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Abstract

Let F,G and H be simple graphs. The notation F → (G,H) means that for any red-blue coloring
on the edges of graph F , there exists either a red copy of G or a blue copy of H . A graph F
is called a Ramsey (G,H)-minimal graph if it satisfies two conditions: (i) F → (G,H) and (ii)
F − e 9 (G,H) for any edge e of F . In this paper, we give some finite and infinite classes of
Ramsey (C4, K1,n)-minimal graphs for any n ≥ 3.
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1. Introduction

All graphs in this paper are simple. For any three graphs F,G and H , the notation of F →
(G,H) to mean that for any red-blue coloring on the edges of F , there exists a red copy of G or a
blue copy of H .
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Definition 1.1. A graph F is called a Ramsey graph for a pair of graphs (G,H) if F satisfies that
F → (G,H).

Definition 1.2. A graph F is called a Ramsey (G,H)-minimal if F satisfies the following condi-
tions:

(i) F → (G,H), and
(ii) F − e9 (G,H), for any e ∈ E(F ).

The set of all Ramsey (G,H)-minimal graphs will be denoted byR(G,H).

The pair (G,H) is called a Ramsey-finite if R(G,H) is finite. Otherwise, the pair (G,H) is
called Ramsey-infinite. The study of Ramsey minimal graphs was initiated by Burr et al. [3]. The
problem of characterizing or determining all Ramsey (G,H)-minimal graphs for a certain pair of
G and H is a challenging problem.

Burr et al. [2] showed that for an arbitrary graph G, the pair (mK2, G) is Ramsey-finite.
Nešetřil and Rödl proved that if both G and H are 3-connected or if G and H are forest and
neither of which is a union of stars, then the pair (G,H) is Ramsey-infinite [7]. Next, Baskoro et
al. [1] determined the graphs inR(K1,2, C4). In 2015, Mushi and Baskoro [6] gave necessary and
sufficient conditions for all members ofR(3K2, K1,n) for each n ≥ 3. Furthermore, for 3 ≤ n ≤ 7
they were able to list all Ramsey (3K2, K1,n)-minimal graphs of order at most 10 vertices. In the
same year, Wijaya et al. [5] determined all non-isomorphic Ramsey (2K2, K4)-minimal graphs of
order at least 9. Furthermore, they also gave a general class graph which belong to R(2K2, Kn),
for n ≥ 3. Nisa et al. [9] gave some graphs in R(C6, K1,2). In 2021, Nabila and Baskoro [8]
gave some Ramsey (Cn, K1,2)-minimal graphs for n ∈ {5, 6, 8}. In the same year, Hadiputra and
Silaban [4] studied an infinite family of graphs that belongs to R(K1,2, C4). In 2022, Nabila et
al. [10] gave some Ramsey (Cn, K1,2)-minimal graphs for any n ∈ [7, 10] and construct Ramsey
(Cn, K1,2)-graphs from the well-known Harary graph, for any integer n ≥ 6.

In this paper, we construct some new finite and infinite classes of graphs that belong to the set
R(C4, K1,n) for any n ≥ 3.

2. Main Results

Our main results will be divided into two sections. In the first section, we present some fi-
nite classes of Ramsey (C4, K1,n)-minimal graphs. The second section, we propose some infinite
classes of such Ramsey minimal graphs.

For any vertex x ∈ V and A ⊂ V , let us denote by (x,A) the set of all edges connecting x
and all vertices of A. This set can also be denoted by (A, x). Throughout the paper, we define
[a, b] = {x ∈ N|a ≤ x ≤ b}, except in the proof Theorem 2.2, we use the notation for a different
thing, but the context is clear.

2.1. Some finite classes of graph inR(C4, K1,n)

In this section, we give some finite class of graphs which belongs toR(C4, K1,n) for any integer
n ≥ 3.
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Definition 2.1. For any positive integer n ≥ 3, H(n) is a graph with the vertex-set and edge-set:

V = {ci, vj | i ∈ [1, 3], j ∈ [1, 2n− 1]} and
E = {c1vi, c2vi, c3vj| i ∈ [1, 2n− 1], j ∈ [1, n+ 2]}.

In the following we show that the graph H(n) is a Ramsey (C4, K1,n)-minimal graph for any
n ≥ 3.

Theorem 2.1. For any integer n ≥ 3, H(n) ∈ R(C4, K1,n).

