Electronic Journal of Graph Theory and Applications

On d-antimagic labelings of plane graphs

Martin Bača ${ }^{\text {a }}$, Ljiljana Brankovic ${ }^{\text {b }}$, Marcela Lascsákováa ${ }^{\text {a }}$, Oudone Phanalasy ${ }^{\text {c }}$, Andrea Semaničová-Feňovčíkováa ${ }^{\text {a }}$
${ }^{a}$ Department of Applied Mathematics and Informatics, Technical University, Košice, Slovak Republic
${ }^{b}$ School of Electrical Engineering and Computer Science, The University of Newcatle, Australia
${ }^{c}$ Department of Mathematics, National University of Laos, Vientiane, Laos

martin.baca@tuke.sk, ljiljana.brankovic@newcastle.edu.au, marcela.lascsakova@tuke.sk, oudone.phanalasy@newcastle.edu.au, andrea.fenovcikova@tuke.sk

Abstract

The paper deals with the problem of labeling the vertices and edges of a plane graph in such a way that the labels of the vertices and edges surrounding that face add up to a weight of that face. A labeling of a plane graph is called d-antimagic if for every positive integer s, the s-sided face weights form an arithmetic progression with a difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. In the paper we examine the existence of such labelings for several families of plane graphs.

[^0]
1. Introduction

Let $G=(V, E, F)$ be a finite connected plane graph without loops and multiple edges, where V, E and F are its vertex set, edge set and face set, respectively. Let $|V(G)|=p,|E(G)|=q$ and $|F(G)|=r$ be the number of the vertices, the edges and the faces, respectively.

A labeling of type $(1,1,1)$ assigns labels from the set $\{1,2, \ldots, p+q+r\}$ to the vertices, edges and faces of a plane graph G in such a way that each vertex, edge and face receives exactly one label and each number is used exactly once as a label.

Received: 31 March 2011, Revised: 28 July 2011, Accepted: 21 November 2012.

A labeling of type $(1,1,0)$ is a bijection from the set $\{1,2, \ldots, p+q\}$ to the vertices and edges of a graph G.

The weight of a face under a labeling is the sum of labels (if present) carried by that face and the edges and vertices on its boundary.

A labeling of a plane graph G is called d-antimagic if for every positive integer s the set of s-sided face weights is $W_{s}=\left\{a_{s}, a_{s}+d, a_{s}+2 d, \ldots, a_{s}+\left(r_{s}-1\right) d\right\}$ for some integers a_{s} and $d \geq 0$, where r_{s} is the number of s-sided faces. We allow different sets W_{s} for different s.

If $d=0$ then Ko-Wei Lih in [16] called such labeling magic. Ko-Wei Lih [16] described magic (0 -antimagic) labelings of type $(1,1,0)$ for the wheels, the friendship graphs and the prisms. The magic labelings of type $(1,1,1)$ for the grid graphs and the honeycomb are given in [2] and [3], respectively.

The concept of the d-antimagic labeling of the plane graphs was defined in [10], where it was also proved that the prism D_{n} has d-antimagic labelings of type $(1,1,1)$ for $d \in\{2,3,4,6\}$ and $n \equiv 3(\bmod 4)$. The d-antimagic labelings of type $(1,1,1)$ for the hexagonal planar maps, the generalized Petersen graph $P(n, 2)$ and the grids can be found in [5], [7] and [8], respectively. Lin et al. in [17] showed that prism $D_{n}, n \geq 3$, admits d-antimagic labelings of type $(1,1,1)$ for $d \in\{2,4,5,6\}$. The d-antimagic labelings of type $(1,1,1)$ for D_{n} and for several $d \geq 7$ are described in [19].

A d-antimagic labeling is called super if the smallest possible labels appear on the vertices. The super d-antimagic labelings of type $(1,1,1)$ for antiprisms and for $d \in\{0,1,2,3,4,5,6\}$ are described in [4], and for disjoint union of prisms and for $d \in\{0,1,2,3,4,5\}$ are given in [1]. The existence of super d-antimagic labelings of type $(1,1,1)$ for disconnected plane graphs and for plane graphs containing a special Hamilton path is examined in [6] and [12], respectively.

In this paper we examine the existence of super d-antimagic labelings of type $(1,1,0)$ for several families of plane graphs. To label the vertices and edges of plane graphs we will use an edge-antimagic vertex labeling and an edge-antimagic total labeling.

Simanjuntak, Bertault and Miller in [18] define an (a, d)-edge-antimagic vertex labeling of a (p, q)-graph $G=(V, E)$ as an injective mapping $\beta: V(G) \rightarrow\{1,2, \ldots, p\}$ such that the set of edge-weights $\{\beta(u)+\beta(v): u v \in E(G)\}$ is $\{a, a+d, a+2 d, \ldots, a+(q-1) d\}$ for two non-negative integers a and d. A bijection $\alpha: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ is called an (a, d) -edge-antimagic total labeling of G if the edge-weights $\{\alpha(u)+\alpha(u v)+\alpha(v): u v \in E(G)\}$ form an arithmetic sequence starting at a and having a common difference d, where $a>0$ and $d \geq 0$ are two fixed integers. An (a, d)-edge-antimagic total labeling is a natural extension of a notion of magic valuation defined by Kotzig and Rosa in [15].

An (a, d)-edge-antimagic total labeling is called super if the smallest possible labels appear on the vertices. A super (a, d)-edge-antimagic total labeling is a natural extension of a notion of super edge-magic labeling defined by Enomoto et al. in [13].

More comprehensive information on magic valuations and (a, d)-edge-antimagic total labelings can be found in [11], [14] and [20], respectively.

