ χ(G) for any graph
G. Moreover, it has been shown by Dehghan et al. in [5] that for every integer k ≥ 3, it is NP-
complete to decide whether σ(G) = k for a given graph G. The computational complexity of this
sigma coloring problem motivates a number of works on this topic; see [7, 8, 15]), for example.

Example 1.1. Let R be the ring Z24, I be the ideal ⟨8⟩ = {0, 8, 16}, and G = ΓI(R). To illustrate,
the elements 2 and 20 of R become vertices of G since 2 · 20 = 16 ∈ I . On the other hand, the
element 3 of R is not a vertex of G since 3 · x /∈ I for all x ∈ R ∖ I . The graph G is shown in
Figure 1 together with an example of a sigma coloring of G.

Figure 1. The graph G = ΓI(R) (left), where R = Z24 and I = ⟨8⟩, and a sigma coloring of G (right), where the
color and color sum of each vertex are shown inside and beside the vertex, respectively.
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As previously mentioned, in [9], zero-divisor graphs of rings of integers modulo n were stud-
ied in relation to sigma colorings. An interesting observation from [9] is that the structure of such
zero-divisor graphs allows for a natural way of constructing their sigma colorings using the min-
imum number of colors possible. Given that the notion of ideal-based zero divisor graphs is a
generalization of zero-divisor graphs, it is then natural to ask if the structure of ideal-based zero
divisor graphs can also allow for a similarly natural way of constructing their sigma colorings.

Thus, in this paper, we aim to continue the work done in [9] by investigating the sigma chro-
matic number of ideal-based zero-divisor graphs of rings of integers modulo n. Note that if n has
prime factorization pn1

1 pn2
2 · · · pnm

m , where m,n1, n2, ..., nm are positive integers and p1, p2, ..., pm
are distinct primes, then the ring Zn is isomorphic to Zp

n1
1

× Zp
n2
2

× · · · × Zpnm
m

. Thus, we focus
our attention on such rings.

In Section 2, we review important results from [9] on the structure of Γ(Zn). In Section 3, we
discuss the important relationship between ΓI(R) and Γ(R/I) and we establish results particular
to the structure of ΓI(Zn). Finally, in Section 4, we present the main results on the sigma chromatic
number of ideal-based zero-divisor graphs ΓI(Zp

n1
1

× Zp
n2
2

× · · · × Zpnm
m

).
All graphs considered in this work are simple, undirected, connected, and finite. Unless oth-

erwise stated, notations will follow [3]. If two vertices u and v are adjacent in a graph G, then
we write u ∼G v. The closed neighborhood NG[u] of a vertex u in a graph G is given by
NG[u] = NG(u)∪{u}. Given two sets A and B, we denote by A+B the set {a+b : a ∈ A, b ∈ B};
in the case that A is a singleton {a}, then we may also write a+B for {a}+B.

2. On the structure of Γ(Zn)

As established in [13], ideal-based zero-divisor graphs are closely related to zero-divisor graphs
of factor rings. Since for a proper ideal I of ZM , the factor ring ZM/I is isomorphic to some ring
Zn, understanding the structure of Γ(Zn) is of primary importance in this work. In this section,
we present important resuls from [9] on the structure of Γ(Zn). The reader may refer to [9] for the
proofs of these results.

For this entire section, we let m be a positive integer, and let R =
m∏
k=1

Zp
nk
k

, where m,n1, n2, ...,

nm are positive integers and p1, p2, ..., pm are distinct primes.

The Sets Ri1,i2,...,im

We define the following sets: For each k ∈ {1, 2, ...,m}, let ik ∈ {0, 1, ..., nk}. We denote by
Ri1,i2,...,im the set of all (x1, x2, ..., xm) ∈ R such that for each k = 1, 2, ...,m, we have

1. xk = 0 if ik = nk, and
2. pikk |xk and pik+1

k ∤ xk if ik = 0, 1, ..., nk − 1.

Note that Rn1,n2,...,nm = {(0, 0, ..., 0)} while the set R0,0,...,0 is the set of elements that are not zero
divisors of R. Hence,

V (Γ(R)) =
⋃

(i1,i2,...,im )̸=(0,0,...,0),
(i1,i2,...,im )̸=(n1,n2,...,nm)

Ri1,i2,...,im . (1)
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For convenience, throughout this paper, we will refer to the sets Ri1,i2,...,im , where (i1, i2, ..., im) ̸∈
{(0, 0, ..., 0), (n1, n2, ..., nm)}, as blocks of V (Γ(R)).

