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Abstract

Let F,G, and H be non-empty graphs. The notation F → (G,H) means that if all edges of
F are arbitrarily colored by red or blue, then either the subgraph of F induced by all red edges
contains a graph G or the subgraph of F induced by all blue edges contains a graph H. A graph
F satisfying two conditions: F → (G,H) and for every e ∈ E(F ), (F − e) 9 (G,H) is
called a Ramsey (G,H)−minimal graph. In this paper, we determine all non-isomorphic Ramsey
(2K2, K4)−minimal graphs.
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1. Introduction

Let F,G, and H be simple graphs. We write F → (G,H) to mean that any red-blue coloring
on the edges of F contains a red copy ofG or a blue copy ofH.A red-blue coloring on the edges of
F such that F contain neither a red G nor a blue H is called a (G,H)−coloring. If a graph F has
a (G,H)−coloring, then we write F 9 (G,H). A graph F is called a Ramsey (G,H)−minimal if
F → (G,H) and for each e ∈ E(F ), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal
graphs will be denoted by R(G,H).
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The problem of characterizing a member of the set R(G,H) for given graphs G and H is
very difficult, even though it is for small graphs G and H. There are many papers dealing with
the determination of all graphs belonging to the set R(G,H). Nešetřil and Rödl [15] proved that
R(G,H) is infinite if one of the following three cases is satisfied: (i) both G and H are forests
containing a path of length three, (ii) both are 3−connected graphs, or (iii) both have a chromatic
number of at least three. Furthermore, Burr et al. [10] showed that the set R(G,H) is Ramsey
infinite when both G and H are forest, with at least one of G or H having a non-star component.
They also constructed an infinite family of R(Pn, Pn). Łuczak [12] showed that for every forest G
other than a matching and every graphH containing a cycle, the set R(G,H) is infinite. Moreover,
Borowiecki et al. [5] gave two equivalent theorems which characterize the graphs in R(K1,2, K1,m)
for m ≥ 3. In particular, for m = 3, all graphs in R(K1,2, K3) were determined by Borowiecki et
al. [6]. Some infinite families of Ramsey (K1,2, C4)−minimal graphs have been also characterized
by some researchers [1, 4, 17]. Yulianti et al. [18] constructed some infinite classes of graphs
in R(K1,2, P4). Next, Hałuszczak [11] characterized graphs belonging to R(K1,2, Kn). Moreover,
Borowiecka-Olszewska and Hałuszczak [7] presented a procedure to generate an infinite family of
(K1,m,G)−minimal graphs, where m ≥ 2 and G is a family of 2−connected graphs.

Burr et al. [8] proved that if G is a matching then R(G,H) is finite for any graph H. They
also showed that for any graph H, R(K2, H) = {H}, and gave R(2K2, 2K2) = {C5, 3K2}, and
R(2K2, K3) = {K5, 2K3, G} (see Figure 1). In the same paper, Burr et al. [8] gave a construction

Figure 1. The graph G ∈ R(2K2,K3).

of some graph Gr in R(2K2, Kn), for n ≥ 4 and 1 ≤ r ≤ [(n + 1)/2]. A graph Gr is constructed
from a graph Kn+1 by adding new vertices and edges as follows. Let V (Kn+1) = R ∪ S be a
partition of the vertices of Kn+1, where r denotes the cardinality of R. To each edge e = xy with
{x, y} ⊆ R or {x, y} ⊆ S, associate a vertex ve not in Kn+1 and let ve be adjacent to each vertex

of Kn+1 except for x and y. The graph Gr will have |V (Gr)| = n+ 1 +

(
r
2

)
+

(
n+ 1− r

2

)
and |E(Gr)| =

(
n+ 1
2

)
+ (n− 1)

((
r
2

)
+

(
n+ 1− r

2

))
. For example, the graphs G1

and G2 as depicted in Figure 2 are graphs in R(2K2, K4).
Next, the set R(G,H) with G is a 2K2 and H is a tK2 was investigated by Burr et al. [9].