2. Edge-antimagic labelings of paths

Let P_{n} be the path on n vertices. It is known (see [9]), that P_{n} is super (a, d)-edge-antimagic total if and only if $d \leq 3$. We denote the vertices of P_{n} by $v_{1}, v_{2}, \ldots, v_{n}$ and describe these labelings $\alpha_{d}^{n}: V\left(P_{n}\right) \cup E\left(P_{n}\right) \rightarrow\{1,2, \ldots, 2 n-1\}$ in the following way.
a) The super $\left(2 n+\left\lceil\frac{n}{2}\right\rceil+1,0\right)$-edge-antimagic total labeling α_{0}^{n} of P_{n} :

$$
\begin{aligned}
& \alpha_{0}^{n}\left(v_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { for } \quad i \equiv 1 \quad(\bmod 2) \text { and } 1 \leq i \leq n, \\
\left\lceil\frac{n}{2}\right\rceil+\frac{i}{2} & \text { for } \quad i \equiv 0 \quad(\bmod 2) \text { and } 2 \leq i \leq n,\end{cases} \\
& \alpha_{0}^{n}\left(v_{i} v_{i+1}\right)=2 n-i \quad \text { for } \quad i=1,2, \ldots, n-1 \text {. }
\end{aligned}
$$

The common weight for all edges of P_{n} is

$$
w_{\alpha_{0}^{n}}\left(v_{i} v_{i+1}\right)=2 n+\left\lceil\frac{n}{2}\right\rceil+1=C_{\alpha, 0}^{n}, \quad i=1,2, \ldots, n-1 .
$$

b) The super $(2 n+2,1)$-edge-antimagic total labeling α_{1}^{n} of P_{n} :

$$
\begin{aligned}
\alpha_{1}^{n}\left(v_{i}\right) & =i & & \text { for } \quad i=1,2, \ldots, n, \\
\alpha_{1}^{n}\left(v_{i} v_{i+1}\right) & =2 n-i & & \text { for } \quad i=1,2, \ldots, n-1 .
\end{aligned}
$$

The set of edge-weights of P_{n} consists of the consecutive integers

$$
\left\{w_{\alpha_{1}^{n}}\left(v_{i} v_{i+1}\right)=2 n+1+i=C_{\alpha, 1}^{n}+i: i=1,2, \ldots, n-1\right\} .
$$

c) The super $\left(n+\left\lceil\frac{n}{2}\right\rceil+3,2\right)$-edge-antimagic total labeling α_{2}^{n} of P_{n} :

$$
\begin{aligned}
& \alpha_{2}^{n}\left(v_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { for } i \equiv 1 \quad(\bmod 2), \\
\left\lceil\frac{n}{2}\right\rceil+\frac{i}{2} & \text { for } i \equiv 0 \quad(\bmod 2),\end{cases} \\
& \alpha_{2}^{n}\left(v_{i} v_{i+1}\right)=n+i \quad \text { for } \quad i=1,2, \ldots, n-1 \text {. }
\end{aligned}
$$

The edge-weights of P_{n} constitute the arithmetic progression of difference 2 :

$$
\left\{w_{\alpha_{2}^{n}}\left(v_{i} v_{i+1}\right)=n+\left\lceil\frac{n}{2}\right\rceil+1+2 i=C_{\alpha, 2}^{n}+2 i: i=1,2, \ldots, n-1\right\} .
$$

d) The super $(n+4,3)$-edge-antimagic total labeling α_{3}^{n} of P_{n} :

$$
\begin{array}{rlrl}
\alpha_{3}^{n}\left(v_{i}\right) & =i & \text { for } \quad i=1,2, \ldots, n \\
\alpha_{3}^{n}\left(v_{i} v_{i+1}\right) & =n+i & & \text { for } \quad i=1,2, \ldots, n-1 .
\end{array}
$$

The edge-weights of P_{n} constitute the arithmetic progression of difference 3:

$$
\left\{w_{\alpha_{3}^{n}}\left(v_{i} v_{i+1}\right)=n+1+3 i=C_{\alpha, 3}^{n}+3 i: i=1,2, \ldots, n-1\right\} .
$$

Now, we define the super (a, d)-edge-antimagic total labelings of P_{n} also for negative differences d in the following way

$$
\begin{aligned}
\alpha_{-k}^{n}\left(v_{i}\right) & =\alpha_{k}^{n}\left(v_{n+1-i}\right) & & \text { for } \quad i=1,2, \ldots, n, \\
\alpha_{-k}^{n}\left(v_{i} v_{i+1}\right) & =\alpha_{k}^{n}\left(v_{n+1-i} v_{n-i}\right) & & \text { for } \quad i=1,2, \ldots, n-1,
\end{aligned}
$$

where $k=0,1,2,3$.
In this paper we will use also (a, d)-edge-antimagic vertex labelings of P_{n} for two differences $d=1$ and $d=2$. These labelings $\beta_{d}^{n}: V\left(P_{n}\right) \rightarrow\{1,2, \ldots, n\}$ we define in the following way:
e) The $\left(\left\lceil\frac{n}{2}\right\rceil+2,1\right)$-edge-antimagic vertex labeling β_{1}^{n} of P_{n} :

$$
\beta_{1}^{n}\left(v_{i}\right)=\left\{\begin{array}{lll}
\frac{i+1}{2} & \text { for } \quad i \equiv 1 \quad(\bmod 2) \\
\left\lceil\frac{n}{2}\right\rceil+\frac{i}{2} & \text { for } \quad i \equiv 0 \quad(\bmod 2)
\end{array}\right.
$$

The set of edge-weights of P_{n} consists of the consecutive integers

$$
\left\{w_{\beta_{1}^{n}}\left(v_{i} v_{i+1}\right)=\left\lceil\frac{n}{2}\right\rceil+1+i=C_{\beta, 1}^{n}+i: i=1,2, \ldots, n-1\right\} .
$$

f) The (3, 2)-edge-antimagic vertex labeling β_{2}^{n} of P_{n} :

$$
\beta_{2}^{n}\left(v_{i}\right)=i \quad \text { for } \quad i=1,2, \ldots, n .
$$

The edge-weights of P_{n} constitute the arithmetic progression of difference 2 :

$$
\left\{w_{\beta_{2}^{n}}\left(v_{i} v_{i+1}\right)=1+2 i=C_{\beta, 2}^{n}+2 i: i=1,2, \ldots, n-1\right\} .
$$

The (a, d)-edge-antimagic vertex labelings of P_{n} for d negative we define as follows

$$
\beta_{-l}^{n}\left(v_{i}\right)=\beta_{l}^{n}\left(v_{n+1-i}\right) \quad \text { for } \quad i=1,2, \ldots, n,
$$

where $l=1,2$.

3. Partitions with determined differences

For construction of vertex and edge labelings of plane graphs we will use the partitions of a set of integers with determined differences.