Proof. Let α be any red-blue coloring of the edges of H(n) with no blue K1,n. Let W = {v ∈
V | vc1, vc2 ∈ E}. Let A = {v ∈ V | vc1, vc2, vc3 ∈ E} and B = W\A. Since d(c1) = 2n − 1,
then there are at most n − 1 blue edges incident to c1. Let S = {v ∈ W | c1v is red} and
T = {v ∈ W | c1v is blue}. Then |S| ≥ n and |T | ≤ n− 1.

Now, consider the edges incident to c2. Since there is no blue K1,n, there are at most n−1 blue
edges connecting c2 and vertices of W . If there are at most n − 2 blue edges connecting c2 to S
then it creates a red C4. Thus, there are exactly n− 1 blue edges connecting c2 with the vertices of
S and no blue edges connecting T with c2.

Next, consider the edges incident to c3. Clearly, there are at most n− 1 blue edges and at least
3 red edges connecting between A and c3. If there are two red edges connecting T ∩A and c3 then
a red copy of C4 occurs (involving c2, c3 and T ). Similarly, if there are two red edges connecting
S∩A and c3 then a red copy of C4 occurs (involving c1, c3 and S). Therefore, H(n)→ (C4, K1,n).

To show the minimality, consider G ∼= H(n)− e for any edge e ∈ H(n). Up to isomorphism,
we consider three cases:

(i) Let e = c1v1 ∈ (c1, A). Then, consider a red-blue coloring on G with all edges in the set
(c1, A\{v2, v3})∪ (c2, B\{v2n−1})∪ (c2, {v2, v3, v4})∪ (c3, A\{v1, v2, v3}) are blue and the
remaining edges are red.

(ii) Let e = c2v2n−1 ∈ (c2, B). Then, consider a red-blue coloring on G with all edges in the set
{(c1, A\{v1, v2, v3}) ∪ (c2, B\{v2n−1)} ∪ (c2, {v2, v3, v4}) ∪ (c3, A\{v3, v4, v5})} are blue
and the remaining edges are red.

(iii) Let e = c3v1 ∈ (c3, A). Then, consider a red-blue coloring on G with all edges in the set
{(c1, A\{v1, v2, v3}) ∪ (c2, B\{v2n−1)} ∪ (c2, {v1, v2, v4}) ∪ (c3, A\{v2, v4})} are blue and
the remaining edges are red.

Therefore, in such a coloring, there is neither red copy of C4 nor blue copy of K1,n. Thus, G 9
(C4, K1,n). As a consequence, H(n) is a Ramsey (C4, K1,n)-minimal graph.

Let t be any natural number, define a theta-path graph G[a1, ..., at] with ai ≥ 3 for i ∈ [1, t] as
follows.

Definition 2.2. The theta-path graph of length t, denoted by G[a1, a2, ..., at], is the graph with the
vertex set and the edge set:

V = {c1, c2, ..., ct+1} ∪ A1 ∪ . . . ∪ At with |Ai| = ai and Ai = {ui,1, ..., ui,ai}
for i ∈ [1, t]

E = {(ci, Ai), (Ai, ci+1)| i ∈ [1, t]}.
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Note that if t = 1, then G[a1] ∼= K2,a1 .
Let α be any red-blue coloring on the edges of the theta-path graph G[a1, a2, ..., at]. For

any i ∈ [1, t], let b+i be the number of blue edges in (ci, Ai) under α. For any i ∈ [2, t + 1]
let b−i be the number of blue edges in (Ai−1, ci) under α. We use the notation [b+1 , b

−
2 |b+2 , b−3 |

. . . |b+t−1, b
−
t |b+t , b−t+1] for the coloring α if there are exactly b+i blue edges in (ci, Ai) and b−i blue

edges in (Ai−1, ci) for any i in α. Additionally, if the number of vertices of Ai incident to blue
edges is b+i + b−i+1 for every i ∈ [1, t], then the coloring α is called maximal.

For example, Figure 1 represents a red blue coloring [4, 2|3, 0] (left) and a maximal red blue
coloring [5, 2|4, 1] (right) in G[7, 5]. Note that, in general, the colorings with the notation [b+1 , b

−
2 |

b+2 , b
−
3 | . . . |b+t−1, b

−
t |b+t , b−t+1] may not be unique.

Figure 1. Some red-blue colorings in the theta-path graph G[7, 5].

2.1.1. The theta-path graph of length 1.
In this section, we present the theta-path graph of length one which is inR(C4, K1,n).

Theorem 2.2. For any integer n ≥ 3, the theta-path graph G[2n] ∈ R(C4, K1,n).