Let H = Γ(R). We present below some important results on the properties of H in relation to
the blocks Ri1,i2,...,im .

Proposition 2.1 ([9]). Let (i1, i2, ..., im) ̸∈ {(0, 0, ..., 0), (n1, n2, ..., nm)}. The following state-
ments hold.

1. If u, v ∈ Ri1,i2,...,im , then N(u)∖ {v} = N(v)∖ {u}.
2. The vertices in Ri1,i2,...,im are adjacent to all the vertices in Rj1,j2,...,jm

if and only if ik + jk ≥ nk for all k = 1, 2, ...,m.
3. The vertices in Ri1,...,im form a clique in Γ(R) if and only if 2ik ≥ nk for all k = 1, 2, ...,m.

Proposition 2.2 ([9]). For (i1, i2, ..., im) ̸∈ {(0, 0, ..., 0), (n1, n2, ..., nm)},

|Ri1,i2,...,im | =
m∏
k=1

ϕ(pnk−ik
k ) =

m∏
k=1

⌈pnk−ik−1
k (pk − 1)⌉. (2)

Corollary 2.1 ([9]). Let u ∈ Ri1,i2,...,im and v ∈ Rj1,j2,...,jm . If Ri1,i2,...,im ̸=
Rj1,j2,...,jm , then deg u ̸= deg v.

3. On the structure of ΓI(Zn)

We begin with three important results from [13] that provide key properties of ideal-based
zero-divisor graphs.

Theorem 3.1 ([13]). Let I be an ideal of a ring R, and let x, y ∈ R− I . Then:

1. If x+ I is adjacent to y + I in Γ(R/I), then x is adjacent to y in ΓI(R).
2. If x is adjacent to y in ΓI(R) and x+ I ̸= y + I , then x+ I is adjacent to y + I in Γ(R/I).
3. If x is adjacent to y in ΓI(R) and x+ I = y + I , then x2, y2 ∈ I .

Corollary 3.1 ([13]). If x and y are (distinct) adjacent vertices in ΓI(R), then all (distinct) ele-
ments of x + I and y + I are adjacent in ΓI(R). If x2 ∈ I , then all the distinct elements of x + I
are adjacent in ΓI(R).

The following proposition from [13] provides an important relationship between ΓI(R) and
Γ(R/I).

Proposition 3.1 ([13]). Let I be an ideal of a ring R. Let Λ ⊆ R be a set of coset representatives
of R/I that are in V (Γ(R/I)). For each i ∈ I , define a graph Gi with vertex set {a + i : a ∈ Λ},
and where a+ i ∼Gi

b+ i if and only if a+ I ∼Γ(R/I) b+ I (i.e., ab ∈ I).
Then ΓI(R) = G, where G is defined as follows:

V (G) =
⋃
i∈I

V (Gi) =
⋃
a∈Λ

(a+ I), (3)

and where E(G) is defined as follows:
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1. E(G) contains all the edges in Gi for each i ∈ I ,
2. for distinct a, b ∈ Λ and for any i, j ∈ I , a+ i ∼G b+ j if and only if a+ I ∼Γ(R/I) b+ I ,
3. for a ∈ Λ and distinct i, j ∈ I , a+ i ∼G a+ j if and only if a2 ∈ I .

We also recall the following definition from [13]: Using the notation in Proposition 3.1, we
call the subset a+ I a column of ΓI(R). Moreover, a+ I is called a connected column if a2 ∈ I .

For the rest of this section, we let R =
m∏
k=1

Zp
nk
k

, where m,n1, n2, ..., nm are positive integers

and p1, p2, ..., pm are distinct primes. Moreover, let I be a proper ideal given by

I = ⟨pe11 ⟩ × ⟨pe22 ⟩ × · · · × ⟨pemm ⟩, (4)

where ei ∈ {0, 1, ..., ni} for i ∈ {1, 2, ...,m}. Moreover, we set G = ΓI(R) and H = Γ(R/I).
Finally, we assume that I is not prime so that G is not empty (see Proposition 2.2 in [13]).

