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Abstract
In this paper we define extended corona and extended neighborhood corona of two graphs G1

and G2, which are denoted by G1 • G2 and G1 ∗ G2 respectively. We compute their adjacency
spectrum, Laplacian spectrum and signless Laplacian spectrum. As applications, we give methods
to construct infinite families of integral graphs, Laplacian integral graphs and expander graphs
from known ones.
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1. Introduction

Throughout this paper, we consider only simple graphs, i.e, an undirected graph with no loops
and no multiple edges. Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. The adjacency
matrix of G, denoted by A(G), is defined as A(G) = (aij)n×n, where

aij =

{
1, if vivj is an edge in G,
0, otherwise.

The degree of a vertex vi in G, denoted by deg(vi) is the number of vertices that are adja-
cent to vi in G. The Laplacian matrix L(G) of G is defined as L(G) = D(G) − A(G) and
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the signless Laplacian matrix Q(G) of G is given by Q(G) = D(G) + A(G), where D(G) =
diag(deg(v1), . . . , deg(vn)). The adjacency spectrum σ(G), Laplacian spectrum µ(G), and sign-
less Laplacian spectrum γ(G) of a graph G are defined as follows:

σ(G) = (λ1(G), λ2(G), . . . , λn(G)),

µ(G) = (µ1(G), µ2(G), . . . , µn(G)),

γ(G) = (γ1(G), γ2(G), . . . , γn(G)),

where λi(G), µi(G) and γi(G) are the eigenvalues of A(G), L(G) and Q(G), respectively. Also

λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G),

µ1(G) = 0 ≤ µ2(G) ≤ . . . ≤ µn(G),

and

γ1(G) ≥ γ2(G) ≥ . . . ≥ γn(G).

For the properties of spectrum, Laplacian and signless Laplacian spectrum the reader may refer to
[5, 6, 8, 13, 21, 23] and the references therein.

The sum ε(G) :=
∑n

i=1 |λi(G)| is known as the energy of the graph G. The concept of the
energy of a graph was introduced by Gutman [14] and was recently generalized to oriented graphs
as skew energy by Adiga, Balakrishnan and So in [1]. If λi(G) (i = 1, 2, . . . , n) (µi(G), γi(G),
respectively) are all integers, then G is said to be an integral (Laplacian integral, signless Lapla-
cian integral, respectively) graph. The notion of integral graphs was first introduced by Harary
and Schwenk in 1974 [16]. In general, the problem of characterizing integral graphs seems to be
very difficult. More details about integral graphs can be found in [2, 11, 15, 16, 19] and references
therein.

Let G1 and G2 be two graphs on disjoint sets of n1 and n2 vertices, respectively. The corona
G1 ◦ G2 of G1 and G2 is defined as the graph obtained by taking one copy of G1 and n1 copies
of G2, and then joining the ith vertex of G1 to every vertex in the ith copy of G2. The corona of
two graphs was first introduced by Frucht and Harary in [12]. Barik et al. [3] provided a com-
plete description of the spectrum (and the Laplacian spectrum) of G1 ◦ G2 using the spectrum
(and the Laplacian spectrum, respectively) of G1 and G2. More about the spectrum, Laplacian
and signless Laplacian spectrum of corona can be found in [3, 4, 12, 20]. The neighborhood
corona of G1 and G2, denoted by G1 ? G2, is the graph obtained by taking one copy of G1 and n1

copies of G2, and joining every neighbour of the ith vertex of G1 to every vertex in the ith copy
of G2. The neighborhood corona was introduced in [18]. Complete description of the spectrum
(respectively, Laplacian, signless Laplacian spectrum) of neighborhood corona of two graphs are
given in [18, 22].
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Motivated by the works carried out on the spectrum of corona of two graphs, in this paper we
define two new types of corona namely, extended corona and extended neighborhood corona of
two graphs. We compute their adjacency spectrum, Laplacian spectrum and signless Laplacian
spectrum. As applications, using the results on adjacency spectra of extended coronaand extended
neighborhood corona, we give a method to construct infinite families of integral graphs starting
with an integral graph and also using the results on Laplacian spectra of extended corona and
extended neighborhood corona, we give a method to construct new families of expander graphs
from known ones. Moreover, we prove that if G1 is an integral regular graph and G2 is a Laplacian
integral graph, then G1 ∗G2 is a Laplacian integral graph.

2. Preliminaries

In this section, we introduce extended corona and extended neighborhood corona of two graphs.
Also we state a lemma which is useful to prove our main results.

