Spectra of extended neighborhood corona and extended corona of two graphs

Chandrashekar Adiga, Rakshith B. R., K. N. Subba Krishna
Department of Studies in Mathematics
University of Mysore, Manasagangothri
Mysuru - 570 006, INDIA
c_adiga@hotmail.com, ranmsc08@yahoo.co.in, sbbkrishna@gmail.com

Abstract

In this paper we define extended corona and extended neighborhood corona of two graphs G_{1} and G_{2}, which are denoted by $G_{1} \bullet G_{2}$ and $G_{1} * G_{2}$ respectively. We compute their adjacency spectrum, Laplacian spectrum and signless Laplacian spectrum. As applications, we give methods to construct infinite families of integral graphs, Laplacian integral graphs and expander graphs from known ones.

Keywords: corona, integral graphs, energy of a graph, expander graphs
Mathematics Subject Classification : 05C50
DOI:10.5614/ejgta.2016.4.1.9

1. Introduction

Throughout this paper, we consider only simple graphs, i.e, an undirected graph with no loops and no multiple edges. Let G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix of G, denoted by $A(G)$, is defined as $A(G)=\left(a_{i j}\right)_{n \times n}$, where

$$
a_{i j}=\left\{\begin{array}{lc}
1, & \text { if } v_{i} v_{j} \text { is an edge in } G, \\
0, & \text { otherwise }
\end{array}\right.
$$

The degree of a vertex v_{i} in G, denoted by $\operatorname{deg}\left(v_{i}\right)$ is the number of vertices that are adjacent to v_{i} in G. The Laplacian matrix $L(G)$ of G is defined as $L(G)=D(G)-A(G)$ and

[^0]the signless Laplacian matrix $Q(G)$ of G is given by $Q(G)=D(G)+A(G)$, where $D(G)=$ $\operatorname{diag}\left(\operatorname{deg}\left(v_{1}\right), \ldots, \operatorname{deg}\left(v_{n}\right)\right)$. The adjacency spectrum $\sigma(G)$, Laplacian spectrum $\mu(G)$, and signless Laplacian spectrum $\gamma(G)$ of a graph G are defined as follows:
\[

$$
\begin{aligned}
\sigma(G) & =\left(\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)\right), \\
\mu(G) & =\left(\mu_{1}(G), \mu_{2}(G), \ldots, \mu_{n}(G)\right), \\
\gamma(G) & =\left(\gamma_{1}(G), \gamma_{2}(G), \ldots, \gamma_{n}(G)\right),
\end{aligned}
$$
\]

where $\lambda_{i}(G), \mu_{i}(G)$ and $\gamma_{i}(G)$ are the eigenvalues of $A(G), L(G)$ and $Q(G)$, respectively. Also

$$
\begin{aligned}
& \lambda_{1}(G) \geq \lambda_{2}(G) \geq \ldots \geq \lambda_{n}(G) \\
& \mu_{1}(G)=0 \leq \mu_{2}(G) \leq \ldots \leq \mu_{n}(G)
\end{aligned}
$$

and

$$
\gamma_{1}(G) \geq \gamma_{2}(G) \geq \ldots \geq \gamma_{n}(G)
$$

For the properties of spectrum, Laplacian and signless Laplacian spectrum the reader may refer to [$5,6,8,13,21,23]$ and the references therein.

The sum $\varepsilon(G):=\sum_{i=1}^{n}\left|\lambda_{i}(G)\right|$ is known as the energy of the graph G. The concept of the energy of a graph was introduced by Gutman [14] and was recently generalized to oriented graphs as skew energy by Adiga, Balakrishnan and So in [1]. If $\lambda_{i}(G)(i=1,2, \ldots, n)\left(\mu_{i}(G), \gamma_{i}(G)\right.$, respectively) are all integers, then G is said to be an integral (Laplacian integral, signless Laplacian integral, respectively) graph. The notion of integral graphs was first introduced by Harary and Schwenk in 1974 [16]. In general, the problem of characterizing integral graphs seems to be very difficult. More details about integral graphs can be found in [2, 11, 15, 16, 19] and references therein.