The Sets Si1,i2,...,im

Consider R/I:

R/I =
{
(x1, x2, ..., xm) + I : xk ∈ {0, 1, .., pekk − 1} ⊆ Zp

nk
k

for k = 1, 2, ...,m
}
. (5)

Then R/I ∼= Zp
e1
1
× Zp

e2
2
× · · · × Zpemm , and we can choose the set Λ of coset representatives to

come from
∏m

k=1{0, 1, ..., p
ek
k − 1}. In the previous section, we defined the set Ri1,i2,...,im , which

consists of elements of R. In R/I , we can construct a similar set, which will consist of cosets.
We define instead a collection of coset representatives as follows. If ik ∈ {0, 1, . . . , ek} for each
k ∈ {1, 2, . . . ,m}, and (i1, i2, ..., im) ̸∈ {(0, 0, . . . , 0), (e1, e2, . . . , em)}, let R′

i1,i2,...,im
be the set

of all (x1, x2, ..., xm) ∈ Λ such that for each k = 1, 2, ...,m, we have

1. xk = 0 if ik = ek, and
2. pikk |xk and pik+1

k ∤ xk if ik = 0, 1, ..., ek − 1.

Then the blocks of Γ(R/I) are the sets {x + I : x ∈ R′
i1,i2,...,im

}, where ik ∈ {0, 1, ..., ek} for
all k ∈ {1, 2, ...,m} and (0, 0, ..., 0) ̸= (i1, i2, ..., im) ̸= (e1, e2, ..., em).

We now consider G = ΓI(R). We define the set Si1,i2,...,im ⊆ R as

Si1,i2,...,im = R′
i1,i2,...,im

+ I

=
⋃

(x1,x2,...,xm)∈R′
i1,i2,...,im

[(x1, x2, ..., xm) + I]

=
⋃

(x1,x2,...,xm)∈R′
i1,i2,...,im

{(x1, x2, ..., xm) + i : i ∈ I}. (6)

By Proposition 3.1,
V (G) =

⋃
(i1,i2,...,im )̸=(0,0,...,0)

(i1,i2,...,im) ̸=(e1,e2,...,em)

Si1,i2,...,im . (7)
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Thus, the collection {Si1,i2,...,im : ik ∈ {0, 1, ..., ek} for all k ∈ {1, 2, ...,m}, and (0, 0, ..., 0) ̸=
(i1, i2, ..., im) ̸= (e1, e2, ..., em)} forms a partition of V (ΓI(R)), and we refer to the sets Si1,i2,...,is

as blocks of V (ΓI(R)).
Before we proceed, we provide a summary of the different notations that have been introduced

so far.

Notation Definition
R

∏m
k=1 Zp

nk
k

, a ring
m,n1, n2, ..., nm ∈ Z+; p1, p2, ..., pm are distinct primes

I ⟨pe11 ⟩ × ⟨pe22 ⟩ × · · · × ⟨pemm ⟩, a proper ideal of R,
ei ∈ {0, 1, ..., ni}∀i; I is assumed to be a prime ideal

G ΓI(R)
H Γ(R/I)
Λ

∏m
k=1{0, 1, ..., p

ek
k − 1}, set of coset representatives for R/I

Gi Given i ∈ I:
V (Gi) = {x+ i : x ∈ Λ}, E(Gi) = {{x+ i, y + i} : xy ∈ I}

Ri1,...,im {(x1, ..., xm) ∈ R : xk = 0 if ik = nk; p
ik
k |xk and pik+1

k ∤ xk if ik = 0, ..., nk − 1}
R′

i1,...,im
{(x1, ..., xm) ∈ Λ : xk = 0 if ik = ek; p

ik
k |xk and pik+1

k ∤ xk if ik = 0, ..., ek − 1}
Si1,...,im R′

i1,...,im
+ I

Table 1. Summary of different notations.

Example 3.1. Let R = Z23 ×Z3, which is isomorphic to the ring considered in Example 1.1. Cor-
respondingly, let I = 0×Z3 = {(0, 0), (0, 1), (0, 2)}, which is an ideal of R. Then the set of coset
representatives for R/I can be chosen to be {0, 1, ..., 7} × {0} and Λ = {(2, 0), (4, 0), (6, 0)}.
Note that R1,0 = {(2, 1), (6, 1), (2, 2), (6, 2)} but R′

1,0 = {(2, 0), (6, 0)}. Similarly, R2,0 =
{(4, 1), (4, 2)} but R′

2,0 = {(4, 0)}. Since e1 = 3 and e2 = 0, G can be constructed from the
sets R′

1,0 and R′
2,0; this is in light of Proposition 3.1 and Equation (7). We present the graph of G

in Figure 2, where the sets R′
i1,i2

, Si1,i2 and subgraphs Gi are also illustrated.