Let n, k, d and i be positive integers. We will consider the partition $\mathcal{P}_{k, d}^{n}$ of the set $\{1,2, \ldots$, $k n\}$ into $n, n \geq 2, k$-tuples such that the difference between the sum of the numbers in the $(i+1)$ th k-tuple and the sum of the numbers in the i th k-tuple is always equal to the constant d, where $i=1,2, \ldots, n-1$. Thus they form an arithmetic sequence with the difference d. By the symbol $\mathcal{P}_{k, d}(i)$ we denote the i th k-tuple in the partition with the difference d, where $i=1,2, \ldots, n$.

Let $\sum \mathcal{P}_{k, d}^{n}(i)$ be the sum of the numbers in $\mathcal{P}_{k, d}^{n}(i)$. Evidently $\sum \mathcal{P}_{k, d}^{n}(i+1)-\sum \mathcal{P}_{k, d}^{n}(i)=d$. It is obvious that if there exists a partition of the set $\{1,2, \ldots, k n\}$ with the difference d, there also
exists a partition with the difference $-d$. By the notation $\mathcal{P}_{k, d}^{n}(i) \oplus c$ we mean that we add the constant c to every number in $\mathcal{P}_{k, d}^{n}(i)$.

If $k=1$ then only the following partition of the set $\{1,2, \ldots, n\}$ is possible

$$
\mathcal{P}_{1,1}^{n}(i)=\{i\} \quad \text { for } \quad i=1,2, \ldots, n .
$$

If $k=2$ then we have several partitions of the set $\{1,2, \ldots, 2 n\}$. Let us define the partitions into 2-tuples in the following way:

$$
\begin{array}{rlrl}
\mathcal{P}_{2,0}^{n}(i) & =\{i, 2 n+1-i\}, & & \\
\sum \mathcal{P}_{2,0}^{n}(i) & =2 n+1, & \text { for } \quad i=1,2, \ldots, n . \\
\mathcal{P}_{2,2}^{n}(i) & =\{i, n+i\}, & & \\
\sum \mathcal{P}_{2,2}^{n}(i) & =n+2 i, & \text { for } \quad i=1,2, \ldots, n . \\
\mathcal{P}_{2,4}^{n}(i) & =\{2 i-1,2 i\}, & & \\
\sum \mathcal{P}_{2,4}^{n}(i) & =4 i-1, & \text { for } \quad i=1,2, \ldots, n .
\end{array}
$$

Moreover, for $3 \leq n \equiv 1(\bmod 2)$

$$
\begin{aligned}
& \mathcal{P}_{2,1}^{n}(i)= \begin{cases}\left\{\frac{n+1}{2}+\frac{i-1}{2}, n+1+\frac{i-1}{2}\right\} & \text { for } i \equiv 1 \quad(\bmod 2), \\
\left\{\frac{i}{2}, n+\frac{n+1}{2}+\frac{i}{2}\right\} & \text { for } i \equiv 0 \quad(\bmod 2),\end{cases} \\
& \sum \mathcal{P}_{2,1}^{n}(i)=n+\frac{n+1}{2}+i, \quad \text { for } \quad i=1,2, \ldots, n .
\end{aligned}
$$

Note that we are also able to obtain the partitions into 2-tuples $\mathcal{P}_{2,0}^{n}(i)$ and $\mathcal{P}_{2,2}^{n}(i)$ as $\mathcal{P}_{1, s}^{n}(i) \cup$ $\left(\mathcal{P}_{1, t}^{n}(i) \oplus n\right)$, where $s, t= \pm 1$. We can use this idea to construct the other partitions. More precisely,

$$
\mathcal{P}_{k, d}^{n}(i)=\mathcal{P}_{l, s}^{n}(i) \cup\left(\mathcal{P}_{m, t}^{n}(i) \oplus l n\right)
$$

where $k=l+m$.
For example, we are able to obtain $\mathcal{P}_{3, d}^{n}(i)$ from the partitions $\mathcal{P}_{1, s}^{n}(i), s= \pm 1$ and $\mathcal{P}_{2, t}^{n}(i)$, $t=0, \pm 2, \pm 4$ and also $t= \pm 1$ for n odd. It means, $\mathcal{P}_{3, d}^{n}$ exists for $d \xlongequal[=]{=} \pm 1, \pm 3, \pm 5$ and if $n \equiv 1$ $(\bmod 2)$ also for $d=0, \pm 2$. Moreover, we are able to construct $\mathcal{P}_{3,9}^{n}$ in the following way

$$
\begin{aligned}
\mathcal{P}_{3,9}^{n}(i) & =\{3(i-1)+1,3(i-1)+2,3(i-1)+3\}, \\
\sum \mathcal{P}_{3,9}^{n}(i) & =9 i-3, \quad \text { for } \quad i=1,2, \ldots, n
\end{aligned}
$$

Thus $\mathcal{P}_{3, d}^{n}$ exists for $d= \pm 1, \pm 3, \pm 5, \pm 9$ and if $n \equiv 1(\bmod 2)$ also for $d=0, \pm 2$.
For the partition into 4 -tuples we can use the following fact

$$
\mathcal{P}_{4, d}^{n}(i)=\mathcal{P}_{l, s}^{n}(i) \cup\left(\mathcal{P}_{m, t}^{n}(i) \oplus l n\right),
$$

where $l=3, m=1$ or $l=2, m=2$. Also

$$
\begin{aligned}
\mathcal{P}_{4,16}^{n}(i) & =\{4(i-1)+1,4(i-1)+2,4(i-1)+3,4(i-1)+4\} \\
\sum \mathcal{P}_{4,16}^{n}(i) & =16 i-6, \quad \text { for } \quad i=1,2, \ldots, n
\end{aligned}
$$

Thus $\mathcal{P}_{4, d}^{n}$ exists for $d=0, \pm 2, \pm 4, \pm 6, \pm 8, \pm 10, \pm 16$ and if $n \equiv 1(\bmod 2)$ also for $d=$ $\pm 1, \pm 3, \pm 5$.

Let us note that each of the defined partition $\mathcal{P}_{k, d}^{n}$ has the property that

$$
\sum \mathcal{P}_{k, d}^{n}(i)=C_{k, d}^{n}+d i
$$

where $C_{k, d}^{n}$ is a constant depending on the parameters k and d.