Mengersen and Oeckermann [13] characterized graphs in R(2K2, K1,n), n > 3 and determined
all graphs in R(2K2, K1,n) for n ≤ 3. All graphs in R(2K2, Pn) for n = 4, 5 were determined
by Baskoro and Yulianti [3]. Moreover, all graphs belonging to R(2K2, 2P3) were determined by
Tatanto and Baskoro [16]. Mushi and Baskoro [14] derived the properties of graphs belonging to
the class R(3K2, P3) and determined all graphs belonging to R(3K2, P3). These results proved the
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Figure 2. The graphs G1, G2 ∈ R(2K2,K4).

previous claim given by Burr et al. in [9]. Recently, Baskoro and Wijaya [2] gave some necessary
and sufficient conditions for graphs in R(2K2, H). They proved the following theorem.

Theorem 1.1. [2] Let H be any connected graph. F ∈ R(2K2, H) if and only if the following
conditions are satisfied:

(i) for every v ∈ V (F ), F − v ⊇ H,

(ii) for every K3 in F, F − E(K3) ⊇ H,

(iii) for every e ∈ E(F ), there exists v ∈ V (F ) or K3 in F such that (F − e) − v + H or
(F − e)− E(K3) + H.

If a graph F satisfies Theorem 1.1(i) and (ii), then F → (2K2, H). While a graph F satisfying
Theorem 1.1(iii) means that F satisfies the minimal property of F, that is for each e ∈ F, F − e9
(2K2, H). Observe that if F,G ∈ R(2K2, H), then the minimality property implies that F * G
and G * F. In the same paper, Baskoro and Wijaya [2] gave all graphs of order at most 8 in
R(2K2, K4) as in the following theorem.

Theorem 1.2. [2]

1. Graph 2K4 is the only disconnected graph in R(2K2, K4).

2. Graph K6 is the only graph of 6 vertices in R(2K2, K4).

3. There is no connected graph with 7 vertices in R(2K2, K4).

4. Graph F1 in Figure 3 is the only graph of 8 vertices in R(2K2, K4).

In [2], they also gave a graph of order 9, namely F2, in R(2K2, K4) (see Figure 3).

Figure 3. The graphs F1, F2 ∈ R(2K2,K4).
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In this paper, we determine all connected graphs of order at least 9 in R(2K2, K4). These
results will complete the earlier results regarding all graphs in R(2K2, K4) discussed by Burr et
al. [8] and Baskoro & Wijaya [2]. Additionally, we also give a general class graph which belong
to R(2K2, Kn), for n ≥ 3.

2. Main Results

In this section, we will construct all graphs in R(2K2, K4).

Theorem 2.1. Let H be a connected graph. Then, 2H ∈ R(2K2, H).

Proof. It is easy to see that 2H → (2K2, H). Let e be an edge of 2H. Then, we need only consider
when e ∈ E(H). So, 2H−e = H∪(H−e).We now consider the edge a inH. Let φ be a red-blue
coloring on the edges of 2H − e such that φ(a) = red and φ(x) = blue otherwise. Under coloring
φ, 2H − e contains a red K2 and a blue (H − a) ∪ (H − e). We obtain a (2K2, H)−coloring.
Therefore, 2H ∈ R(2K2, H).

Lemma 2.1. Let F and H be connected graphs. If F ∈ R(2K2, H), then

(i) any two subgraphs of F isomorphic to H will intersect in at least one vertex,

(ii) F contains at least three subgraphs isomorphic to H.

Proof. Let F and H be connected graphs.

(i) By Theorem 1.1(i), we have two disjoint graphs H in F. Then, F ⊇ 2H. By Theorem 2.1, it
contradicts to the minimality of F.