Proof. Let G = G[2n] for any fixed integer n ≥ 3. First, we will show that G → (C4, K1,n).
Consider any red-blue coloring α on the edges of G with containing no blue K1,n. We will show
that there is a red C4 in G. Let α be a coloring [b+1 , b

−
2 ] for some integers b+1 and b−2 . The number

of vertices in A1 incident to blue edges is denoted by n1. Since there is no blue K1,n in G then
b+1 ≤ n− 1, b−2 ≤ n− 1, and b+1 + b−2 = n1 ≤ 2n− 2. Thus, there exists a red C4 in G composed
by two vertices in A1 together with c1 and c2.

Next, we will show the minimality, that is, G−e9 (C4, K1,n) for any edge e. Let e ∈ (c1, A1)
or (A1, c2), then consider the maximal red-blue coloring α1

∼= [n− 1, n− 1] on G such that α1(e)
is red. By considering the restriction of the coloring α1 on G − e, we obtain that there is neither
blue copy of K1,n nor red copy of C4 in G − e. Thus, G − e 9 (C4, K1,n). Therefore, G is a
Ramsey (C4, K1,n)-minimal graph.

2.1.2. The theta-path graph of length two.
In this section, we construct the theta-path graph of length two which is inR(C4, K1,n).

Theorem 2.3. Let n and k be integers, with n ≥ 3 and 1 ≤ k ≤ b(n− 1)/2c. Then, the theta-path
graph G[a1, a2] inR(C4, K1,n), where a1 = 2n− k and a2 = n+ k.
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Proof. Let G = G[2n − k, n + k] for any fixed integers n ≥ 3 and k ∈ [1, b(n− 1)/2c]. First,
we will show that G → (C4, K1,n). Consider any red-blue coloring α on the edges of G with
containing no blue K1,n. We will show there is a red C4 in G. Let α be a coloring [b+1 , b

−
2 |b+2 , b−3 ]

for some integers b+1 , b
−
2 , b

+
2 and b−3 .

For i = 1, 2, denote by ni the number of vertices in Ai incident to blue edges. Since there
is no blue K1,n in G then b+1 ≤ n − 1, b−2 + b+2 ≤ n − 1, b−3 ≤ n − 1, n1 ≤ 2n − k, and
n2 ≤ n + k. However, n1 ≥ 2n − k − 1 since otherwise there exists a red C4 in G composed by
two vertices in A1 together with c1 and c2, or two vertices in A2 together with c2 and c3. Thus,
2n− k − 1 ≤ n1 ≤ 2n− k.

Since 2n − k − 1 ≤ n1 ≤ 2n − k, then b−2 ≥ (2n − k − 1) − (n − 1) = n − k. Since
b−2 + b+2 ≤ n − 1 then b+2 ≤ (n − 1) − (n − k) = k − 1. But, since b+2 ≤ k − 1 and b−3 ≤ n − 1
then n2 ≤ (n− 1) + (k − 1) = n+ k − 2. Therefore, there is a red C4 in G.

Next, we will show the minimality, that is, G − e 9 (C4, K1,n) for any edge e ∈ G. If
e ∈ (c1, A1) or (A1, c2) then consider the maximal red-blue coloring α1

∼= [n−1, n−k−1|k, n−1]
on G such that α1(e) is red. By considering the restriction of the coloring α1 on G− e, we obtain
that there is neither blue copy of K1,n nor red copy of C4 in G− e.

If e ∈ (c2, A2) or (A2, c3) then consider the maximal red-blue coloring α2
∼= [n− 1, n− k|k−

1, n−1] on G such that no two blue edges incident to the same vertex of Ai, for i = 1, 2, and α2(e)
is red. By restricting α2 on G − e, we obtain that there is neither blue K1,n nor red C4 in G − e.
Thus, G− e9 (C4, K1,n). Therefore, G is a Ramsey (C4, K1,n)-minimal graph.

2.1.3. The theta-path graph of length 3.
In this section, we give the theta-path graph of length 3 which is inR(C4, K1,n).

Theorem 2.4. Let n and k be integers, with n ≥ 3 and 2 ≤ k ≤ b(n− 1)/2c. Then, the theta-path
graphs G[n+ k− 1, 2n− k, n+ 1], G[2n− k, n+ k− 1, n+ 1], and G[2n− k, n+ 1, n+ k− 1]
are inR(C4, K1,n).