Observation 3.1. For (i1, ..., im) with ik ∈ {0, 1, ..., ek} for all k ∈ {1, ...,m},

|Si1,i2,...,im | = |I| × |R′
i1,i2,...,im

|. (8)

The following lemma is an analog of Proposition 2.1 for ideal-based zero divisor graphs.

Lemma 3.1. Suppose (i1, i2, ..., im), (j1, j2, ..., jm) ̸∈ {(0, 0, ..., 0), (e1, e2, ..., em)} and that ik, jk ∈
{0, 1, ..., ek} for all k ∈ {1, ...,m}. Then the following statements hold.

1. If u, v ∈ Si1,i2,...,im , then NG(u)∖ {v} = NG(v)∖ {u}.
2. Suppose (i1, i2, ..., im) ̸= (j1, j2, ..., jm). Two vertices u ∈ Si1,i2,...,im and v ∈ Sj1,j2,...,jm if

and only if ik + jk ≥ ek for all k = 1, 2, ...,m.
3. Two distinct vertices in Si1,...,im are adjacent in G if and only if 2ik ≥ ek for all k =

1, 2, ...,m.
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Figure 2. The graph G = ΓI(R), where R = Z23 × Z3 and I = 0× Z3.

Proof.

1. Suppose u ∈ x + I and v ∈ y + I for some x, y ∈ R′
i1,i2,...,im

. It is sufficient to show that
NG(u)∖ {v} ⊆ NG(v)∖ {u}. Let w ∈ NG(u)∖ {v}, which implies that (w+ I)(u+ I) =
(w + I)(x+ I) = I .

Case 1. Suppose u ∼G v and w + I = y + I .
Then (x+I)(y+I) = (u+I)(v+I) = I and we must have xy ∈ I . Since x, y ∈ R′

i1,i2,...,im
,

we must have 2ik ≥ ek for all k ∈ {1, 2, ...,m} by Proposition 2.1. It follows that x2, y2 ∈ I
and that (x+ I)(x+ I) = (y+ I)(y+ I) = I . Since w+ I = y+ I , then (w+ I)(v+ I) =
(y + I)(y + I) = I , which implies that w ∈ NG(v).

Case 2. Suppose u ̸∼G v or w + I ̸= y + I .
First, if u ̸∼G v, then u(w − v) ̸∈ I since uv ̸∈ I while uw ∈ I . Then w − v ̸∈ I and we
must have w+ I ̸= y+ I . Then w+ I ∈ NH(x+ I)∖ {y+ I} = NH(y+ I)∖ {x+ I} by
Proposition 2.1(i). Then (w + I)(v + I) = (w + I)(v + I) = I and w ∈ NG(v).

2. First, we must have u ∈ x+I for some x ∈ R′
i1,i2,...,im

and v ∈ y+I for some y ∈ R′
j1,j2,...,jm

.
Clearly, x+I ̸= y+I . Then Theorem 3.1(i)-(ii) and Proposition 2.1(ii) imply that ik+jk ≥ ek
for all k = 1, 2, ...,m if and only if u+ I = x+ I and y+ I = v+ I are adjacent in Γ(R/I)
if and only if u ∼G v.

3. We consider two cases.

Case 1. Suppose u ∈ x + I and v ∈ y + I for some distinct x, y ∈ R′
i1,i2,...,im

. Again, we
have x + I ̸= y + I . Then Theorem 3.1(i)-(ii) and Proposition 2.1(iii) imply that 2ik ≥ ek
for all k = 1, 2, ...,m if and only if u+ I = x+ I and y+ I = v+ I are adjacent in Γ(R/I)
if and only if u ∼G v.
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Case 2. Suppose u, v ∈ x + I for some distinct x, y ∈ R′
i1,i2,...,im

. Then u ∼G v if and only
if uv ∈ I if and only if x2 ∈ I if and only if 2ik ≥ ek for all k = 1, 2, ...,m.

The following is an immediate consequence of Lemma 3.1.

Corollary 3.2. Under the same conditions as in Lemma 3.1:

1. All the vertices in Si1,i2,...,im are adjacent to all the vertices in Sj1,j2,...,jm if and only if ik +
jk ≥ ek for all k = 1, 2, ...,m.