(ii) By Theorem 2.1, 2H ∈ R(2K2, H). So, F does not contain 2H. By case (i), F contains more
than one subgraph H intersecting in at least one vertex. Let v be an intersecting vertex of
some two subgraphs of F isomorphic to H. Since F − v ⊇ H, F must contain at least three
subgraphs H in F.

Lemma 2.2. If F ∈ R(2K2, Kn), then |V (F )| ≥ n+ 2.

Proof. By Theorem 1.1, F contains a Kn and every triangle K3 in F, F − E(K3) must contain a
Kn. This Kn can be formed by involving at most one vertex on K3. So, to form a complete graph
of order n, we need involve at least two vertices u, v ∈ F, where u, v /∈ V (Kn). Hence, F has
order at least n+ 2.

By Lemma 2.1, if F ∈ R(2K2, K4), then F will contain at least three subgraphs K4 which any
two K4 are intersecting. Now, consider graphs A1, A2, and A3 obtained by intersecting three K4,
as depicted in Figure 4. We then have the following lemma.

Lemma 2.3. Let F be a connected graph of order at least 9 and F ∈ R(2K2, K4). Then, F must
contain A1, A2, or A3.
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Figure 4. The graphs A1, A2, and A3.

Proof. Let F ∈ R(2K2, K4) and V (F ) = {v1, v2, . . . , vn}, n ≥ 9. By Theorem 1.1, F must
contain a K4, we may assume V (K4) = {v1, v2, v3, v4}. Next, we consider a K3 with the vertex
set {v1, v2, v3}. There must be a K4 in F − E(K3) by Theorem 1.1(ii). Since a complete graph of
order 4 in F − E(K3) can only contain at most one vertex v ∈ V (K3), then (up to isomorphism)
one of two vertex sets {v4, v5, v6, v7} or {v3, v4, v5, v6} form this K4. We obtain that F contains a
graph A or B as depicted in Figure 5.

Figure 5. The possibilities of forming a K4 in F − E(K3) for some V (K3) = {v1, v2, v3} when F contains a K4.

First, we consider F containing A. By Theorem 1.1(i), there must be a K4 in F − v4. This
K4 is formed by involving at most two vertices which are not in A, otherwise F contains a 2K4.
Then, one of four vertex sets {v1, v7, v8, v9}, {v1, v6, v7, v8}, {v1, v2, v6, v7} or {v1, v5, v6, v7} will
form a complete graph of order 4 in F − v4. We obtain that F contains a graph A1, A2, A3 (see
Figure 4), or A4 (see Figure 6). Now, we consider F containing A4. By Theorem 1.1(ii), for
V (K3) = {v1, v4, v5}, F−E(K3) must contain aK4. Then, one of three vertex sets {v4, v6, v7, v8},
{v2, v5, v7, v8}, or {v2, v3, v6, v8} will form this K4. We obtain that F contains a graph A41, A42,
or A43 as depicted in Figure 6. Since A41, A42, and A43 contain A2 or A3, it suffices to consider F

Figure 6. The possibilities of forming a K4 in F − E(K3) for some V (K3) = {v1, v4, v5} when F ⊇ A4.
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contains A1, A2, or A3.
Second, we consider F containing B. To see this case, we have the following claim.

Claim: Let F ∈ R(2K2, Kn). If F contains K5 − e, then F contains A.
Proof of Claim. Let V (K5−e) = {v1, v2, v3, v4, v5}where d(v2) = d(v5) = 3. By Theorem 1.1(ii),
there must be a K4 in F −E(K3) for a K3 with the vertex set {v1, v3, v4}. Up to isomorphism, the
only vertex set {v1, v2, v5, v6} will form this K4. So, we now have F containing K6 \P3. Consider
a K3 with the vertex set {v1, v2, v5}. By Theorem 1.1(ii), F − E(K3) must contain a K4. This
K4 is formed by involving one vertex v7 in F, that is the vertex set {v3, v4, v6, v7} or {u, v, w, v7}
where u ∈ {v1, v2, v5} and v, w ∈ {v3, v4, v6, v7}. All resulted graphs contain A. ♦

If F contains B, then by Theorem 1.1(ii), for a K3 with the vertex set {v2, v3, v4}, F −E(K3)
must contain a K4. By the minimality, this K4 is formed by the vertex set {v1, v3, v5, v6} or
{v1, v4, v6, v7}, otherwise F contains A. Both resulted graphs contain K5− e. So, by the Claim, F
contains A. Thus, the claim follows immediately.