4. d-antimagic labelings for certain families of plane graphs

In this section, we shall use the edge-antimagic labelings of paths P_{n} and the partitions of the set $\{1,2, \ldots, k n\}$ with determined differences described in the previous two sections to examine the existence of a super d-antimagic labeling for several families of plane graphs.

The friendship graph F_{n} is a set of n triangles having a common central vertex, say v, and otherwise disjoint. The friendship graph F_{n} has $2 n$ vertices of degree 2 , say v_{i}, u_{i} for $i=1,2, \ldots, n$, and $3 n$ edges, say $v_{i} v, u_{i} v, v_{i} u_{i}$ for $i=1,2, \ldots, n$. Let us define the 3 -sided face $f_{i}, i=1,2, \ldots, n$, as the face bounded by the edges $v v_{i}, v_{i} u_{i}$ and $u_{i} v$ and let f be the external unbounded face.

Theorem 4.1. The friendship graph $F_{n}, n \geq 2$, has a super d-antimagic labeling of type $(1,1,0)$ for $d \in\{1,3,5,7,9,11,13\}$.
Moreover, if $n \equiv 1(\bmod 2)$ then the graph F_{n} also admits a super d-antimagic labeling of type $(1,1,0)$ for $d \in\{0,2,4,6,8,10\}$.

Proof. We define the bijection $g_{1}: V\left(F_{n}\right) \cup E\left(F_{n}\right) \rightarrow\{1,2, \ldots, 5 n+1\}$ as follows:

$$
\begin{array}{ll}
\left\{g_{1}\left(v_{i}\right), g_{1}\left(u_{i}\right)\right\}=\mathcal{P}_{2, k}^{n}(i), & i=1,2, \ldots, n, \\
g_{1}(v)=2 n+1, & i=1,2, \ldots, n, \\
\left\{g_{1}\left(v_{i} v\right), g_{1}\left(v_{i} u_{i}\right), g_{1}\left(u_{i} v\right)\right\}=\mathcal{P}_{3, l}^{n}(i) \oplus(2 n+1) &
\end{array}
$$

where $k=0, \pm 2, \pm 4$ or for $n \equiv 1(\bmod 2)$ also $k= \pm 1$, and $l= \pm 1, \pm 3, \pm 5, \pm 9$ or for $n \equiv 1$ $(\bmod 2)$ also $l=0, \pm 2$.

It is not difficult to check that the vertices are labeled by the smallest possible numbers $1,2, \ldots$, $2 n+1$. Moreover, for the weight of the face $f_{i}, i=1,2, \ldots, n$, we obtain

$$
\begin{aligned}
w_{g_{1}}\left(f_{i}\right) & =\left(g_{1}\left(v_{i}\right)+g_{1}\left(u_{i}\right)\right)+g_{1}(v)+\left(g_{1}\left(v_{i} v\right)+g_{1}\left(v_{i} u_{i}\right)+g_{1}\left(u_{i} v\right)\right) \\
& =\sum \mathcal{P}_{2, k}^{n}(i)+(2 n+1)+\sum\left(\mathcal{P}_{3, l}^{n}(i) \oplus(2 n+1)\right) \\
& =\left(C_{2, k}^{n}+k i\right)+(2 n+1)+\left(C_{3, l}^{n}+l i+3(2 n+1)\right) \\
& =C_{2, k}^{n}+C_{3, l}^{n}+4(2 n+1)+(k+l) i .
\end{aligned}
$$

As $k=0, \pm 2, \pm 4$ or for $n \equiv 1(\bmod 2)$ also $k= \pm 1$, and $l= \pm 1, \pm 3, \pm 5, \pm 9$ or for $n \equiv 1$ $(\bmod 2)$ also $l=0, \pm 2$, we obtain that $k+l \in\{1,3,5,7,9,11,13\}$ and for n odd we also get $k+l \in\{0,2,4,6,8,10\}$. Thus under the labeling g_{1} the weights of the 3 -sided faces form an arithmetic sequence with the desired difference, which completes the proof.

If we replace every edge $v_{i} u_{i}, i=1,2, \ldots, n$, of the friendship graph F_{n} by a path of length two with vertices v_{i}, w_{i}, u_{i}, then we obtain a graph, say B_{n}, with the vertex set $V\left(B_{n}\right)=\left\{v_{i}, w_{i}, u_{i}, v\right.$: $i=1,2, \ldots, n\}$ and the edge set $E\left(B_{n}\right)=\left\{v_{i} v, u_{i} v, v_{i} w_{i}, w_{i} u_{i}: i=1,2, \ldots, n\right\}$. Let us define the 4 -sided face $f_{i}, i=1,2, \ldots, n$, as the face bounded by the edges $v v_{i}, v_{i} w_{i}, w_{i} u_{i}$ and $u_{i} v$ and let f be the external unbounded face.

Theorem 4.2. The graph $B_{n}, n \geq 2$, has a super d-antimagic labeling of type $(1,1,0)$ for $d \in$ $\{1,3,5, \ldots, 21,25\}$.
Moreover, if $n \equiv 1(\bmod 2)$ then the graph B_{n} also admits a super d-antimagic labeling of type $(1,1,0)$ for $d \in\{0,2,4, \ldots, 18\}$.