2. The vertices in Si1,i2,...,im form a clique in ΓI(R) if and only if 2ik ≥ ek for all k = 1, 2, ...,m.

Example 3.2. Consider R = Z23 × Z32 with I = ⟨22⟩ × ⟨31⟩. Figure 3 shows ΓI(R) depicted
using the blocks Si1,i2 with their subsets (i, j) + R′

i1,i2
, where (i, j) ∈ I . The subgraphs G(i,j), as

defined in Proposition 3.1, are also shown. Note that, by Corollary 3.2, the block S1,1 is a clique.

Figure 3. The ideal-based zero-divisor graph of R = Z23 × Z32 with I = ⟨22⟩ × ⟨31⟩ depicted using blocks of
V (ΓI(R)) and the subgraphs G(i,j). The vertices in the green sets are pairwise adjacent; thus, the block S1,1 is a
clique.

The following lemma is a version of Lemma 4.1 in [10], which with Proposition 2.2, provides
the degree of vertices in G.

Lemma 3.2. Let u ∈ x+ I ⊆ Si1,i2,...,im ⊆ V (G) for some x ∈ R′
i1,i2,...,im

. Then

degG(u) =

{
|I| × [1 + degH(x+ I)]− 1, if 2ik ≥ ek ∀k ∈ {1, ...,m},

|I| × degH(x+ I), otherwise. (9)
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Proof. Recall the graphs Gi, where i ∈ I , described in Proposition 3.1. With our choice of coset
representatives, note that x ∈ V (G0). Then degH(x + I) = degGi

(x + i) = |NGi
(x + i)| for any

i ∈ I .
Suppose u ∈ Gj , where j ∈ I; then u = x + j. We first consider the case where 2ik ≥

ek for all k ∈ {1, 2, ...,m}. Then x2 ∈ I and x + I is a connected column; that is, (x + i1) ∼G

(x+ i2) for any distinct i1, i2 ∈ I . Then

NG(u) =

[⋃
i∈I

NGi
(x+ i)

]
∪ {x+ i : i ̸= j} (10)

and it follows that

degG(u) =

[∑
i∈I

|NGi
(x+ i)|

]
+ (|I| − 1) =

[∑
i∈I

degH(x+ I)

]
+ (|I| − 1), (11)

from which the desired conclusion follows.
On the other hand, suppose 2ik < ek for some k ∈ {1, 2, ...,m}. Then x+ I is not a connected

column and NG(u) =
⋃

i∈I NGi
(x+ i). The desired conclusion follows similarly.

Theorem 3.2. Suppose u ∈ Si1,i2,...,im and v ∈ Sj1,j2,...,jm , where Si1,i2,...,im , Sj1,j2,...,jm are blocks
of V (G). Then deg u = deg v if and only if Si1,i2,...,im = Sj1,j2,...,jm (i.e. ik = jk for all k ∈
{1, 2, ...,m}).

Proof. Suppose Si1,i2,...,im = Sj1,j2,...,jm . By Lemma 3.1, we have NG(u) ∖ {v} = NG(v) ∖ {u}.
If u ∼G v, then degG(u) = |[NG(u)∖ {v}] ∪ {v}| = |NG(u)∖ {v}|+ 1 = |NG(v)∖ {u}|+ 1 =
|[NG(v)∖ {u}] ∪ {u}| = degG(v).

On the other hand, if u ̸∼G v, then NG(u) = NG(u) ∖ {v} and NG(v) = NG(v) ∖ {u}, from
which the conclusion follows.

Now, suppose Si1,i2,...,im ̸= Sj1,j2,...,jm . Moreover, suppose u ∈ x + I for some x ∈ R′
i1,i2,...,im

and v ∈ y + I for some y ∈ R′
j1,j2,...,jm

. Since R′
i1,i2,...,im

̸= R′
j1,j2,...,jm

, Corollary 2.1 implies that
degH(x+ I) ̸= degH(y + I). We consider the following cases:

1. If 2ik ≥ ek and 2jk ≥ ek for all k ∈ {1, 2, ...,m}, then Lemma 3.1 implies the desired
conclusion.

2. If 2ik1 < ek1 and 2jk2 < ek2 for some k1, k2 ∈ {1, 2, ...,m}, then Lemma 3.1 also implies
the desired conclusion.

3. Without loss of generality, suppose 2ik ≥ ek for all k ∈ {1, 2, ...,m} and that there is a
j ∈ {1, 2, ...,m} for which 2ij < ej . Then, by Lemma 3.1, degG(v) is divisible by |I| while
degG(u) is not. The conclusion follows.