Let G_{1} and G_{2} be two graphs on disjoint sets of n_{1} and n_{2} vertices, respectively. The corona $G_{1} \circ G_{2}$ of G_{1} and G_{2} is defined as the graph obtained by taking one copy of G_{1} and n_{1} copies of G_{2}, and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertex in the $i^{t h}$ copy of G_{2}. The corona of two graphs was first introduced by Frucht and Harary in [12]. Barik et al. [3] provided a complete description of the spectrum (and the Laplacian spectrum) of $G_{1} \circ G_{2}$ using the spectrum (and the Laplacian spectrum, respectively) of G_{1} and G_{2}. More about the spectrum, Laplacian and signless Laplacian spectrum of corona can be found in [3, 4, 12, 20]. The neighborhood corona of G_{1} and G_{2}, denoted by $G_{1} \star G_{2}$, is the graph obtained by taking one copy of G_{1} and n_{1} copies of G_{2}, and joining every neighbour of the $i^{\text {th }}$ vertex of G_{1} to every vertex in the $i^{t h}$ copy of G_{2}. The neighborhood corona was introduced in [18]. Complete description of the spectrum (respectively, Laplacian, signless Laplacian spectrum) of neighborhood corona of two graphs are given in [18, 22].

Motivated by the works carried out on the spectrum of corona of two graphs, in this paper we define two new types of corona namely, extended corona and extended neighborhood corona of two graphs. We compute their adjacency spectrum, Laplacian spectrum and signless Laplacian spectrum. As applications, using the results on adjacency spectra of extended coronaand extended neighborhood corona, we give a method to construct infinite families of integral graphs starting with an integral graph and also using the results on Laplacian spectra of extended corona and extended neighborhood corona, we give a method to construct new families of expander graphs from known ones. Moreover, we prove that if G_{1} is an integral regular graph and G_{2} is a Laplacian integral graph, then $G_{1} * G_{2}$ is a Laplacian integral graph.

2. Preliminaries

In this section, we introduce extended corona and extended neighborhood corona of two graphs. Also we state a lemma which is useful to prove our main results.

Let G_{1}, G_{2} be two graphs and $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of G_{1}. We define extended corona and extended neighborhood corona of two graphs G_{1} and G_{2} as follows:

Definition 2.1. The extended neighborhood corona $G_{1} * G_{2}$ of two graphs G_{1} and G_{2} is a graph obtained by taking the neighborhood corona $G_{1} \star G_{2}$ and joining each vertex of $i^{\text {th }}$ copy of G_{2} to every vertex of $j^{\text {th }}$ copy of G_{2}, provided the vertices v_{i} and v_{j} are adjacent in G_{1}.

Definition 2.2. The extended corona $G_{1} \bullet G_{2}$ of two graphs G_{1} and G_{2} is a graph obtained by taking the corona $G_{1} \circ G_{2}$ and joining each vertex of $i^{\text {th }}$ copy of G_{2} to every vertex of $j^{\text {th }}$ copy of G_{2}, provided the vertices v_{i} and v_{j} are adjacent in G_{1}.

Example 2.3.

Fig. 1 Graphs $P_{2} \bullet K_{1}$ and $P_{3} * K_{1}$.
Let $A=\left(a_{i j}\right)$ be a $n \times m$ matrix, $B=\left(b_{i j}\right)$ be a $p \times q$ matrix then the Kronecker product $A \otimes B$ [6] of A and B is the $n p$ by $m q$ matrix obtained by replacing each entry $a_{i j}$ of A by $a_{i j} B$.

Lemma 2.1. [6] If M, N, P, Q are matrices with M being a non-singular matrix, then

$$
\left|\begin{array}{cc}
M & N \\
P & Q
\end{array}\right|=|M|\left|Q-P M^{-1} N\right| .
$$

3. Spectrum of the extended neighborhood corona

In this section, we determine the adjacency spectrum, Laplacian and signless Laplacian spectrum of the extended neighborhood corona of two graphs in some cases.

Theorem 3.1. Let G_{1} be a graph on n vertices and G_{2} be a r-regular graph on m vertices. Then the adjacency spectrum of $G=G_{1} * G_{2}$ is given by:
a. $\lambda_{i}\left(G_{2}\right)$ with multiplicity n, for $i=2,3, \ldots, m$.
b. $\left(\lambda_{i}\left(G_{1}\right)(m+1)+r \pm \sqrt{\left(\lambda_{i}\left(G_{1}\right)(m+1)+r\right)^{2}-4 r \lambda_{i}\left(G_{1}\right)}\right) / 2$, for $i=1,2, \ldots, n$.