Proof. We define the bijection $g_{2}: V\left(B_{n}\right) \cup E\left(B_{n}\right) \rightarrow\{1,2, \ldots, 7 n+1\}$ in the following way:

$$
\begin{array}{ll}
\left\{g_{2}\left(v_{i}\right), g_{2}\left(w_{i}\right), g_{2}\left(u_{i}\right)\right\}=\mathcal{P}_{3, k}^{n}(i), & i=1,2, \ldots, n, \\
g_{2}(v)=3 n+1, & i=1,2, \ldots, n \\
\left\{g_{2}\left(v_{i} v\right), g_{2}\left(v_{i} w_{i}\right), g_{2}\left(w_{i} u_{i}\right), g_{2}\left(u_{i} v\right)\right\}=\mathcal{P}_{4, l}^{n}(i) \oplus(3 n+1), &
\end{array}
$$

It is not difficult to see that the vertices are labeled by the numbers $1,2, \ldots, 3 n+1$. Moreover, for the weight of the face $f_{i}, i=1,2, \ldots, n$, we have

$$
\begin{aligned}
w_{g_{2}}\left(f_{i}\right)= & \left(g_{2}\left(v_{i}\right)+g_{2}\left(w_{i}\right)+g_{2}\left(u_{i}\right)\right)+g_{2}(v) \\
& +\left(g_{2}\left(v_{i} v\right)+g_{2}\left(v_{i} w_{i}\right)+g_{2}\left(w_{i} u_{i}\right)+g_{2}\left(u_{i} v\right)\right) \\
= & \sum \mathcal{P}_{3, k}^{n}(i)+(3 n+1)+\sum\left(\mathcal{P}_{4, l}^{n}(i) \oplus(3 n+1)\right) \\
= & \left(C_{3, k}^{n}+k i\right)+(3 n+1)+\left(C_{4, l}^{n}+l i+4(3 n+1)\right) \\
= & C_{3, k}^{n}+C_{4, l}^{n}+5(3 n+1)+(k+l) i,
\end{aligned}
$$

where $k= \pm 1, \pm 3, \pm 5, \pm 9$ or for $n \equiv 1(\bmod 2)$ also $k=0, \pm 2$, and $l=0, \pm 2, \pm 4, \pm 6, \pm 8$, $\pm 10, \pm 16$ or for $n \equiv 1(\bmod 2)$ also $l= \pm 1, \pm 3, \pm 5$. It means that g_{2} is a super d-antimagic labeling of type $(1,1,0)$ of B_{n}, for $d=1,3,5, \ldots, 21,25$ and if $n \equiv 1(\bmod 2)$ then $d=$ $0,2,4, \ldots, 18$.

A triangular snake E_{n} is a triangular cactus whose block-cutpoint graph is a path, i.e. E_{n} is obtained from a path $v_{1}, v_{2}, \ldots, v_{n+1}$ by joining v_{i} and v_{i+1} to a new vertex u_{i}, for $i=1,2, \ldots, n$. Let f_{i} be the 3 -sided face, $i=1,2, \ldots, n$, bounded by the edges $v_{i} u_{i}, u_{i} v_{i+1}$ and $v_{i} v_{i+1}$. We denote the external unbounded face by the symbol f.

Theorem 4.3. The graph $E_{n}, n \geq 2$, has a super d-antimagic labeling of type $(1,1,0)$ for $d \in$ $\{0,1,2, \ldots, 12\}$.

Proof. Define the bijection $g_{3}: V\left(E_{n}\right) \cup E\left(E_{n}\right) \rightarrow\{1,2, \ldots, 5 n+1\}$ as follows:

$$
\begin{array}{ll}
g_{3}\left(v_{i}\right)=\alpha_{k}^{n+1}\left(v_{i}\right), & i=1,2, \ldots, n+1, \\
g_{3}\left(u_{i}\right)=\alpha_{k}^{n+1}\left(v_{i} v_{i+1}\right), & i=1,2, \ldots, n, \\
\left\{g_{3}\left(v_{i} u_{i}\right), g_{3}\left(u_{i} v_{i+1}\right), g_{3}\left(v_{i+1} v_{i}\right)\right\}=\mathcal{P}_{3, l}^{n}(i) \oplus(2 n+1), & i=1,2, \ldots, n .
\end{array}
$$

The labeling g_{3} assigns the numbers $1,2, \ldots, 2 n+1$ to the vertices of the graph E_{n}. For the weight of the face $f_{i}, i=1,2, \ldots, n$, we have

$$
\begin{aligned}
w_{g_{3}}\left(f_{i}\right) & =\left(g_{3}\left(v_{i}\right)+g_{3}\left(u_{i}\right)+g_{3}\left(v_{i+1}\right)\right)+\left(g_{3}\left(v_{i} u_{i}\right)+g_{3}\left(u_{i} v_{i+1}\right)+g_{3}\left(v_{i+1} v_{i}\right)\right) \\
& =w_{\alpha_{k}^{n+1}}\left(v_{i} v_{i+1}\right)+\sum \mathcal{P}_{3, l}^{n}(i) \oplus(2 n+1) \\
& =\left(C_{\alpha, k}^{n+1}+k i\right)+\left(C_{3, l}^{n}+l i+3(2 n+1)\right) \\
& =C_{\alpha, k}^{n+1}+C_{3, l}^{n}+3(2 n+1)+(k+l) i
\end{aligned}
$$

where $k=0, \pm 1, \pm 2, \pm 3$ and $l= \pm 1, \pm 3, \pm 5, \pm 9$, moreover for $n \equiv 1(\bmod 2)$ also $l=0, \pm 2$. Analogously as in the proof of the previous theorem we obtain that for $d \in\{0,1,2, \ldots, 12\}$ the bijection g_{3} is a super d-antimagic labeling of type $(1,1,0)$ of the graph E_{n}.

If we replace every edge $v_{i} v_{i+1}, i=1,2, \ldots, n$, of the triangular snake E_{n} by a path of length two with vertices v_{i}, w_{i}, v_{i+1}, then we obtain a graph, say G_{n}, with the vertex set $V\left(G_{n}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n+1}, u_{1}, u_{2}, \ldots, u_{n}, w_{1}, w_{2}, \ldots w_{n}\right\}$ and the edge set $E\left(G_{n}\right)=\left\{v_{i} u_{i}, u_{i} v_{i+1}, v_{i} w_{i}\right.$, $\left.w_{i} v_{i+1}: i=1,2, \ldots, n\right\}$. Let us define the 4 -sided face $f_{i}, i=1,2, \ldots, n$, as the face bounded by the edges $v_{i} u_{i}, u_{i} v_{i+1}, v_{i} w_{i}$ and $w_{i} v_{i+1}$ and let f be the external unbounded face.

Theorem 4.4. The graph $G_{n}, n \geq 2$, has a super d-antimagic labeling of type $(1,1,0)$ for $d \in$ $\{0,1,2, \ldots, 22\}$.