Let G1, G2 be two graphs and V (G1) = {v1, v2, . . . , vn} be the vertex set of G1. We define
extended corona and extended neighborhood corona of two graphs G1 and G2 as follows:

Definition 2.1. The extended neighborhood corona G1 ∗ G2 of two graphs G1 and G2 is a graph
obtained by taking the neighborhood corona G1 ? G2 and joining each vertex of ith copy of G2 to
every vertex of jth copy of G2, provided the vertices vi and vj are adjacent in G1.

Definition 2.2. The extended corona G1 • G2 of two graphs G1 and G2 is a graph obtained by
taking the corona G1 ◦ G2 and joining each vertex of ith copy of G2 to every vertex of jth copy of
G2, provided the vertices vi and vj are adjacent in G1.

Example 2.3.
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Fig.1 Graphs P2 •K1 and P3 ∗K1.

Let A = (aij) be a n × m matrix, B = (bij) be a p × q matrix then the Kronecker product
A⊗B [6] of A and B is the np by mq matrix obtained by replacing each entry aij of A by aijB.

Lemma 2.1. [6] If M, N, P, Q are matrices with M being a non-singular matrix, then∣∣∣∣ M N
P Q

∣∣∣∣ = |M ||Q− PM−1N |.
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3. Spectrum of the extended neighborhood corona

In this section, we determine the adjacency spectrum, Laplacian and signless Laplacian spec-
trum of the extended neighborhood corona of two graphs in some cases.

Theorem 3.1. Let G1 be a graph on n vertices and G2 be a r-regular graph on m vertices. Then
the adjacency spectrum of G = G1 ∗G2 is given by:

a. λi(G2) with multiplicity n, for i = 2, 3, . . . ,m.

b.
(
λi(G1)(m+ 1) + r ±

√
(λi(G1)(m+ 1) + r)2 − 4rλi(G1)

)
/2,

for i = 1, 2, . . . , n.

Proof. With suitable labelling of the vertices of G, the adjacency matrix A(G) can be formulated
as follows:

A(G) =

 In ⊗ A(G2) + A(G1)⊗ J A(G1)⊗ e

A(G1)⊗ eT A(G1)

 ,

where e is the column vector of size m with all its entries are 1, In is the identity matrix of order n
and J is the m×m matrix with all its entries are 1.

Since A(G2) is a real symmetric matrix, A(G2) is orthogonally diagonalizable and as G2 is a
r-regular graph, we have A(G2) = PD(G2)P

T , where P is a square matrix of order n with its first
column vector as 1/

√
m(1, 1, . . . , 1), PP T = Im andD(G2) = diag(λ1(G2), λ2(G2), . . . , λm(G2)).

So

A(G) =

 In ⊗ PD(G2)P
T + A(G1)⊗ J A(G1)⊗ e

A(G1)⊗ eT A(G1)



=

(
In ⊗ P 0

0 1

)(
In ⊗D(G2) +A(G1)⊗ PT JP A(G1)⊗ PT e

A(G1)⊗ eTP A(G1)

)(
In ⊗ PT 0

0 1

)

=

(
In ⊗ P 0

0 1

)(
In ⊗D(G2) +A(G1)⊗mJ ′ A(G1)⊗

√
me1

A(G1)⊗
√
meT1 A(G1)

)(
In ⊗ PT 0

0 1

)
,

where eT1 = (1, 0 . . . , 0) and J ′ is the m ×m matrix obtained by replacing every entry of J by 0
except the first diagonal entry.

Let B =

(
In ⊗D(G2) + A(G1)⊗mJ ′ A(G1)⊗

√
me1

A(G1)⊗
√
meT1 A(G1)

)
. Then by the above equation we

have
|xI − A(G)| = |xI −B|. (1)
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Expanding |xI −B| by Laplace’s method [9] along (mi+ 2), (mi+ 3), . . . , (mi+m)th columns,
for i = 0, 1, . . . , n− 1, we see that the only non zero (m− 1)n× (m− 1)n minor is

M = |In ⊗ diag(x− λ2(G2), . . . , x− λm(G2))|. (2)

The complementary minor of M is M1 =

∣∣∣∣ (x− r)In −mA(G1)
√
mA(G1)√

mA(G1) xIn − A(G1)

∣∣∣∣.
Again as A(G1) is orthogonally diagonalizable, one can easily see that the M1 is same as

M ′
1 =

 (x− r)In −mD(G1)
√
mD(G1)

√
mD(G1) xIn −D(G1)

 , (3)

where D(G1) = diag(λ1(G1), . . . , λn(G1)).