Proof. With suitable labelling of the vertices of G, the adjacency matrix $A(G)$ can be formulated as follows:

$$
A(G)=\left(\begin{array}{cc}
I_{n} \otimes A\left(G_{2}\right)+A\left(G_{1}\right) \otimes J & A\left(G_{1}\right) \otimes e \\
A\left(G_{1}\right) \otimes e^{T} & A\left(G_{1}\right)
\end{array}\right)
$$

where e is the column vector of size m with all its entries are $1, I_{n}$ is the identity matrix of order n and J is the $m \times m$ matrix with all its entries are 1 .

Since $A\left(G_{2}\right)$ is a real symmetric matrix, $A\left(G_{2}\right)$ is orthogonally diagonalizable and as G_{2} is a r-regular graph, we have $A\left(G_{2}\right)=P D\left(G_{2}\right) P^{T}$, where P is a square matrix of order n with its first column vector as $1 / \sqrt{m}(1,1, \ldots, 1), P P^{T}=I_{m}$ and $D\left(G_{2}\right)=\operatorname{diag}\left(\lambda_{1}\left(G_{2}\right), \lambda_{2}\left(G_{2}\right), \ldots, \lambda_{m}\left(G_{2}\right)\right)$. So

$$
\begin{aligned}
A(G) & =\left(\begin{array}{cc}
I_{n} \otimes P D\left(G_{2}\right) P^{T}+A\left(G_{1}\right) \otimes J & A\left(G_{1}\right) \otimes e \\
A\left(G_{1}\right) \otimes e^{T} & A\left(G_{1}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
I_{n} \otimes P & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
I_{n} \otimes D\left(G_{2}\right)+A\left(G_{1}\right) \otimes P^{T} J P & A\left(G_{1}\right) \otimes P^{T} e \\
A\left(G_{1}\right) \otimes e^{T} P & A\left(G_{1}\right)
\end{array}\right)\left(\begin{array}{cc}
I_{n} \otimes P^{T} & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
I_{n} \otimes P & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
I_{n} \otimes D\left(G_{2}\right)+A\left(G_{1}\right) \otimes m J^{\prime} & A\left(G_{1}\right) \otimes \sqrt{m} e_{1} \\
A\left(G_{1}\right) \otimes \sqrt{m} e_{1}^{T} & A\left(G_{1}\right)
\end{array}\right)\left(\begin{array}{cc}
I_{n} \otimes P^{T} & 0 \\
0 & 1
\end{array}\right),
\end{aligned}
$$

where $e_{1}^{T}=(1,0 \ldots, 0)$ and J^{\prime} is the $m \times m$ matrix obtained by replacing every entry of J by 0 except the first diagonal entry.

Let $B=\left(\begin{array}{cc}I_{n} \otimes D\left(G_{2}\right)+A\left(G_{1}\right) \otimes m J^{\prime} & A\left(G_{1}\right) \otimes \sqrt{m} e_{1} \\ A\left(G_{1}\right) \otimes \sqrt{m} e_{1}^{T} & A\left(G_{1}\right)\end{array}\right)$. Then by the above equation we have

$$
\begin{equation*}
|x I-A(G)|=|x I-B| . \tag{1}
\end{equation*}
$$

Expanding $|x I-B|$ by Laplace's method [9] along $(m i+2),(m i+3), \ldots,(m i+m)^{t h}$ columns, for $i=0,1, \ldots, n-1$, we see that the only non zero $(m-1) n \times(m-1) n$ minor is

$$
\begin{equation*}
M=\left|I_{n} \otimes \operatorname{diag}\left(x-\lambda_{2}\left(G_{2}\right), \ldots, x-\lambda_{m}\left(G_{2}\right)\right)\right| \tag{2}
\end{equation*}
$$

The complementary minor of M is $M_{1}=\left|\begin{array}{cc}(x-r) I_{n}-m A\left(G_{1}\right) & \sqrt{m} A\left(G_{1}\right) \\ \sqrt{m} A\left(G_{1}\right) & x I_{n}-A\left(G_{1}\right)\end{array}\right|$. Again as $A\left(G_{1}\right)$ is orthogonally diagonalizable, one can easily see that the M_{1} is same as

$$
M_{1}^{\prime}=\left(\begin{array}{cc}
(x-r) I_{n}-m D\left(G_{1}\right) & \sqrt{m} D\left(G_{1}\right) \tag{3}\\
\sqrt{m} D\left(G_{1}\right) & x I_{n}-D\left(G_{1}\right)
\end{array}\right)
$$

where $D\left(G_{1}\right)=\operatorname{diag}\left(\lambda_{1}\left(G_{1}\right), \ldots, \lambda_{n}\left(G_{1}\right)\right)$.