Proof. Define the bijection $g_{4}: V\left(G_{n}\right) \cup E\left(G_{n}\right) \rightarrow\{1,2, \ldots, 7 n+1\}$ in the following way:

$$
\begin{array}{ll}
g_{4}\left(v_{i}\right)=\beta_{k}^{n+1}\left(v_{i}\right), & i=1,2, \ldots, n+1, \\
\left\{g_{4}\left(u_{i}\right), g_{4}\left(w_{i}\right)\right\}=\mathcal{P}_{2, l}^{n}(i) \oplus(n+1), & i=1,2, \ldots, n, \\
\left\{g_{4}\left(v_{i} u_{i}\right), g_{4}\left(u_{i} v_{i+1}\right), g_{4}\left(v_{i} w_{i}\right), g_{4}\left(w_{i} v_{i+1}\right)\right\} & \\
\quad=\mathcal{P}_{4, m}^{n}(i) \oplus(3 n+1), & i=1,2, \ldots, n .
\end{array}
$$

It is easy to verify that the labeling g_{4} assigns integers $1,2, \ldots, 3 n+1$ to the vertices. By direct computation we obtain that the weight of the face $f_{i}, i=1,2, \ldots, n$, admits a value

$$
\begin{aligned}
w_{g_{4}}\left(f_{i}\right)= & \left(g_{4}\left(v_{i}\right)+g_{4}\left(v_{i+1}\right)\right)+\left(g_{4}\left(u_{i}\right)+g_{4}\left(w_{i}\right)\right) \\
& +\left(g_{4}\left(v_{i} u_{i}\right)+g_{4}\left(u_{i} v_{i+1}\right)+g_{4}\left(v_{i} w_{i}\right)+g_{4}\left(w_{i} v_{i+1}\right)\right) \\
= & w_{\beta_{k}^{n+1}}\left(v_{i} v_{i+1}\right)+\sum \mathcal{P}_{2, l}^{n}(i) \oplus(n+1)+\sum \mathcal{P}_{4, m}^{n}(i) \oplus(3 n+1) \\
= & \left(C_{\beta, k}^{n+1}+k i\right)+\left(C_{2, l}^{n}+l i+2(n+1)\right)+\left(C_{4, m}^{n}+m i+4(3 n+1)\right) \\
= & C_{\beta, k}^{n+1}+C_{2, l}^{n}+C_{4, m}^{n}+14 n+6+(k+l+m) i,
\end{aligned}
$$

where $k= \pm 1, \pm 2, l=0, \pm 2, \pm 4$ and $m=0, \pm 2, \pm 4, \pm 6, \pm 8, \pm 10, \pm 16$. After some manipulations we obtain that there exists a super d-antimagic labeling of the graph G_{n} for every difference $d \in\{0,1,2, \ldots, 22\}$.

Let ladder L_{n} be a Cartesian product $L_{n} \simeq P_{n} \times P_{2}$ of a path on n vertices with a path on two vertices. Let $V\left(L_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertex set and $E\left(L_{n}\right)=$ $\left\{v_{i} v_{i+1}, u_{i} u_{i+1}: i=1,2, \ldots, n-1\right\} \cup\left\{v_{i} u_{i}: i=1,2, \ldots, n\right\}$ be the edge set of ladder. Let us define the 4 -sided face $f_{i}, i=1,2, \ldots, n$, as the face bounded by the edges $v_{i} v_{i+1}, v_{i+1} u_{i+1}$, $u_{i} u_{i+1}$ and $v_{i} u_{i}$ and let f be the external unbounded face.

Theorem 4.5. The ladder $L_{n} \simeq P_{n} \times P_{2}, n \geq 3$, admits a super d-antimagic labeling of type $(1,1,0)$ for $d \in\{0,1,2, \ldots, 10\}$.

Proof. Construct the bijective function $g_{5}: V\left(L_{n}\right) \cup E\left(L_{n}\right) \rightarrow\{1,2, \ldots, 5 n-2\}$ as follows:

$$
\begin{array}{ll}
g_{5}\left(v_{i}\right)=\beta_{k}^{n}\left(v_{i}\right), & i=1,2, \ldots, n, \\
g_{5}\left(u_{i}\right)=\beta_{l}^{n}\left(v_{i}\right)+n, & i=1,2, \ldots, n, \\
g_{5}\left(v_{i} u_{i}\right)=\beta_{m}^{n}\left(v_{i}\right)+2 n, & i=1,2, \ldots, n, \\
\left\{g_{5}\left(v_{i} v_{i+1}\right), g_{5}\left(u_{i} u_{i+1}\right)\right\}=\mathcal{P}_{2, t}^{n-1}(i) \oplus(3 n), & i=1,2, \ldots, n-1 .
\end{array}
$$

It is a routine procedure to verify that the vertices are labeled by the smallest possible numbers $1,2, \ldots, 2 n$. Moreover, for the weight of the face $f_{i}, i=1,2, \ldots, n-1$, we obtain

$$
\begin{aligned}
w_{g_{5}}\left(f_{i}\right)= & \left(g_{5}\left(v_{i}\right)+g_{5}\left(v_{i+1}\right)\right)+\left(g_{5}\left(u_{i}\right)+g_{5}\left(u_{i+1}\right)\right)+\left(g_{5}\left(v_{i} u_{i}\right)+g_{5}\left(v_{i+1} u_{i+1}\right)\right) \\
& +\left(g_{5}\left(v_{i} v_{i+1}\right)+g_{5}\left(u_{i} u_{i+1}\right)\right) \\
= & w_{\beta_{k}^{n}}\left(v_{i} v_{i+1}\right)+\left(w_{\beta_{l}^{n}}\left(v_{i} v_{i+1}\right)+2 n\right)+\left(w_{\beta_{m}^{n}}\left(v_{i} v_{i+1}\right)+4 n\right) \\
& +\sum \mathcal{P}_{2, t}^{n-1}(i) \oplus(3 n) \\
= & \left(C_{\beta, k}^{n}+k i\right)+\left(C_{\beta, l}^{n}+l i+2 n\right)+\left(C_{\beta, m}^{n}+m i+4 n\right) \\
& +\left(C_{2, t}^{n-1}+t i+6 n\right) \\
= & C_{\beta, k}^{n}+C_{\beta, l}^{n}+C_{\beta, m}^{n}+C_{2, t}^{n-1}+12 n+(k+l+m+t) i .
\end{aligned}
$$

As $k= \pm 1, \pm 2, l= \pm 1, \pm 2, m= \pm 1, \pm 2$ and $t=0, \pm 2, \pm 4$ we obtain that $k+l+m+t \in$ $\{0,1,2,3, \ldots, 10\}$. This completes the proof.