Now by Lemma 2.1, we have

M1 = |xIn −D(G1)|
∣∣(x− r)In −mD(G1)−mD2(G1)[xIn −D(G1)]

−1∣∣
= [(x2 − (λ1(G1)(m+ 1) + r)x+ rλ1(G1))][(x

2 − (λ2(G1)(m+ 1) + r)x+ rλ2(G1))]

. . . [(x2 − (λn(G1)(m+ 1) + r)x+ rλn(G1))].

And so by (1), (2), (3) and from above equation the result follows.

In the following corollary, we give a method to construct infinite family of integral graphs
starting with an integral graph.

Corollary 3.1. Let G be an integral graph and m be a positive integer. Suppose G0 = G and
Gn = Gn−1 ∗mK1, for n ≥ 1. Then {Gn} is an infinite sequence of integral graphs.

Corollary 3.2. Let G be a graph and m be a positive integer. Suppose G0 = G and Gn =
Gn−1 ∗mK1, for n ≥ 1. Then

a. ε(G ∗mK1) = (m+ 1)ε(G).
b. {ε(Gn)} is a monotonically increasing sequence.

As the proof of the Theorem 3.2 and Theorem 3.3 are similar to that of above theorem, we omit
the details.

Theorem 3.2. Let G1 be a r1-regular graph on n vertices and G2 be an arbitrary graph on m
vertices. Then the Laplacian spectrum of G1 ∗G2 is given by:

a. (m+ 1)r1 + µi(G2) with multiplicity n, for i = 1, 2, . . . ,m.

b. µi(G1)(m+ 1), for i = 1, 2, . . . , n.

Corollary 3.3. Let G1 be an integral regular graph and G2 be a Laplacian integral graph. Then
G1 ∗G2 is a Laplacian integral graph.
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Let t(G) denote the number of spanning trees of G. It is well known [6] that for a connected
graph G on n vertices, t(G) is given by

t(G) =
µ2(G) . . . µn(G)

n
. (4)

Corollary 3.4. Let G1 be a r1-regular graph on n vertices and G2 be an arbitrary graph on m
vertices. Then the number of spanning trees of G1 ∗G2 is given by

t(G1 ∗G2) = t(G1)r
n
1 (m+ 1)2(n−1)

m∏
i=2

((m+ 1)r1 + µi(G2))
n.

Proof. Proof follows from the above theorem and (4).

Let G be a graph. It is well known that a(G) = µ2(G) is called the algebraic connectivity
[7, 10] of G, and a(G) is greater than 0 if and only if G is a connected graph. Moreover if vi and
vj are two non-adjacent vertices of a graph G, then

a(G) ≤ deg(vi) + deg(vj)

2
. (5)

An infinite family of graphs {Gi}∞i=1, is called a family of ε-expander graphs [17], where ε > 0 is
a fixed constant, if
a. all these graphs are k-regular for a fixed integer k ≥ 3,
b. a(Gi) ≥ ε for i = 1, 2, 3, . . .,

and
c. ni = |V (Gi)| → ∞ as i→∞.

In the following corollary we will use the extended neighbourhood corona to construct new families
of expander graphs from known ones.

Corollary 3.5. Suppose {Gi}∞i=1 is a family of r-regular ε-expander graphs, then {Gi ∗mK1}∞i=1

is a family of r(m+ 1)-regular (m+ 1)ε-expander graphs.

Proof. It is easy to check that Gi ∗mK1 is a r(m+1)-regular graph. Now since f(x) := x(m+1)
is an increasing function of x, from the above theorem and (5), we see that a(Gi ∗ mK1) =
a(Gi)(m+ 1) and a(Gi ∗mK1) ≥ (m+ 1)ε. This completes the proof.

Theorem 3.3. Let G1 be a r1-regular graph on n vertices and G2 be a r2-regular graph on m
vertices. Then the signless Laplacian spectrum of G = G1 ∗G2 is given by:

a. (m+ 1)r1 + γi(G2) with multiplicity n, for i = 2, 3, . . . ,m.
b.

(
(γi(G1) + r1)(m+ 1) + r2 ±

√
(mγi(G1)−mr1 + γi(G1)− 2r2 − r1)2 + 4mr2(γi(G1)− r1)

)
/2, for i = 1, 2, . . . , n.

From the above theorem we have the following corollary.