Proof. LetG ∼= G[n+(k−1), 2n−k, n+1] for any fixed integers n ≥ 3 and 2 ≤ k ≤ b(n− 1)/2c.
First, we will show that G → (C4, K1,n). Consider any red-blue coloring α on the edges of G
with containing no blue K1,n. We will show that there is a red C4 in G. Let α be a coloring
[b+1 , b

−
2 |b+2 , b−3 |b+3 , b−4 ] for some integers b+i , b

−
i+1 where i ∈ [1, 3]. For i ∈ [1, 3], denote by ni the

number of vertices in Ai incident to blue edges. Since there is no blue K1,n in G then b+1 ≤ n− 1,
b−2 +b+2 ≤ n−1, b−3 +b+3 ≤ n−1, and b−4 ≤ n−1. However, n1 ≥ n+(k−1)−1 since otherwise
there exists a red C4 in G composed by two vertices in A1 together with c1 and c2, or two vertices
in A2 together with c2 and c3. Thus, n+ (k − 1)− 1 ≤ n1 ≤ n+ (k − 1).

Since n+ (k − 1)− 1 ≤ n1 ≤ n+ (k − 1) then b−2 ≥ (n+ k − 2)− (n− 1) = k − 1. Since
b−2 + b+2 ≤ n− 1 then b+2 ≤ (n− 1)− (k− 1) = n− k. However, n2 ≥ 2n− k− 1 since otherwise
there exists a red C4 in G composed by two vertices in A2 together with c2 and c3, or two vertices
in A3 together with c3 and c4. Thus, 2n− k− 1 ≤ n2 ≤ 2n− k. Since 2n− k− 1 ≤ n2 ≤ 2n− k,
then b+2 ≥ (2n−k−1)− (n−k) = n−1. Since b−3 +b

+
3 ≤ n−1 then b+3 ≤ (n−1)− (n−1) = 0.

But, since b+3 ≤ 0 and b−4 ≤ 0 + (n− 1) = n− 1, then n3 ≤ n− 1. Therefore, there is a red C4 in
G composed by two vertices in A3 with c3 and c4.
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Next, we will show the minimality, that is, G − e 9 (C4, K1,n) for any edge e ∈ G. If
e ∈ (c1, A1) or (A1, c2) then consider the maximal red-blue coloring α1

∼= [n − 1, k − 2|n − k +
1, n− 2|1, n− 1] on G such that α1(e) is red. If e ∈ (c2, A2) or (A2, c3) then consider the maximal
red-blue coloring α2

∼= [n−1, k−1|n−k, n−2|1, n−1] onG such that α2(e) is red. If e ∈ (c3, A3)
or (A3, c4) then consider the maximal red-blue coloring α3

∼= [n− 1, k − 1|n− k, n− 1|0, n− 1]
on G such that α3(e) is red. By considering the restriction of the coloring α1, α2, and α3 on G− e.
Thus, G− e9 (C4, K1,n). Therefore, G is a Ramsey (C4, K1,n)-minimal graph.

If G ∼= G[2n − k, n + k − 1, n + 1] or G ∼= G[2n − k, n + 1, n + k − 1] then the proofs are
similar.

Theorem 2.5. Let n and k be integers, with n ≥ 3 and 1 ≤ k ≤ b(n− 1)/2c. Then, the theta-path
graph G[2n− k, n, n+ k] inR(C4, K1,n).

Proof. Let G = G[2n − k, n, n + k] for any fixed integers n ≥ 3 and 1 ≤ k ≤ b(n− 1)/2c.
First, we will show that G → (C4, K1,n). Consider any red-blue coloring α on the edges of
G with containing no blue K1,n. We will show there is a red C4 in G. Let α be a coloring
[b+1 , b

−
2 |b+2 , b−3 |b+3 , b−4 ] for some integers b+i , b

−
i+1 where i ∈ [1, 3].

Since there is no blue K1,n in G then b+1 ≤ n − 1, b−i + b+i ≤ n − 1 for i = 2, 3, b−4 ≤ n − 1,
n1 ≤ 2n− k, n2 ≤ n, and n3 ≤ n + k. However, n1 ≥ 2n− k − 1 since otherwise there exists a
red C4 in G composed by two vertices in A1 together with c1 and c2, or two vertices in A2 together
with c2 and c3. Thus, 2n− k − 1 ≤ n1 ≤ 2n− k.