Another variation of a ladder graph is specified as follows. A ladder $\mathbb{L}_{n}, n \geq 2$, is a graph obtained by completing the ladder $L_{n} \simeq P_{n} \times P_{2}$ by $n-1$ edges such that $V\left(\mathbb{L}_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{2 n}\right\}$ is the vertex set and $E\left(\mathbb{L}_{n}\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{2 n-1} v_{2 n}, v_{1} v_{3}, v_{2} v_{4}, \ldots, v_{2 n-2} v_{2 n}\right\}$ is the edge set.

Theorem 4.6. The graph $\mathbb{L}_{n}, n \geq 2$, admits a super d-antimagic labeling of type $(1,1,0)$ for $d \in\{0,1,2, \ldots, 6\}$.

Proof. Construct the bijective function $g_{6}: V\left(\mathbb{L}_{n}\right) \cup E\left(\mathbb{L}_{n}\right) \rightarrow\{1,2, \ldots, 6 n-1\}$ in the following way:

$$
\begin{array}{rlrl}
g_{6}\left(v_{i}\right)=i, & & i=1,2, \ldots, 2 n, \\
g_{6}\left(v_{i} v_{i+1}\right) & =\beta_{k}^{2 n-1}\left(v_{i}\right)+2 n, & i & =1,2, \ldots, 2 n-1, \\
g_{6}\left(v_{i} v_{i+2}\right) & =\mathcal{P}_{1, l}^{2 n-2}(i) \oplus(4 n-1), & & i=1,2, \ldots, 2 n-2 .
\end{array}
$$

The reader can easily verify that the labeling g_{6} assigns integers $1,2, \ldots, 2 n$ to the vertices and a weight of the face $f_{i}, i=1,2, \ldots, 2 n-2$, is

$$
\begin{aligned}
w_{g_{6}}\left(f_{i}\right)= & \left(g_{6}\left(v_{i}\right)+g_{6}\left(v_{i+1}\right)+g_{6}\left(v_{i+2}\right)\right)+\left(g_{6}\left(v_{i} v_{i+1}\right)+g_{6}\left(v_{i+1} v_{i+2}\right)\right) \\
& +g_{6}\left(v_{i} v_{i+2}\right) \\
= & (i+(i+1)+(i+2))+\left(w_{\beta_{k}}^{2 n-1}\left(v_{i} v_{i+1}\right)+4 n\right) \\
& +\sum \mathcal{P}_{1, l}^{2 n-2}(i) \oplus(4 n-1) \\
= & (3+3 i)+\left(C_{\beta, k}^{2 n-1}+k i+4 n\right)+\left(C_{1, l}^{2 n-2}+l i+(4 n-1)\right) \\
= & C_{\beta, k}^{2 n-1}+C_{1, l}^{2 n-2}+8 n+2+(3+k+l) i .
\end{aligned}
$$

Since $k= \pm 1, \pm 2$, and $l= \pm 1$ we are able to show that $3+k+l \in\{0,1,2, \ldots, 6\}$. This implies that the labeling g_{6} is a super d-antimagic labeling of type $(1,1,0)$ for $d \in\{0,1,2, \ldots, 6\}$ of the graph \mathbb{L}_{n}.

If we replace every edge $v_{i} v_{i+1}$ (respectively, every edge $u_{i} u_{i+1}$), $i=1,2, \ldots, n-1$, of the lad$\operatorname{der} L_{n} \simeq P_{n} \times P_{2}$ by a path of length two with vertices v_{i}, w_{i}, v_{i+1} (respectively, $u_{i}, w_{n-1+i}, u_{i+1}$) then we obtain a graph, say H_{n}, with the vertex set $V\left(H_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}, w_{1}\right.$, $\left.w_{2}, \ldots, w_{2 n-2}\right\}$ and the edge set $E\left(H_{n}\right)=\left\{v_{i} w_{i}, w_{i} v_{i+1}, u_{i} w_{n-1+i}, w_{n-1+i} u_{i+1}: i=1,2, \ldots, n-\right.$ $1\} \cup\left\{v_{i} u_{i}: i=1,2, \ldots, n\right\}$.

Let us define the 6 -sided face $f_{i}, i=1,2, \ldots, n-1$, as the face bounded by the edges $v_{i} w_{i}$, $w_{i} v_{i+1}, v_{i+1} u_{i+1}, u_{i+1} w_{n-1+i}, w_{n-1+i} u_{i}, u_{i} v_{i}$ and let f be the external unbounded face.

Theorem 4.7. The graph $H_{n}, n \geq 2$, admits a super d-antimagic labeling of type $(1,1,0)$ for $d \in\{0,1,2, \ldots, 26\}$.

Proof. We define the bijection $g_{7}: V\left(H_{n}\right) \cup E\left(H_{n}\right) \rightarrow\{1,2, \ldots, 9 n-2\}$ in the following way:

$$
\begin{array}{ll}
g_{7}\left(v_{i}\right)=\beta_{k}^{n}\left(v_{i}\right), & i=1,2, \ldots, n, \\
g_{7}\left(u_{i}\right)=\beta_{l}^{n}\left(v_{i}\right), & i=1,2, \ldots, n, \\
\left\{g_{7}\left(w_{i}\right), g_{7}\left(w_{n-1+i}\right)\right\}=\mathcal{P}_{2, m}^{n-1}(i) \oplus(2 n), & i=1,2, \ldots, n-1, \\
g_{7}\left(v_{i} u_{i}\right)=\beta_{t}^{n}\left(v_{i}\right)+4 n-2, & i=1,2, \ldots, n, \\
\left\{g_{7}\left(v_{i} w_{i}\right), g_{7}\left(w_{i} v_{i+1}\right), g_{7}\left(u_{i} w_{n-1+i}\right), g_{7}\left(w_{n-1+i} u_{i+1}\right)\right\} & \\
\quad=\mathcal{P}_{4, s}^{n-1}(i) \oplus(5 n-2), & i=1,2, \ldots, n-1 .
\end{array}
$$