For the next theorem, we consider the graphs in Figures 2, 3, and 7. We will prove that 2K4, K6,
and all graphs in Figures 2, 3, and 7 are the only Ramsey (2K2, K4)−minimal graphs.

Figure 7. Some connected graphs in R(2K2,K4).

Theorem 2.2.

R(2K2, K4) = {2K4} ∪ {K6, F1, F2} ∪ {G1, G2} ∪ {F3, F4, F5, F6, F7, F8, F9}.

Proof. First, we show that everyF ∈ {2K4}∪{K6, F1, F2}∪{G1, G2}∪{F3, F4, F5, F6, F7, F8, F9}
is a Ramsey (2K2, K4)−minimal graph. Baskoro and Wijaya [2] (see Theorem 1.2) showed that
2K4 is the only disconnected graph in R(2K2, K4); K6 and F1 are the only connected graphs
of order at most 8 in R(2K2, K4). In the same paper, they also showed that F2 ∈ R(2K2, K4).
Moreover, Burr et al. [8] showed that G1, G2 ∈ R(2K2, K4). We can show easily that every
F ∈ {F3, F4, F5, F6, F7, F8, F9} satisfies Theorem 1.1(i) and (ii). The proof of the minimality of
F ∈ {F3, F4, F5, F6, F7, F8, F9} is depicted in Figure 8. We color all edges of F by red and blue.
Observe that such a coloring induces a red K2 and exactly a blue K4 (drawn in bold blue). Thus,
removing an arbitrary bold blue edge e in K4 results in a (2K2, K4)−coloring of F − e.
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Figure 8. Some red-blue coloring of F3, F4, F5, F6, F7, F8, and F9 contain a red K2 and a unique blue K4.

We now prove that all graphs in R(2K2, K4) are {2K4} ∪ {K6, F1, F2} ∪ {G1, G2} ∪ {F3, F4,
F5, F6, F7, F8, F9}. By Theorem 1.2, we enough to show that F2, G1, G2, F3, F4, F5, F6, F7, F8, F9

are the only graphs of order at least 9 in R(2K2, K4). Let F ∈ R(2K2, K4) be a connected graph
with the vertex set {v1, v2, . . . , vn}, n ≥ 9. Then, F does not contain 2K4, K6, or F1. By Lemma
2.3, F contains a graph isomorphic to A1, A2, or A3 in Figure 4. We can see that for i = 1, 2, 3, the
graph Ai, satisfies Theorem 1.1(i) but each does not satisfy Theorem 1.1(ii) for some triangles in
Ai. Therefore, to construct F ∈ R(2K2, K4) we must form a complete graph K4 in F −E(K3) by
involving some edges or vertices (and edges) in F. Furthermore, there are three subcases follow.

(1) F contains A1. The construction of graph F containing A1 in R(2K2, K4) is depicted in
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Figure 9. The only K3 in F not satisfying Theorem 1.1(ii) yet is the one with the vertex set
V1 = {v1, v4, v7}.

(a) If F is of order 9, then a complete graph K4 must contain exactly one vertex in V1,
otherwise F contains a graph 2K4. We may assume v1 ∈ K4. Up to isomorphism,
there is only the vertex set {v1, v2, v5, v8} forming a complete graph K4. We obtain a
graph A11 which is isomorphic to F2 (in Figure 3).