Since 2n−k−1 ≤ n1 ≤ 2n−k then b−2 ≥ (2n−k−1)−(n−1) = n−k. Since b−2 +b
+
2 ≤ n−1

then b+2 ≤ (n− 1)− (n− k) = k − 1. However, n2 ≥ n− 1 since otherwise there exists a red C4

in G composed by two vertices in A2 together with c2 and c3, or two vertices in A3 together with
c3 and c4. Thus, n− 1 ≤ n2 ≤ n. Since n− 1 ≤ n2 ≤ n, then b−3 ≥ (n− 1)− (k − 1) = n− k.
Since b−3 + b+3 ≤ n−1 then b+3 ≤ (n−1)− (n−k) = k−1. But, since b+3 ≤ k−1 and b−4 ≤ n−1
then n3 ≤ (k − 1) + (n − 1) = n + k − 2. Therefore, there is a red C4 in G composed by two
vertices in A3 with c3 and c4.

Next, we will show the minimality, that is, G − e 9 (C4, K1,n) for any edge e ∈ G. If
e ∈ (c1, A1) or (A1, c2) then consider the maximal red-blue coloring α1

∼= [n− 1, n−k− 1|k, n−
k−1|k, n−1] onG such that α1(e) is red. If e ∈ (c2, A2) or (A2, c3) then consider the maximal red-
blue coloring α2

∼= [n−1, n−k|k−1, n−k−1|k, n−1] onG such that α2(e) is red. If e ∈ (c3, A3)
or (A3, c4) then consider the maximal red-blue coloring α3

∼= [n−1, n−k|k−1, n−k|k−1, n−1]
on G such that α3(e) is red. By considering the restriction of the coloring α1, α2, and α3 on G− e.
Thus, G− e9 (C4, K1,n). Therefore, G is a Ramsey (C4, K1,n)-minimal graph.

2.1.4. The theta-path graph with a longer length.
In this section, we present the theta-path graph of length k which isR(C4, K1,n), with 4 ≤ k ≤

n+ 1.

Theorem 2.6. Let n and k be integers, with n ≥ 3 and 3 ≤ k ≤ n. Then, the theta-path graph
G[a1, a2, ..., ak+1] inR(C4, K1,n), with a1 = 2n− k and ai = n+ 1 for i ∈ [2, k + 1].

Proof. Let G = G[2n− k, a2, ..., ak+1] for any fixed integers n ≥ 3, 2 ≤ k ≤ n, where ai = n+1
for i ∈ [2, k + 1]. First, we will show that G → (C4, K1,n). Consider any red-blue coloring α
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on the edges of G with containing no blue K1,n. We will show there is a red C4 in G. Let α be
a coloring [b+1 , b

−
2 |b+2 , b−3 |...|b+k , b

−
k+1|b

+
k+1, b

−
k+2] for some integers b+i , b−i+1 with i ∈ [1, k + 1]. For

i ∈ [1, k + 1], denote by ni the number of vertices in Ai incident to blue edges. Since there is no
blue K1,n in G then b+1 ≤ n− 1, b−i + b+i ≤ n− 1 for i ∈ [2, k + 1], b−k+2 ≤ n− 1, n1 ≤ 2n− k,
and ni ≤ n+ 1 for i ∈ [2, k + 1]. However, n1 ≥ 2n− k − 1 since otherwise there exists a red C4

in G composed by two vertices in A1 together with c1 and c2, or two vertices in A2 together with
c2 and c3. Thus, 2n− k − 1 ≤ n1 ≤ 2n− k.

Since 2n−k−1 ≤ n1 ≤ 2n−k, then b−2 ≥ (2n−k−1)−(n−1) = n−k. Since b−2 +b
+
2 ≤ n−1

then b+2 ≤ (n − 1) − (n − k) = k − 1. However, n2 ≥ n since otherwise there exists a red C4 in
G composed by two vertices in A2 together with c2 and c3, or two vertices in A3 together with c3
and c4. Thus, n ≤ n2 ≤ n+ 1. Since n ≤ n2 ≤ n+ 1, then b−3 ≥ n− (k − 1) = n− k + 1. Since
b−3 + b+3 ≤ n− 1 then b+3 ≤ (n− 1)− (n− k + 1) = k − 2.