It is easy to see that the vertices of H_{n} are labeled by the smallest possible integers $1,2, \ldots$, $4 n-2$. For the weight of the face $f_{i}, i=1,2, \ldots, n-1$, we get

$$
\begin{aligned}
w_{g_{7}}\left(f_{i}\right)= & \left(g_{7}\left(v_{i}\right)+g_{7}\left(v_{i+1}\right)\right)+\left(g_{7}\left(u_{i}\right)+g_{7}\left(u_{i+1}\right)\right)+\left(g_{7}\left(w_{i}\right)+g_{7}\left(w_{n-1+i}\right)\right) \\
& +\left(g_{7}\left(v_{i} u_{i}\right)+g_{7}\left(v_{i+1} u_{i+1}\right)\right)+\left(g_{7}\left(v_{i} w_{i}\right)+g_{7}\left(w_{i} v_{i+1}\right)+g_{7}\left(u_{i} w_{n-1+i}\right)\right. \\
& \left.+g_{7}\left(w_{n-1+i} u_{i+1}\right)\right) \\
= & w_{\beta_{k}^{n}}\left(v_{i} v_{i+1}\right)+\left(w_{\beta_{l}^{n}}\left(v_{i} v_{i+1}\right)+2 n\right)+\sum \mathcal{P}_{2, m}^{n-1}(i) \oplus(2 n) \\
& +\left(w_{\beta_{t}}^{n}\left(v_{i} v_{i+1}\right)+8 n-4\right)+\sum \mathcal{P}_{4, s}^{n-1}(i) \oplus(5 n-2) \\
= & \left(C_{\beta, k}^{n}+k i\right)+\left(C_{\beta, l}^{n}+l i+2 n\right)+\left(C_{2, m}^{n-1}+m i+2(2 n)\right) \\
& +\left(C_{\beta, t}^{n}+t i+8 n-4\right)+\left(C_{4, s}^{n-1}+s i+4(5 n-2)\right) \\
= & C_{\beta, k}^{n}+C_{\beta, l}^{n}+C_{\beta, t}^{n}+C_{2, m}^{n-1}+C_{4, s}^{n-1}+34 n-12+(k+l+m+t+s) i .
\end{aligned}
$$

Since $k= \pm 1, \pm 2, l= \pm 1, \pm 2, m=0, \pm 2, \pm 4, t= \pm 1, \pm 2$ and $s=0, \pm 2, \pm 4, \pm 6, \pm 8, \pm 10$, ± 16 we get that $k+l+m+t+s \in\{0,1,2, \ldots, 26\}$. Thus g_{7} is the required super d-antimagic labeling of type $(1,1,0)$ of the graph H_{n}. This completes the proof.

5. Concluding Remarks

In the foregoing section we studied the super d-antimagic labelings for the seven families of plane graphs. We have shown that there exist super d-antimagic labelings of type $(1,1,0)$ for these graphs for wide variety of difference d. We conclude with the following open problems.

Problem 1. Find the upper bound for the feasible values of the difference d which makes a super d-antimagic labelings of type $(1,1,0)$ possible for the studied families of plane graphs.

Problem 2. Find other feasible values of the difference d and the corresponding super d-antimagic labelings of type $(1,1,0)$ for the studied families of plane graphs.

Acknowledgement

The work was supported by Slovak VEGA Grant 1/0130/12.
[1] G. Ali, M. Bača, F. Bashir and A. Semaničová-Feňovčíková, On face antimagic labelings of disjoint union of prisms, Utilitas Math. 85 (2011), 97-112.
[2] M. Bača, On magic labelings of grid graphs, Ars Combin. 33 (1992), 295-299.
[3] M. Bača, On magic labelings of honeycomb, Discrete Math. 105 (1992), 305-311.
[4] M. Bača, F. Bashir and A. Semaničová, Face antimagic labelings of antiprisms, Utilitas Math. 84 (2011), 209-224.
[5] M. Bača, E.T. Baskoro, S. Jendrol and M. Miller, Antimagic labelings of hexagonal planar maps, Utilitas Math. 66 (2004), 231-238.
[6] M. Bača, L. Brankovic and A. Semaničová-Feňovčíková, Labelings of plane graphs containing Hamilton path, Acta Math. Sinica - English Series 27 (4) (2011), 701-714.
[7] M. Bača, S. Jendrof, M. Miller and J. Ryan, Antimagic labelings of generalized Petersen graphs that are plane, Ars Combin. 73 (2004), 115-128.
[8] M. Bača, Y. Lin and M. Miller, Antimagic labelings of grids, Utilitas Math. 72 (2007), 65-75.
[9] M. Bača, Y. Lin, F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Utilitas Math. 73 (2007), 117-128.
[10] M. Bača and M. Miller, On d-antimagic labelings of type ($1,1,1$) for prisms, J. Combin. Math. Combin. Comput. 44 (2003), 199-207.
[11] M. Bača and M. Miller, Super Edge-Antimagic Graphs: A Wealth of Problems and Some Solutions, BrownWalker Press, Boca Raton, Florida, 2008.
[12] M. Bača, M. Miller, O. Phanalasy and A. Semaničová-Feňovčíková, Super d-antimagic labelings of disconnected plane graphs, Acta Math. Sinica - English Series 26 (12) (2010), 2283-2294.
[13] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), 105-109.
[14] J. Gallian, A dynamic survey of graph labeling. The Electronic J. Combin. 17 (2010), \#DS6.
[15] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.
[16] Ko-Wei Lih, On magic and consecutive labelings of plane graphs, Utilitas Math. 24 (1983), 165-197.
[17] Y. Lin, Slamin, M. Bača and M. Miller, On d-antimagic labelings of prisms, Ars Combin. 72 (2004), 65-76.
[18] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings. Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms (2000), 179-189.
[19] K.A. Sugeng, M. Miller, Y. Lin and M. Bača, Face antimagic labelings of prisms, Utilitas Math. 71 (2006), 269-286.
[20] W.D. Wallis, Magic Graphs, Birkhäuser, Boston - Basel - Berlin, 2001.

[^0]: Keywords: plane graph, d-antimagic labeling, super d-antimagic labeling Mathematics Subject Classification : 05C78

