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Abstract

The majority of graphs whose sandpile groups are known are either regular or simple. We give an
explicit formula for a family of non-regular multi-graphs called thick cycles. A thick cycle graph
is a cycle where multi-edges are permitted. Its sandpile group is the direct sum of cyclic groups
of orders given by quotients of greatest common divisors of minors of its Laplacian matrix. We
show these greatest common divisors can be expressed in terms of monomials in the graph’s edge
multiplicities.
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1. Introduction

The Abelian Sandpile Model was first conceived in 1987 by the physicists Bak, Tang, and
Wiesenfeld [2], who developed a cellular automaton model for natural systems with a critical point
as an attractor. In 1990, Dhar [21] generalized their model to run on a graph with a distinguished
vertex called a sink. The collection of critical stable configurations in the model form a group, the
sandpile group of a graph. The sandpile group is also called the critical group (in the chip-firing
game [7, 8, 9]), or, in other contexts, the Picard group or the Jacobian group (when regarding
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the graph as a discrete analogue of a Riemann surface [3]), the group of bicycles (a way to count
spanning trees [5]), the tree group (also related to spanning trees [6]), and the group of components
(on arithmetical graphs [28]).

Explicit formulae for the sandpile groups of several families of graphs are known. These
include complete graphs Kn [7, 29], complete bipartite graphs Km,n [29], complete multipartite
graphs Kn⃗ [25], cycles Cn [31], generalized de Bruijn graphs [12], line graphs of graphs [4],
Möbius ladders Mn [14, 20], regular trees [37], threshold graphs [18], square cycles C2

n [15],
twisted bracelets [34], and wheel graphs Wn [19]. Sandpile groups of certain Cartesian products
of graphs are also known [13, 16, 24, 27, 35, 38, 39]. However, there are only a few families of
non-simple graphs for which the sandpile groups are known; these include thick tree graphs [17],
wired tree graphs T̄n [26], and (q, t)-wheel graphs Wk(q, t) [32].

We provide a general formula for the sandpile group of a family of non-regular multi-graphs
called thick cycles (or thick n-cycles). A thick cycle graph is a cycle with multi-edges. The authors
would like to thank a referee for pointing out our formula can be recovered from a result due to
Wagner [40]. Wagner proved the sandpile group of a graph only depends on its graphic matroid.
Whitney’s 2-isomorphism theorem then shows that 2-vertex connected graphs (like thick cycles)
have the same matroid if only one can perform a sequence of 2-isomorphisms to get from one graph
to another. One can pass between any two thick cycles that have the same edges multiplicities via
a sequence of 2-isomorphisms. Our result is an independent derivation of the formula for the
sandpile group of a thick cycle graph, and it is the first known general formula for the sandpile
group of any family of non-regular multi-graphs.

Section 2 of this paper consists of the necessary background information on sandpile groups.
In Section 3 we prove the following:

Theorem (3.1). The sandpile group of a thick n-cycle Ca⃗ with multiplicity vector a⃗ = (a1, . . . , an)
is

S(Ca⃗) ∼= Zg1 ⊕ Z g2
g1

⊕ · · · ⊕ Z gn−2
gn−3

⊕ Z |S(Ca⃗)|
gn−2

,

where gt = gcd (ai1 · · · ait | 1 ≤ i1 < · · · < it ≤ n) for t = 1, . . . , n− 2 (gcd denotes the greatest
common divisor).

Theorem 3.1 implies the sandpile groups of thick cycles are isomorphic when their multiplicity
vectors’ entries are permutations of each other. In Section 4 we list a brief proof of this corol-
lary and a few more consequences. An explicit formula for the sandpile group of a thick cycle
simultaneously gives a formula for the sandpile group of its dual [19]. Thus we have formulae
for subdivided banana graphs and we recover and generalize the formula for book graphs given by
Emig, et al. [22]. A formula for the sandpile group of a thick cycle also provides more insight
into the study of bilinear pairings on graphs. We suggest future directions of research to pursue in
Section 5.

2. Preliminaries

Definition 2.1. A thick cycle of order n (or a thick n-cycle), denoted Ca⃗, is a multi-graph consist-
ing of an n-cycle with edge multiplicities given by the multiplicity vector a⃗ = (a1, a2, . . . , an).
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Figure 1. Thick 5-cycle with multiplicity vector a⃗ = (3, 2, 4, 2, 3).

For convention, we label a thick cycle with vertices v1, . . . , vn and multiplicity vector a⃗ =
(a1, . . . , an) such that ai is the multiplicity of the edge joining vi and vi+1, indices modulo n.
Figure 1 is an example of a thick 5-cycle with multiplicity vector a⃗ = (3, 2, 4, 2, 3). Thick cycles
are undirected graphs. Recall that an undirected edge can be presented as two opposite directed
edges. We note here that the broader sandpile group theory is on directed graphs; however, we
shall only consider undirected graphs, in which case the theory is somewhat simplified.