Since A2, ..., Ak+1 have the same number of vertices, then we obtain b+i ≤ k − (i − 1) and
b−i ≥ n − (k − (i − 1)) for 2 ≤ i ≤ k + 1. However, for i ∈ [2, k] ni ≥ n since otherwise there
exists a red C4 in G composed by two vertices in Ai together with ci and ci+1, or two vertices in
Ai+1 together with ci+1 and ci+2. Thus, n ≤ ni ≤ n + 1. Since b+k+1 ≤ 0 and b−k+2 ≤ n − 1, then
b+k+1 + b−k+2 = nk+1 ≤ (0) + (n− 1) = n− 1. Therefore, there is a red C4 in G composed by two
vertices in Ak+1 together with ck+1 and ck+2.

Next, we will show the minimality, that is, G − e 9 (C4, K1,n) for any edge e ∈ G. De-
fine α1

∼= [b+1 , b
−
2 |b+2 , b−3 |...|b+k , b

−
k+1|b

+
k+1, b

−
k+2] where b+1 = n − 1, b−i = n − k + (i − 2), b+i =

k − (i − 1) with i ∈ [2, k + 1], and b−k+2 = n − 1. Next, for j ∈ [2, k + 1] define αj
∼=

[d+1 , d
−
2 |d+2 , d−3 |...|d+k , d

−
k+1|d

+
k+1, d

−
k+2] where

d−i =

{
b−i + 1, 2 ≤ i ≤ j,
b−i , j + 1 ≤ i ≤ k + 2,

d+i =

{
b+i − 1, 2 ≤ i ≤ j,
b+i , j + 1 ≤ i ≤ k + 1 or i = 1.

Let e ∈ (ci, Ai) or (Ai, ci+1) for some i ∈ [1, k + 1], then consider the maximal red-blue
coloring αi on G such that αi(e) is red. By considering the restriction of the coloring αi for
i ∈ [1, k + 1] on G− e. Thus, G− e9 (C4, K1,n). Therefore, G is a Ramsey (C4, K1,n)-minimal
graph.

2.2. Some infinite classes of graphs inR(C4, K1,n)

In this section, we are going to construct some infinite classes of graphs which belong toR(C4, K1,n)
for any integer n ≥ 3.

The first class is the theta-path graphG[2n−k, a2, ..., az+1, n+k] of length z+2 for any z ≥ 2.
The second class is the theta-path graphG[n+(k−1), a2, . . . , az1+1, 2n−k, az1+3, . . . , az2+z1+2, n+
1] of length z1 + z2 + 3 for any z1, z2 ≥ 1.

To illustrate these theta-path graphs, we give G[2n− k, a2, ..., az+1, n+ k] with n = 4, k = 1,
and z = 4 in Figure 2.

Theorem 2.7. Let n, k and z be integers, with n ≥ 3, 2 ≤ k ≤ b(n− 1)/2c and z ≥ 2. Then, the
theta-path graph G[2n− k, a2, ..., az+1, n+ k] inR(C4, K1,n), with ai = n for i ∈ [2, z + 1].
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Figure 2. Graph G[7, 4, 4, 4, 4, 5].

Proof. Let G ∼= G[2n − k, a2, ..., az+1, n + k] for any fixed integers n ≥ 3, z ≥ 1 and k ∈
[1, b(n− 1)/2c]. First, we will show that G → (C4, K1,n). Consider any red-blue coloring on
the edges of G with containing no blue K1,n. We will show that there is a red C4 in G. Let α
be a coloring [b+1 , b

−
2 |b+2 , b−3 |...|b+z , b−z+1|b+z+1, b

−
z+2|b+z+2, b

−
z+3]. For i ∈ [1, z + 2], denote by ni the

number of vertices in Ai incident to blue edges.
Since there is no blueK1,n inG then b+1 ≤ n−1, b−2 +b

+
2 ≤ n−1, b−z+3 ≤ n−1, b−i +b

+
i ≤ n−1

for i ∈ [2, z+2], n1 ≤ 2n−k, ni ≤ n for i ∈ [2, z+1], and nz+2 ≤ n+k. However, n1 ≥ 2n−k−1
since otherwise there exists a red C4 in G composed by two vertices in A1 together with c1 and c2,
or two vertices in A2 together with c2 and c3. Thus, 2n− k − 1 ≤ n1 ≤ 2n− k.

Since 2n−k−1 ≤ n1 ≤ 2n−k then b−2 ≥ (2n−k−1)−(n−1) = n−k. Since b−2 +b
+
2 ≤ n−1

then b+2 ≤ (n− 1)− (n− k) = k − 1. However, n2 ≥ n− 1 since otherwise there exists a red C4

in G composed by two vertices in A2 together with c2 and c3, or two vertices in A3 together with
c3 and c4. Thus, n− 1 ≤ n2 ≤ n. Since n− 1 ≤ n2 ≤ n, then b−3 ≥ (n− 1)− (k − 1) = n− k.
Since b−3 + b+3 ≤ n− 1 then b+3 ≤ (n− 1)− (n− k) = k − 1.