Now by Lemma 2.1, we have

$$
\begin{aligned}
M_{1}= & \left|x I_{n}-D\left(G_{1}\right)\right|\left|(x-r) I_{n}-m D\left(G_{1}\right)-m D^{2}\left(G_{1}\right)\left[x I_{n}-D\left(G_{1}\right)\right]^{-1}\right| \\
= & {\left[\left(x^{2}-\left(\lambda_{1}\left(G_{1}\right)(m+1)+r\right) x+r \lambda_{1}\left(G_{1}\right)\right)\right]\left[\left(x^{2}-\left(\lambda_{2}\left(G_{1}\right)(m+1)+r\right) x+r \lambda_{2}\left(G_{1}\right)\right)\right] } \\
& \quad \ldots\left[\left(x^{2}-\left(\lambda_{n}\left(G_{1}\right)(m+1)+r\right) x+r \lambda_{n}\left(G_{1}\right)\right)\right]
\end{aligned}
$$

And so by (1), (2), (3) and from above equation the result follows.
In the following corollary, we give a method to construct infinite family of integral graphs starting with an integral graph.

Corollary 3.1. Let G be an integral graph and m be a positive integer. Suppose $G_{0}=G$ and $G_{n}=G_{n-1} * m K_{1}$, for $n \geq 1$. Then $\left\{G_{n}\right\}$ is an infinite sequence of integral graphs.

Corollary 3.2. Let G be a graph and m be a positive integer. Suppose $G_{0}=G$ and $G_{n}=$ $G_{n-1} * m K_{1}$, for $n \geq 1$. Then
a. $\varepsilon\left(G * m K_{1}\right)=(m+1) \varepsilon(G)$.
b. $\left\{\varepsilon\left(G_{n}\right)\right\}$ is a monotonically increasing sequence.

As the proof of the Theorem 3.2 and Theorem 3.3 are similar to that of above theorem, we omit the details.

Theorem 3.2. Let G_{1} be a r_{1}-regular graph on n vertices and G_{2} be an arbitrary graph on m vertices. Then the Laplacian spectrum of $G_{1} * G_{2}$ is given by:
a. $(m+1) r_{1}+\mu_{i}\left(G_{2}\right)$ with multiplicity n, for $i=1,2, \ldots, m$.
b. $\mu_{i}\left(G_{1}\right)(m+1)$, for $i=1,2, \ldots, n$.

Corollary 3.3. Let G_{1} be an integral regular graph and G_{2} be a Laplacian integral graph. Then $G_{1} * G_{2}$ is a Laplacian integral graph.

Let $t(G)$ denote the number of spanning trees of G. It is well known [6] that for a connected graph G on n vertices, $t(G)$ is given by

$$
\begin{equation*}
t(G)=\frac{\mu_{2}(G) \ldots \mu_{n}(G)}{n} \tag{4}
\end{equation*}
$$

Corollary 3.4. Let G_{1} be a r_{1}-regular graph on n vertices and G_{2} be an arbitrary graph on m vertices. Then the number of spanning trees of $G_{1} * G_{2}$ is given by

$$
t\left(G_{1} * G_{2}\right)=t\left(G_{1}\right) r_{1}^{n}(m+1)^{2(n-1)} \prod_{i=2}^{m}\left((m+1) r_{1}+\mu_{i}\left(G_{2}\right)\right)^{n}
$$

Proof. Proof follows from the above theorem and (4).
Let G be a graph. It is well known that $a(G)=\mu_{2}(G)$ is called the algebraic connectivity [7,10] of G, and $a(G)$ is greater than 0 if and only if G is a connected graph. Moreover if v_{i} and v_{j} are two non-adjacent vertices of a graph G, then

$$
\begin{equation*}
a(G) \leq \frac{\operatorname{deg}\left(v_{i}\right)+\operatorname{deg}\left(v_{j}\right)}{2} \tag{5}
\end{equation*}
$$

An infinite family of graphs $\left\{G_{i}\right\}_{i=1}^{\infty}$, is called a family of ϵ-expander graphs [17], where $\epsilon>0$ is a fixed constant, if
a. all these graphs are k-regular for a fixed integer $k \geq 3$,
b. $a\left(G_{i}\right) \geq \epsilon$ for $i=1,2,3, \ldots$,
and
c. $n_{i}=\left|V\left(G_{i}\right)\right| \rightarrow \infty$ as $i \rightarrow \infty$.