4. The sigma chromatic number of ΓI(Zn)

In [10], Mallika et al. established a relationship between the chromatic numbers of ΓI(R)
and Γ(R/I). More specifically, Mallika et al. proved that 2 ≤ χ(Γ(R/I)) ≤ χ(ΓI(R)) ≤
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|I| × χ(Γ(R/I)). Moreover, they proved that χ(Γ(R/I)) = χ(ΓI(R)) if ΓI(R) has no connected
columns. In this section, we establish similar results for the sigma chromatic number of ideal-based
zero-divisor graphs of rings of integers modulo n.

We begin by recalling the following important observation.

Observation 4.1 (Chartand et al. [4]). If H is a complete subgraph of order k in a graph G such
that N [u] = N [v] for every two vertices u and v of H , then σ(G) ≥ k.

In this section, we will establish a formula for the sigma chromatic number of ideal-based zero-

divisor graphs. As in the previous section, we let m be a positive integer and R =
m∏
k=1

Zp
nk
k

, where

m,n1, n2, ..., nm are positive integers and p1, p2, ..., pm are distinct primes. Moreover, let I be a
proper ideal given by

I = ⟨pe11 ⟩ × ⟨pe22 ⟩ × · · · × ⟨pemm ⟩, (12)

where ei ∈ {0, 1, ..., ni} for i ∈ {1, 2, ...,m}. Since I is proper, we must have (e1, e2, ..., em) ̸=
(n1, n2, ..., nm) (i.e. I is not the zero ideal).

By Proposition 2.2 in [13], we also do not need to consider prime ideals as they would produce
empty ideal-based zero-divisor graphs. Thus, we do not consider the case where ei = 1 for exactly
one i ∈ {1, 2, ...,m} and ej = 0 for all j ̸= i.

Note that if m = n1 = 1, then R = Zp1 is a field and the only ideals are {0} and ⟨1⟩, both of
which we do not need to consider. On the other hand, if m = 1 and n1 ≥ 2, then the only relevant
ideals to consider for the ring Zp

n1
1

are those of the form ⟨pk1⟩, where 2 ≤ k ≤ n1; such cases fall
under Theorem 4.2. Thus, the case m = 1 is not considered in the following result, which involves
one class of ideals.

Theorem 4.1. Let m ≥ 2 and let R =
m∏
k=1

Zp
nk
k

, where p1, p2, ..., pm are distinct primes and

n1, n2, ..., nm are positive integers. Let I = ⟨pe11 ⟩ × ⟨pe22 ⟩ × · · · ⟨pemm ⟩. If ej1 = ej2 = · · · = ejs = 1
for some j1, j2, ..., js, with 2 ≤ s ≤ m, and ei = 0 for i ̸∈ {j1, j2, ..., js}, then σ(ΓI(R)) = 1.

Proof. It is sufficient to consider the case where (e1, e2, ..., es; es+1, ..., em) = (1, 1, ..., 1; 0, 0, ..., 0);
that is, we only consider the ideal

I = ⟨p1⟩ × ⟨p2⟩ × · · · × ⟨ps⟩ × ⟨1⟩ × ⟨1⟩ × · · · × ⟨1⟩. (13)

Consider R/I; we pick the coset representatives so that

R/I = {(x1, x2, ..., xm)+I : xk ∈ {0, 1, 2, .., pk − 1} ⊆ Zp
nk
k

∀k = 1, ..., s,

and xk = 0 for k = s+ 1, ...,m, if such k exist.}. (14)

Then R/I ∼= Zp1 × Zp2 × · · · × Zps × Z1 × · · · × Z1.
Let G = ΓI(R). As defined in the previous section, V (G) can be partitioned into blocks

Si1,i2,...,is,0,0,...,0, where ik ∈ {0, 1} for k ∈ {1, 2, .., s} & (0, 0, ..., 0) ̸= (i1, i2, ..., is) ̸= (1, 1, ..., 1).
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If 2ik ≥ ek for all k ∈ {1, 2, ...,m}, then (i1, i2, ..., is) = (1, 1, ..., 1). This implies, by Corollary
3.2, that any two vertices belonging to the same block are not adjacent.