Since A2, ..., Az+1 have the same number of vertices, then we obtain b+i ≤ k − 1 and b−i+1 ≥
n − k for 2 ≤ i ≤ z + 1. However, for j ∈ [2, z + 1] nj,≥ n − 1 since otherwise there exists
a red C4 in G composed by two vertices in Aj together with cj and cj+1, or two vertices in Aj+1

together with cj+1 and cj+2. Thus, n − 1 ≤ nj ≤ n. Since b+z+2 ≤ k − 1 and b−z+3 ≤ n − 1 then
b+z+2 + b−z+3 = nz+2 ≤ (k− 1) + (n− 1) = n+ k− 2. Therefore, there is a red C4 in G composed
by two vertices in Az+2 together with cz+2 and cz+3.

Next, we will show the minimality, that is, G − e 9 (C4, K1,n) for any edge e ∈ G. Now,
define the labeling α1 as follows:

α1
∼= [b+1 , b

−
2 |b+2 , b−3 |...|b+z+1, b

−
z+2|b+z+2, b

−
z+3],

where b+1 = n − 1, b−i = n − k − 1, b+i = k with i ∈ [2, z + 2], and b−z+3 = n − 1. For
j = 2, 3, · · · , z + 2, define

αj
∼= [d+1 , d

−
2 |d+2 , d−3 |...|d+z+1, d

−
z+2|d+z+2, d

−
z+3],

where d−i =

{
b−i + 1, 2 ≤ i ≤ j,
b−i , j + 1 ≤ i ≤ z + 3,

d+i =

{
b+i − 1, 2 ≤ i ≤ j + 1,
b+i , j + 2 ≤ i ≤ z + 2 or i = 1.

Let e ∈ (ci, Ai) or (Ai, ci+1) for some i ∈ [1, z + 2], then consider the maximal red-blue
coloring αi on G such that αi(e) is red. By considering the restriction of the coloring αi for
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i ∈ [1, z + 2] on G− e. Thus, G− e9 (C4, K1,n). Therefore, G is a Ramsey (C4, K1,n)-minimal
graph.

Theorem 2.8. Let n, k, z1 and z2 be integers, with n ≥ 3, 2 ≤ k ≤ bn−1
2
c and z1, z2 ≥ 1. Then,

the theta-path graph G[n+(k−1), a2, ..., az1+1, 2n−k, az1+3, ..., az2+z1+2, n+1] inR(C4, K1,n),
with ai = n for i ∈ [2, z1 + 1] ∪ [z1 + 3, z2 + z1 + 2].

Proof. LetG = G[n+(k−1), a2, ..., az1+1, 2n−k, az1+3, ..., az2+z1+2, n+1] for any fixed integers
n ≥ 3 and z1, z2 ≥ 1. First, we will show that G→ (C4, K1,n). Consider any red-blue coloring on
the edges of G with containing no blue K1,n. We will show that there is a red C4 in G. Let α be a
coloring [b+1 , b

−
2 |b+2 , b−3 |...|b+z1+1, b

−
z1+2|b+z1+2, b

−
z1+3|...|b+m+2, b

−
m+3|b+m+3, b

−
m+4] where m = z1 + z2.

For i ∈ [1,m+ 3], denote by ni the number of vertices in Ai incident to blue edges.
Since there is no blueK1,n inG then b+1 ≤ n−1, b−2 +b

+
2 ≤ n−1, b−m+4 ≤ n−1, b−i +b

+
i ≤ n−1

for i ∈ [2,m + 3], n1 ≤ n + k − 1, ni ≤ n for i ∈ [2, z1 + 1] ∪ [z1 + 3,m + 2], nz1+2 ≤ 2n− k,
and nm+3 ≤ n+1. However, n1 ≥ n+ k− 2 since otherwise there exists a red C4 in G composed
by two vertices in A1 together with c1 and c2, or two vertices in A2 together with c2 and c3. Thus,
n+ k − 2 ≤ n1 ≤ n+ k − 1.