In the following corollary we will use the extended neighbourhood corona to construct new families of expander graphs from known ones.
Corollary 3.5. Suppose $\left\{G_{i}\right\}_{i=1}^{\infty}$ is a family of r-regular ϵ-expander graphs, then $\left\{G_{i} * m K_{1}\right\}_{i=1}^{\infty}$ is a family of $r(m+1)$-regular $(m+1) \epsilon$-expander graphs.
Proof. It is easy to check that $G_{i} * m K_{1}$ is a $r(m+1)$-regular graph. Now since $f(x):=x(m+1)$ is an increasing function of x, from the above theorem and (5), we see that $a\left(G_{i} * m K_{1}\right)=$ $a\left(G_{i}\right)(m+1)$ and $a\left(G_{i} * m K_{1}\right) \geq(m+1) \epsilon$. This completes the proof.
Theorem 3.3. Let G_{1} be a r_{1}-regular graph on n vertices and G_{2} be a r_{2}-regular graph on m vertices. Then the signless Laplacian spectrum of $G=G_{1} * G_{2}$ is given by:
a. $(m+1) r_{1}+\gamma_{i}\left(G_{2}\right)$ with multiplicity n, for $i=2,3, \ldots, m$.
b. $\left(\left(\gamma_{i}\left(G_{1}\right)+r_{1}\right)(m+1)+r_{2} \pm \sqrt{\left(m \gamma_{i}\left(G_{1}\right)-m r_{1}+\gamma_{i}\left(G_{1}\right)-2 r_{2}-r_{1}\right)^{2}+4 m r_{2}\left(\gamma_{i}\left(G_{1}\right)-r_{1}\right)}\right) / 2$, for $i=1,2, \ldots, n$.

From the above theorem we have the following corollary.
Corollary 3.6. Let G be a signless Laplacian integral regular graph. Suppose $G_{0}=G$ and $G_{n}=G_{n-1} * K_{1}$, for $n \geq 1$. Then $\left\{G_{n}\right\}$ is an infinite sequence of signless Laplacian integral graphs.

4. Spectrum of the extended corona

In this section, we determine the adjacency spectrum, Laplacian and signless Laplacian spectrum of the extended corona of two graphs in some cases.

Theorem 4.1. Let G_{1} be a graph on n vertices and G_{2} be a r-regular graphs on m vertices. Then the adjacency spectrum of $G=G_{1} \bullet G_{2}$ is given by:
a. $\lambda_{i}\left(G_{2}\right)$ with multiplicity n, for $i=2,3, \ldots, m$.
b. $\left(\lambda_{i}\left(G_{1}\right)(m+1)+r \pm \sqrt{\left(\lambda_{i}\left(G_{1}\right)(m-1)+r\right)^{2}+4 m}\right) / 2$, for $i=1,2, \ldots, n$.

Proof. With suitable labelling of the vertices of G, the adjacency matrix $A(G)$ can be formulated as follows:

$$
A(G)=\left(\begin{array}{cc}
I_{n} \otimes A\left(G_{2}\right)+A\left(G_{1}\right) \otimes J & I_{n} \otimes e \\
I_{n} \otimes e^{T} & A\left(G_{1}\right)
\end{array}\right)
$$

where e is a column vector of size m with all its entries are $1, I_{n}$ is the identity matrix of order n and J is the $m \times m$ matrix with all its entries are 1 .
Using the fact that $A\left(G_{2}\right)$ is orthogonally diagonalizable and G_{2} is a r-regular graph, one can easily see that $A(G)$ is similar to

$$
B=\left(\begin{array}{cc}
I_{n} \otimes D\left(G_{2}\right)+A\left(G_{1}\right) \otimes m J^{\prime} & I_{n} \otimes \sqrt{m} e_{1} \\
I_{n} \otimes \sqrt{m} e_{1}^{T} & A\left(G_{1}\right)
\end{array}\right)
$$

where $D\left(G_{2}\right)=\operatorname{diag}\left(\lambda_{1}\left(G_{2}\right), \lambda_{2}\left(G_{2}\right), \ldots, \lambda_{m}\left(G_{2}\right)\right), e_{1}^{T}=(1,0 \ldots, 0)$ and J^{\prime} is the $m \times m$ matrix obtained by replacing every entry of J by 0 except the first diagonal entry.