2.1. The sandpile group
The Laplacian of a(n undirected) graph Γ is the matrix

L = L(Γ) = (Lij) =

{
−wt(vi, vj), i ̸= j,

di, i = j,

where wt(vi, vj) denotes the number of edges joining the vertices vi and vj , and di denotes the
degree of the vertex vi. Each of the entries in a given row sum to zero, and so L has rank at
most n − 1. Suppose we distinguish a vertex s = vi in Γ. We define the reduced transposed
Laplacian ∆̃s as the submatrix of L obtained by omitting the ith row and column (the Laplacian is
symmetric for undirected graphs, but not necessarily for directed graphs). The sandpile group of Γ
with distinguished vertex s is given by

S(Γ, s) ∼= Zn−1/∆̃sZn−1 = coker(∆̃s),

the cokernel of the matrix ∆̃s. Surprisingly, it turns out the sandpile group of an undirected graph
is independent of the choice of distinguished vertex [19]. Thus we simply write S(Γ) = S(Γ, s).

2.2. Known results used
A well-known result in the theory of sandpile groups gives a way to determine the order of

S(Γ):
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Theorem (Kirchhoff’s Matrix-Tree Theorem). Suppose Γ is an undirected graph. Then for any
distinguished vertex s in Γ, the number of spanning trees of Γ is

κ(Γ) = | det(∆̃s)|,

where ∆̃s is the reduced transposed Laplacian for Γ.

It follows that the reduced transposed Laplacian has rank exactly n− 1.

Now recall that an n× n matrix M is Z-equivalent to a matrix M ′ if M ′ can be obtained from
M by some sequence of the following row (or column) operations: (1) adding an integer multiple
of one row (column) to another, (2) multiplying a row (column) by −1, or (3) deleting row i and
column j if column j is the standard basis vector ei. In addition, given a matrix M , we call the
nonzero entries on D, the diagonal Z-equivalent matrix of M , the invariant factors of M . We also
recall the Invariant Factors Theorem:

Theorem (Invariant Factors Theorem). Suppose M is an n× n integer matrix of rank r. Then M
is Z-equivalent to a diagonal matrix

D =


f1

. . .
fr

0

 (1)

and
f1 = m1, f2 =

m2

m1

, . . . , fr =
mr

mr−1

,

where for 1 ≤ t ≤ r, mt denotes the greatest common divisor (gcd) of the t-minors of M .

The diagonal matrix D is the Smith normal form of M . The non-unit integers among f1, . . . , fr
are the invariant factors of M and of the finitely generated abelian group

coker(D) ∼= Zf1 ⊕ · · · ⊕ Zfr ⊕ Zn−r ∼= coker(M).

Thus to compute S(Γ, s), we compute the Smith normal form of ∆̃s (so it is enough to compute
the Smith normal form of the Laplacian). Similar matrices have the same determinant and so
| det(∆̃s)| = |S(Γ)| is the product of the invariant factors for ∆̃s.

3. Main Results

Proposition 3.1. Given a thick n-cycle Ca⃗ with multiplicity vector a⃗ = (a1, . . . , an), the order of
the sandpile group S(Ca⃗) is given by the formula

|S(Ca⃗)| =
n∑

i=1

a1 · · · an
ai

.
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Proof. By Kirchhoff’s Matrix-Tree Theorem, the number of spanning trees on a graph is equal to
the order of its sandpile group. To generate a spanning tree for Ca⃗, we remove the edges between
two adjacent vertices and then choose a single edge from each set of edges left. This creates a
connected subgraph with n vertices and n− 1 edges. The number of spanning trees will therefore
be the number of ways we can choose n − 1 edges in this manner. Let Γi denote the subgraph of
Ca⃗ obtained by removing the edges between vi and vi+1. The product of all aj for 1 ≤ j ≤ n,
j ̸= i yields the number of spanning trees on Γi,

κ(Γi) =
n∏

j=1,j ̸=i

aj.

The total number of spanning trees on Ca⃗ is the sum of the number of spanning trees of the sub-
graphs Γi.

|S(Ca⃗)| =
n∑

i=1

κ(Γi) =
n∑

i=1

n∏
j=1,j ̸=i

aj =
n∑

i=1

a1 · · · an
ai

.

Theorem 3.1 (Sandpile Group of a Thick Cycle). The sandpile group of a thick n-cycle Ca⃗ with
multiplicity vector a⃗ = (a1, . . . , an) is

S(Ca⃗) ∼= Zg1 ⊕ Z g2
g1

⊕ · · · ⊕ Z gn−2
gn−3

⊕ Z |S(Ca⃗)|
gn−2

,

where gt = gcd (ai1 · · · ait | 1 ≤ i1 < · · · < it ≤ n) for t = 1, . . . , n− 2.