Since n+k−2 ≤ n1 ≤ n+k−1, then b−2 ≥ (n+k−2)−(n−1) = k−1. Since b−2 +b
+
2 ≤ n−1

then b+2 ≤ (n− 1)− (k − 1) = n− k. However, n2 ≥ n− 1 since otherwise there exists a red C4

in G composed by two vertices in A2 together with c2 and c3, or two vertices in A3 together with
c3 and c4. Thus, n− 1 ≤ n2 ≤ n. Since n− 1 ≤ n2 ≤ n, then b−3 ≥ (n− 1)− (k − 1) = n− k.
Since b−3 + b+3 ≤ n− 1 then b+3 ≤ (n− 1)− (n− k) = k − 1.

Since A2, ..., Az1+1 have the same number of vertices, then we obtain b+i ≤ n − k and b−i+1 ≥
k − 1 for i ∈ [2, z1 + 1] and j = i. However, for j ∈ [2, z1 + 1], nj ≥ n− 1 since otherwise there
exists a red C4 in G composed by two vertices in Aj together with cj and cj+1, or two vertices in
Aj+1 together with cj+1 and cj+2. Thus, n− 1 ≤ nj ≤ n.

Since b−z1+2 ≥ k−1, then b+z1+2 ≤ (n−1)−(k−1) = n−k. However, nz1+2 ≥ 2n−k−1 since
otherwise there exists a red C4 in G composed by two vertices in Az1+2 together with cz1+2 and
cz1+3, or two vertices in Az1+3 together with cz1+3 and cz1+4. Thus, 2n− k− 1 ≤ nz1+2 ≤ 2n− k.

Since 2n − k − 1 ≤ nz1+2 ≤ 2n − k, then b−z1+3 ≤ (2n − k − 1) − (n − k) = n − 1. Since
b−z1+3+b

+
z1+3 ≤ n−1 then b+z1+3 ≤ (n−1)− (n−1) = 0. However, nz1+3 ≥ n−1 since otherwise

there exists a red C4 in G composed by two vertices in Az1+3 together with cz1+3 and cz1+4, or two
vertices in Az1+4 together with cz1+4 and cz1+5. Thus, n− 1 ≤ nz1+3 ≤ n.

Since Az1+3, ..., Am+2 have the same number of vertices, then we obtain b+i ≤ 0 and b−i+1 ≥
n− 1 for i ∈ [z1 + 3,m+ 2]. However, for j ∈ [z1 + 3,m+ 2], nj ≥ n− 1 since otherwise there
exists a red C4 in G composed by two vertices in Aj together with cj and cj+1, or two vertices in
Aj+1 together with cj+1 and cj+2. Thus, n− 1 ≤ nj ≤ n.

Since b+m+3 ≤ k − 1 and b−m+4 ≤ n− 1, then b+m+3 + b−m+4 = nm+3 ≤ (0) + (n− 1) = n− 1.
Therefore, there is a red C4 in G composed by two vertices in Am+3 together with cm+3 and cm+4.

Next, we will show the minimality, that is, G − e 9 (C4, K1,n) for any edge e ∈ G. Now,
define the labeling α1 as follows:

α1
∼= [b+1 , b

−
2 |b+2 , b−3 |...|b+z1+1, b

−
z1+2|b+z1+2, b

−
z1+3|...|b+m+2, b

−
m+3|b+m+3, b

−
m+4],
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where

b−i =


k − 2, 2 ≤ i ≤ z1 + 2,
n− 2, z1 + 3 ≤ i ≤ m+ 3,
n− 1, i = m+ 4.

b+i =


n− 1, i = 1,
n− k + 1, 2 ≤ i ≤ z1 + 2,
1, z1 + 3 ≤ i ≤ m+ 3.

For j ∈ [2,m+ 3], define

αj
∼= [d+1 , d

−
2 |d+2 , d−3 |...|d+z1+1, d

−
z1+2|d+z1+2, d

−
z1+3|...|d+m+2, d

−
m+3|d+m+3, d

−
m+4],

where

d−i =

{
b−i + 1, 2 ≤ i ≤ j,
b−i , j + 1 ≤ i ≤ m+ 4,

d+i =

{
b+i − 1, 2 ≤ i ≤ j + 1,
b+i , j + 2 ≤ i ≤ m+ 3 or i = 1.

Let e ∈ (ci, Ai) or (Ai, ci+1) for some i ∈ [1,m + 3], then consider the maximal red-blue
coloring αi on G such that αi(e) is red. By considering the restriction of the coloring αi for
i ∈ [1,m+3] on G− e. Thus, G− e9 (C4, K1,n). Therefore, G is a Ramsey (C4, K1,n)-minimal
graph.
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