So,

$$
\begin{equation*}
|x I-A(G)|=|x I-B| . \tag{6}
\end{equation*}
$$

Expanding $|x I-B|$ by Laplace's method [9] along $(m i+2),(m i+3), \ldots,(m i+m)^{t h}$ columns, for $i=0,1, \ldots, n-1$, we see that the only non zero $(m-1) n \times(m-1) n$ minor is

$$
\begin{equation*}
M=\left|I_{n} \otimes \operatorname{diag}\left(x-\lambda_{2}\left(G_{2}\right), \ldots, x-\lambda_{m}\left(G_{2}\right)\right)\right| \tag{7}
\end{equation*}
$$

The complementary minor of M is

$$
M_{1}=\left|\begin{array}{cc}
(x-r) I_{n}-m A\left(G_{1}\right) & \sqrt{m} I_{n} \\
\sqrt{m} I_{n} & x I_{n}-A\left(G_{1}\right)
\end{array}\right| .
$$

Again as $A\left(G_{1}\right)$ is orthogonally diagonalizable, one can easily see that the M_{1} is same as

$$
M_{1}^{\prime}=\left|\begin{array}{cc}
(x-r) I_{n}-m D\left(G_{1}\right) & \sqrt{m} I_{n} \tag{8}\\
\sqrt{m} I_{n} & x I_{n}-D\left(G_{1}\right)
\end{array}\right|
$$

where $D\left(G_{1}\right)=\operatorname{diag}\left(\lambda_{1}\left(G_{1}\right), \lambda_{2}\left(G_{2}\right), \ldots, \lambda_{n}\left(G_{2}\right)\right)$.

Now by Lemma 2.1, we have

$$
\begin{aligned}
M_{1}^{\prime}= & \left|x I_{n}-D\left(G_{1}\right)\right|\left|\left[(x-r) I_{n}-m D\left(G_{1}\right)\right]-\left[m\left(x I_{n}-D\left(G_{1}\right)\right)^{-1}\right]\right| \\
= & {\left[\left(x^{2}-\left(\lambda_{1}\left(G_{1}\right)(m+1)+r\right) x+m \lambda_{1}^{2}\left(G_{1}\right)+r \lambda_{1}\left(G_{1}\right)-m\right)\right] } \\
& \ldots\left[\left(x^{2}-\left(\lambda_{n}\left(G_{1}\right)(m+1)+r\right) x+m \lambda_{n}^{2}\left(G_{1}\right)+r \lambda_{n}\left(G_{1}\right)-m\right)\right] .
\end{aligned}
$$

And so by (6), (7), (8) and from above equation the result follows.
As the proof of the Theorem 4.2 and Theorem 4.3 are similar to that of the above theorem, we omit the details.

Theorem 4.2. Let G_{1} be a r_{1}-regular graph on n vertices and G_{2} be an arbitrary graph on m vertices. Then the Laplacian spectrum of $G=G_{1} \bullet G_{2}$ is given by:
a. $m r_{1}+\mu_{i}\left(G_{2}\right)+1$ with multiplicity n, for $i=2,3, \ldots, m$.
b. $\left(\left(\mu_{i}\left(G_{1}\right)+1\right)(m+1) \pm \sqrt{\left(m \mu_{i}\left(G_{1}\right)-m-\mu_{i}\left(G_{1}\right)+1\right)^{2}+4 m}\right) / 2$,
for $i=1,2, \ldots, n$.
From above theorem and by (4), we have the following corollary:
Corollary 4.1. Let G_{1} be a r_{1}-regular graph on n vertices and G_{2} be an arbitrary graph on m vertices. Then the number of spanning trees of $G_{1} \bullet G_{2}$ is given by:

$$
t\left(G_{1} * G_{2}\right)=t\left(G_{1}\right) \prod_{i=2}^{m}\left(m r_{1}+\mu_{i}\left(G_{2}\right)+1\right)^{n} \prod_{i=2}^{n}\left(m^{2}+\mu_{i}\left(G_{1}\right) m+1\right)
$$