(b) If F is of order 10 and v10 ∈ F, then v10 must be inK4.Up to isomorphism, one of three
vertex set {v1, v2, v5, v10}, {v1, v5, v6, v10}, or {v2, v5, v8, v10} form a complete graph
K4. We obtain a graph A12, A13, or A14 as depicted in Figure 9 which is isomorphic to
F4, F5, or F6, respectively.

(c) If F is of order 11 and v10, v11 ∈ F, then v10, v11 must be in the graph K4, another
vertex must be one of v1, v4, or v7 and the other vertex must be either v5 or v6. Up
to isomorphism, there is only the vertex set {v1, v5, v10, v11} forming a graph K4. We
obtain a graph A15 as depicted in Figure 9 which is isomorphic to F9. Involving more
than two vertices will make F not minimal.

Figure 9. The possibilities of the form a K4 in F − E(K3) for V (K3) = {v1, v4, v7} when F ⊇ A1.

(2) F contains A2. All triangles in A2 such that F − E(K3) not satisfying Theorem 1.1(ii) yet
are K3 with the vertex sets V1 = {v1, v4, v7} or V2 = {v1, v4, v6}. We observe V (K3) = V2.
We must form a complete graph K4 in F −E(K3), by involving one, two, or more than two
vertices in F. Moreover, forming this K4 does not result in F containing A1, since we have
obtained all Ramsey (2K2, K4)−minimal graphs containing A1.

(a) If F is of order 9 and v9 ∈ F, then v9 must be inK4.Up to isomorphism, one of six ver-
tex sets {v1, v2, v5, v9}, {v1, v2, v7, v9}, {v1, v5, v7, v9}, {v1, v7, v8, v9}, {v2, v5, v6, v9},
or {v2, v6, v7, v9} form a complete graph K4. We obtain the graphs A21, A22, A23, A24,
A25, A26 as depicted in Figure 10. Now, we consider F containing A2i for i ∈ [1, 6].

(i) The graphs A21, A25, and A26 have satisfied Theorem 1.1(i) and (ii), since there
exists a complete graph K4 in F − E(K3) for V (K3) = V1. These graphs are
isomorphic to F3, F2, and G2, respectively (see Figure 7, 3, and 2, respectively).

(ii) The graphs A22, A23, and A24 have not satisfied Theorem 1.1(ii) yet, since there is
no complete graph K4 in F − E(K3) for V (K3) = V1. We must involve a vertex
v10 in F ⊇ A2i (i = 2, 3, 4) to form this K4. Otherwise, F is not minimal. So, the
complete graphK4 in F−E(K3) is formed by the vertex set {v2, v4, v6, v10}when
F ⊇ A22; {v1, v5, v6, v10} when F ⊇ A23, or {v1, v6, v8, v10} when F ⊇ A24.
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Figure 10. The possibilities form a K4 in F − E(K3) for V (K3) = {v1, v4, v6} when F ⊇ A2.

Otherwise, F is not minimal. We obtain the graph F with the edge set E(F ) =
E(A22) ∪ {v2v6, viv10| i = 2, 4, 6}, E(F ) = E(A23) ∪ {viv10| i = 1, 5, 6}, or
E(F ) = E(A24) ∪ {viv10| i = 1, 6, 8} which is isomorphic to F7, F8, or F4,
respectively.

(b) If F is of order 10 and v9, v10 ∈ F, then v9 and v10 must be in the graph K4. Up
to isomorphism, one of two vertex sets {v1, v5, v9, v10} or {v2, v6, v9, v10} will form a
graph K4. We obtain a graph A27 or A28, respectively, as depicted in Figure 10, which
is isomorphic to F5 or F4, respectively.

(c) F cannot have order more than 10, since involving more than two vertices in F ⊇ A2

to form a complete graph K4 in F − E(K3) will make F not minimal.