Corollary 3.6. Let G be a signless Laplacian integral regular graph. Suppose G0 = G and
Gn = Gn−1 ∗ K1, for n ≥ 1. Then {Gn} is an infinite sequence of signless Laplacian integral
graphs.
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4. Spectrum of the extended corona

In this section, we determine the adjacency spectrum, Laplacian and signless Laplacian spec-
trum of the extended corona of two graphs in some cases.

Theorem 4.1. Let G1 be a graph on n vertices and G2 be a r-regular graphs on m vertices. Then
the adjacency spectrum of G = G1 •G2 is given by:

a. λi(G2) with multiplicity n, for i = 2, 3, . . . ,m.

b.
(
λi(G1)(m+ 1) + r ±

√
(λi(G1)(m− 1) + r)2 + 4m

)
/2, for i = 1, 2, . . . , n.

Proof. With suitable labelling of the vertices of G, the adjacency matrix A(G) can be formulated
as follows:

A(G) =

 In ⊗ A(G2) + A(G1)⊗ J In ⊗ e

In ⊗ eT A(G1)

 ,

where e is a column vector of size m with all its entries are 1, In is the identity matrix of order n
and J is the m×m matrix with all its entries are 1.
Using the fact that A(G2) is orthogonally diagonalizable and G2 is a r-regular graph , one can
easily see that A(G) is similar to

B =

 In ⊗D(G2) + A(G1)⊗mJ ′ In ⊗
√
me1

In ⊗
√
meT1 A(G1)

 ,

whereD(G2) = diag(λ1(G2), λ2(G2), . . . , λm(G2)), eT1 = (1, 0 . . . , 0) and J ′ is them×mmatrix
obtained by replacing every entry of J by 0 except the first diagonal entry.

So,
|xI − A(G)| = |xI −B|. (6)

Expanding |xI −B| by Laplace’s method [9] along (mi+ 2), (mi+ 3), . . . , (mi+m)th columns,
for i = 0, 1, . . . , n− 1, we see that the only non zero (m− 1)n× (m− 1)n minor is

M = |In ⊗ diag(x− λ2(G2), . . . , x− λm(G2))|. (7)

The complementary minor of M is

M1 =

∣∣∣∣ (x− r)In −mA(G1)
√
mIn√

mIn xIn − A(G1)

∣∣∣∣ .
Again as A(G1) is orthogonally diagonalizable, one can easily see that the M1 is same as

M ′
1 =

∣∣∣∣∣∣
(x− r)In −mD(G1)

√
mIn

√
mIn xIn −D(G1)

∣∣∣∣∣∣ , (8)
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where D(G1) = diag(λ1(G1), λ2(G2), . . . , λn(G2)).

Now by Lemma 2.1, we have

M ′
1 = |xIn −D(G1)|

∣∣[(x− r)In −mD(G1)]−
[
m(xIn −D(G1))

−1]∣∣
= [(x2 − (λ1(G1)(m+ 1) + r)x+mλ21(G1) + rλ1(G1)−m)]

. . . [(x2 − (λn(G1)(m+ 1) + r)x+mλ2n(G1) + rλn(G1)−m)].

And so by (6), (7), (8) and from above equation the result follows.

As the proof of the Theorem 4.2 and Theorem 4.3 are similar to that of the above theorem, we
omit the details.

Theorem 4.2. Let G1 be a r1-regular graph on n vertices and G2 be an arbitrary graph on m
vertices. Then the Laplacian spectrum of G = G1 •G2 is given by:

a. mr1 + µi(G2) + 1 with multiplicity n, for i = 2, 3, . . . ,m.

b.
(
(µi(G1) + 1)(m+ 1)±

√
(mµi(G1)−m− µi(G1) + 1)2 + 4m

)
/2,

for i = 1, 2, . . . , n.

From above theorem and by (4), we have the following corollary:

Corollary 4.1. Let G1 be a r1-regular graph on n vertices and G2 be an arbitrary graph on m
vertices. Then the number of spanning trees of G1 •G2 is given by:

t(G1 ∗G2) = t(G1)
m∏
i=2

(mr1 + µi(G2) + 1)n
n∏
i=2

(m2 + µi(G1)m+ 1).

Theorem 4.3. Let G1 be a r1-regular graph on n vertices and G2 be a r2-regular graph on m
vertices. Then the signless Laplacian spectrum of G = G1 •G2 is given by:

a. mr1 + γi(G2) + 1, with multiplicity n, for i = 2, 3, . . . ,m.

b.
(
(γi(G1) + 1)(m+ 1) + r2 ±

√
(mγi(G1)−m− γi(G1) + 2r2 + 1)2 + 4m

)
/2,

for i = 1, 2, . . . , n
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