Now, we let c be a coloring of G for which c(v) = 1 for all v ∈ V (G). Then σ(v) = degG(v)
for all v ∈ V (G). Let u and v be adjacent vertices in G. Then u and v belong to different blocks.
By Theorem 3.2, we have σ(u) ̸= σ(v). Therefore, c is a sigma coloring of G that uses only one
color.

Theorem 4.2. Let m ≥ 1 and let R =
m∏
k=1

Zp
nk
k

, where p1, p2, ..., pm are distinct primes and

n1, n2, ..., nm are positive integers. Let I = ⟨pe11 ⟩ × ⟨pe22 ⟩ × · · · ⟨pemm ⟩. If nj ≥ ej ≥ 2 for at least
one j ∈ {1, 2, ...,m}, then

σ(ΓI(R)) = |I| × σ(Γ(R/I)) = |I| ×
m∏
k=1

⌈
p
ek−⌈ ek

2 ⌉−1

k (pk − 1)

⌉
. (15)

Proof. Let G = ΓI(R). Recall the partition of V (G) given by {Si1,i2,...,im : ik ∈ {0, 1, ..., ek} ∀k ∈
{1, 2, ...,m}, and (0, 0, ..., 0) ̸= (i1, i2, ..., im) ̸= (e1, e2, ..., em)}, as described in Section 3.

Since nj ≥ ej ≥ 2 for at least one j ∈ {1, ...,m}, we have (0, 0, ..., 0) ̸= (⌈ e1
2
⌉, ⌈ e2

2
⌉, ..., ⌈ em

2
⌉)

̸= (e1, e2, ..., em)}. Let S = S⌈ e1
2
⌉,⌈ e2

2
⌉,...,⌈ em

2
⌉. By Observation 3.1 and Proposition 2.2,

|S| = |I| ×
∣∣∣R′

⌈ e1
2
⌉,⌈ e2

2
⌉,...,⌈ em

2
⌉

∣∣∣ = |I| ×
m∏
k=1

⌈
p
ek−⌈ ek

2 ⌉−1

k (pk − 1)

⌉
. (16)

By Corollary 3.2, S is a clique in G. For u, v ∈ S, then u ∼G v and Lemma 3.1(i) implies that

N [u] = [N(u)∖ {v}] ∪ {u, v} = [N(v)∖ {u}] ∪ {u, v} = N [v]. (17)

By Observation 4.1, σ(G) ≥ |S|.
Let d = ∆(G) + 1. We now define a coloring c of G as follows:

1. If 2ij < ej for some j ∈ {1, 2, ...,m}, set c(Si1,i2,....,im) = {1}.
2. If 2ik ≥ ek for all k ∈ {1, 2, ...,m}, set

c(Si1,i2,....,im) = {1, d, d2, ..., d|Si1,i2,...,im
|−1}. (18)

To illustrate, the sigma coloring depicted in Figure 1 has been constructed using the preceding
definition. By Proposition 2.2, for all (i1, i2, ..., im) satisfying 2ik ≥ ek for all k ∈ {1, 2, ...,m},
we have |R′

⌈ e1
2
⌉,⌈ e2

2
⌉,...,⌈ em

2
⌉| ≥ |R′

i1,i2,...,im
|, which implies that |S| ≥ |Si1,i2,...,im|. Thus, c uses

exactly |S| colors.
Suppose u ∼G v. By the choice of colors (see Lemma 4.1 in [4]), degG u ̸= degG v implies

that σ(u) ̸= σ(v). Now, suppose degG u = degG v. By Theorem 3.2, u and v belong to the same
block, say Si1,i2,...,im . By Lemma 3.1(iii), we must have 2ik ≥ ek for all k ∈ {1, 2, ...,m}. This
implies that the vertices in Si1,i2,...,im form a clique in G. Then

σ(u) = c(v) +
∑

x∈NG(u)∖{v}

c(x) and σ(v) = c(u) +
∑

x∈NG(v)∖{u}

c(x). (19)
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By Lemma 3.1(i), we have
∑

x∈NG(u)∖{v}

c(x) =
∑

x∈NG(v)∖{u}

c(x). Moreover, by the construction of

c, we have c(v) ̸= c(u); consequently, σ(u) ̸= σ(v). Therefore, c is a sigma coloring that uses |S|
colors.
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