Theorem 4.3. Let G_{1} be a r_{1}-regular graph on n vertices and G_{2} be a r_{2}-regular graph on m vertices. Then the signless Laplacian spectrum of $G=G_{1} \bullet G_{2}$ is given by:
a. $m r_{1}+\gamma_{i}\left(G_{2}\right)+1$, with multiplicity n, for $i=2,3, \ldots, m$.
b. $\left(\left(\gamma_{i}\left(G_{1}\right)+1\right)(m+1)+r_{2} \pm \sqrt{\left(m \gamma_{i}\left(G_{1}\right)-m-\gamma_{i}\left(G_{1}\right)+2 r_{2}+1\right)^{2}+4 m}\right) / 2$, for $i=1,2, \ldots, n$

Acknowledgement

The first author is thankful to the University Grants Commission, Government of India, for the financial support under the Grant F.510/2/SAP-DRS/2011. The second author is thankful to UGC, New Delhi, for UGC-JRF, under which this work has been done.

Spectra of extended neighborhood corona and extended corona of two graphs $\quad \mid \quad$ C. Adiga et al.

References

[1] C. Adiga, R. Balakrishnan, and Wasin So, The skew energy of a digraph, Linear Algebra Appl. 432 (2010), 1825-1835.
[2] K. Balińska, D. Cvetković, Z. Radosavljević, S. Simić, D. Stevanović, A survey on integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 13 (2002), 42-65.
[3] S. Barik, S. Pati, B. K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math. 24 (2007), 47-56.
[4] S-Y Cui, G-X Tian , The spectrum and the signless Laplacian spectrum of coronae, Linear Algebra Appl. 437 (2012), 1692-1703.
[5] D. Cvetković, New theorems for signless Laplacian eigenvalues, Bull. Acad. Serbe Sci. Arts, Cl. Sci. Math. Natur., Sci. Math. 137 (2008), 131-146.
[6] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs: Theory and Application, Academic press, New York, 1980.
[7] D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2010.
[8] D. Cvetković and S. K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, II, Linear Algebra Appl., 432 (2010), 2257-2272.
[9] W. L. Ferrar, A Text-Book of Determinants, Matrices and Algebraic Forms, Oxford University Press, 1953.
[10] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973), 298-305.
[11] M.A.A. de Freitas, N.M.M. de Abreu, R.R. Del-Vecchio, S. Jurkiewicz, Infinite Families of Q-integral Graphs, Linear Algebra Appl. 432 (2010), 2352-2360.
[12] R. Frucht , F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970), 322-325.
[13] R. Grone, R. Merris, V. S. Sunder, The Laplacian spectral of graphs, SIAM J. Matrix Anal. Appl. 11 (1990), 218-239.
[14] I. Gutman, The energy of a graph, Ber. Math. Statist. sekt. Forschungsz. Graz. 103 (1978), 1-22.
[15] P. Hansen, H. Melot and D. Stevanović, Integral Complete Split Graphs, Publ. Elektrotehn. Fak. Ser. Mat. 13 (2002), 89-95.
[16] F. Harary and A. J. Schwenk, Which Graphs have Integral Spectra?, Graphs and Combinatorics (R. Bari and F. Harary, eds.), Springer-Verlag, Berlin (1974), 45-51.
[17] S. Hoory, N. Linial, A.Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. 43 (4) (2006), 439-561.
[18] G. Indulal, The spectrum of neighborhood corona of graphs, Kragujevac J. Math. 35 (2011), 493-500.
[19] G. Indulal and A. Vijayakumar, Some New Integral Graphs, Applicable Analysis and Discrete Mathematics 1 (2007), 420-426.
[20] C. McLeman, E. McNicholas, Spectra of coronae, Linear Algebra Appl. 435 (2011), 9981007.
[21] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197/198 (1994), 143-176.
[22] X. Liu and S. Zhou, Spectra of the neighbourhood corona of two graphs, Linear and Multilinear Algebra 62 (2014), 1205-1219.
[23] B. Zhou, Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra Appl. 432 (2010), 566-570.

[^0]: Received: 11 May 2015, Revised: 21 March 2016 Accepted: 27 March 2016.