(3) F containsA3. There are four trianglesK3 inA3 such that F does not satisfy Theorem 1.1(ii)
yet, namely theK3 with the vertex set V1 = {v1, v4, v7}, V2 = {v1, v4, v6}, V3 = {v2, v4, v6},
or V4 = {v2, v4, v7}. We observe a triangle K3 with the vertex set V2. We must form a
complete graph K4 in F − E(K3). Since we have obtained all graphs containing A1 or A2

in R(2K2, K4), we avoid forming a graph K4 in F − E(K3) which contains A1 or A2.
Therefore, a complete graph K4 must contain three vertices in A3. Suppose that v8 is in
K4. There are two vertex sets forming this K4, namely {v2, v4, v5, v8} or {v2, v4, v7, v8} (the
graph A31 or A32 as depicted in Figure 11). Now, we consider F containing A31 or A32.
There is no complete graph K4 in F − E(K3) for V (K3) = V3.

(a) Forming a complete graph K4 in F −E(K3) when F ⊇ A31 by involving one or more
vertices (and edges) in F will cause F to contain 2K4, A1, or A2.

(b) One of two vertex sets {v1, v4, v7, v9} or {v3, v4, v7, v9} will form a graph K4 in F −
E(K3) when F ⊇ A32. We obtain that F contains a graph Aa or Ab as depicted in
Figure 11. Next, for V (K3) = V4, if we delete E(K3) of both graphs Aa and Ab, then
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Figure 11. The possibilities form a K4 in F − E(K3) for some V (K3) = {v1, v4, v6} when F ⊇ A3.

the resulted graphs do not contain a graph K4. Thus, we must form the complete graph
K4 in F − E(K3).

(i) Consider F containing Aa. The graph K4 in F − E(K3) must involve one vertex
v10 in F, namely {v1, v4, v6, v10}. Otherwise, F is not minimal. We obtain that F
contains a graph Aa1 as depicted in Figure 12. By Theorem 1.1(ii), F − E(K3)
must contain a graph K4 for some E(K3) = V1. This K4 is formed by the vertex
set {v2, v4, v6, v11}. We obtain the graph Aa2 as depicted in Figure 12 which is
isomorphic to G2 in Figure 2.

(ii) Consider F containing Ab. The graph K4 in F − E(K3) cause F which contains
the graph 2K4, A1, or A2.

So, all graphs in R(2K2, K4) are {2K4} ∪ {K6, F1, F2} ∪ {G1, G2} ∪ {F3, F4, F5, F6, F7,
F8, F9}.

Figure 12. The possibility form a K4 in F − E(K3) for V (K3) = {v2, v4, v7} when F ⊇ Aa.

Now, we will give a class of graphs belonging to R(2K2, Kn) for n ≥ 3.

Theorem 2.3. Kn+2 ∈ R(2K2, Kn).

Proof. Since for every v ∈ V (Kn+2), we obtain Kn+2 − v ∼= Kn+1, then Kn+2 − v ⊇ Kn.
Furthermore, for each K3 in Kn+2, we obtain Kn+2−E(K3) ∼= Kn−1+3K1, so Kn+2−E(K3) ⊇
Kn. Next, for every e ∈ E(Kn+2), we obtain Kn+2 − e ∼= Kn + 2K1. If we take an arbitrarily
triangle in Kn, then we have (Kn+2−e)−E(K3) ∼= Kn−3+3K1+2K1. So, (Kn+2−e)−E(K3)
does not contain a Kn.
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By Theorem 2.2, we conclude that the set of Ramsey (2K2, K4)−minimal graphs does not
contain two graphs with the same degree sequence. In general case, from [2], we can construct
a graph G ∈ R(2K2, 2Kn), n ≥ 3 by taking a disjoint union of any two connected graphs in
R(2K2, Kn). We can also construct a graph G ∈ R(2K2, 2Kn) by identifying some vertices or
edges of any two connected graphs in R(2K2, Kn).
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