Proof. Unless stated otherwise, when performing arithmetic on any indices we work modulo n.
Given the Laplacian matrix L = L(Ca⃗), let L′ denote the matrix resulting from permuting the jth
column of L to the (j + 1)th column:

L′ =



−a1 0 · · · 0 −an an + a1

a1 + a2 −a2
. . . . . . 0 −a1

−a2
. . . . . . . . . ... 0

. . . . . . . . . −an−2 0
...

. . . . . . −an−2 an−2 + an−1 −an−1 0
0 · · · 0 −an−1 an−1 + an −an


Up to row and column indices, L′ and L have the same Smith normal form and the same minors.
Thus the invariant factors of S(Ca⃗) are

f1 = m1, f2 =
m2

m1

, . . . , fn−1 =
mn−1

mn−2

,

where mt denotes the greatest common divisor of the t-minors of L′ (t = 1, . . . , n − 1); in fact,
mn−1 = |S(Ca⃗)|. We claim all nonzero t-minors of L′ are sums of square-free degree t monomials,
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up to sign, in the multiplicities a1, . . . , an. Granting the claim and using the fact that for integers
a, b,

gcd(a, a+ b) = gcd(±a,±b),

if for every t-subset {i1, . . . , it} of distinct indices (t = 1, . . . , n − 2) L′ has a minor equal to
±ai1 · · · ait , then it follows that mt = gt.

It is clear the size t minors are homogeneous of degree t in the ais because the nonzero entries
of L′ are all linear in the ais. Assume there is a minor with a term that is not square-free. Then in
particular there is a size 2 subminor where an ai appears either on both diagonal entries or on both
anti-diagonal entries. However, by construction of L′ the only such 2-minors are of the form

µ =

∣∣∣∣ai−1 + ai −ai
−ai ai + ai+1

∣∣∣∣ ,
in which case the square terms cancel.

We now show that for a fixed t-subset I = {i1, . . . , it} of distinct indices, L′ has a minor equal
to ±ai1 · · · ait . First, reorder the elements in I so that i1 < · · · < it ≤ n. We shall construct a t× t
matrix M similar to a submatrix of L′, such that M is block upper triangular, each of its diagonal
blocks are either upper or lower triangular, and its main diagonal entries are −ai1 , . . . ,−ait . Then
detM = ±ai1 · · · ait is equal to some t-minor of L′.

Step 1. Let M ′ denote the submatrix of L′ given by the row and column indices from I . The main
diagonal of M ′ consists of the entries −ai1 , . . . ,−ait from the main diagonal of L′. We claim that
if there exists i ∈ I such that in M ′, −ai is the only nonzero entry in either its row or column, then
we may put M = M ′ and then we are done. Indeed, if −ai is the only nonzero entry in its row
then i− 1, i− 2 /∈ I and we can decompose M ′ as a block upper triangular matrix

M ′ =

[
A C
0 B

]
, (2)

such that −ai is the upper leftmost entry of B, and both blocks A and B are lower triangular. Then
detM = detA detB. On the other hand, if −ai is the only nonzero entry in its column then
i + 1, i + 2 /∈ I . Thus we can decompose M ′ as in (2), but with −ai as the lower rightmost entry
of A. Again, both blocks A and B are lower triangular and the result follows.

Step 2. Given this decomposition, suppose M ′ has no row or column containing exactly one
nonzero entry, i.e., for every i ∈ I , we must have at least one element from each of the sets
{i− 1, i− 2}, {i + 1, i + 2} also contained in I . It is not clear whether M ′ has the desired deter-
minant. We instead use the following algorithm to construct a submatrix of L′ whose determinant
is ±ai1 · · · ait . Let R = (R1, . . . , Rt) and C = (C1, . . . , Ct) denote ordered, indexed sets. We
initialize by setting R = C = (i1, . . . , it) and putting k = t. At each step, let M denote the
submatrix of L′ whose rows are indexed by R and columns are indexed by C. If Rk − Rk−1 = 2
then replace Rk 7→ Rk + 1, Ck 7→ Ck − 1, and k 7→ k − 1. The algorithm ends when k = 1.

In the algorithm, if the initial consecutive row indices Rk, Rk−1 differ by 2, it follows that
the kth column of M consists of −aik on the main diagonal with −aik+1

directly below, and this
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Table 1. Index condition from Example 1. For each index ik ∈ I = {1, 2, 3, 5, 6, 7, 9, 10}, we check that at least one
element from each of the sets {ik − 1, ik − 2}, {ik + 1, ik + 2} is contained in I .

k ik ik − 1, ik − 2 ∈ I ik + 1, ik + 2 ∈ I

1 1 9,10 2,3
2 2 10,1 3
3 3 1,2 5
4 5 3 6,7
5 6 5 7
6 7 6 9
7 9 7 10,1
8 = t 10 9 1,2

prevents any decomposition into a block upper triangular matrix. Incrementing Rk by one and
decrementing Ck by one alters the indices so that the entry −aik on the main diagonal of M comes
from the lowermost diagonal of L′. This may cause C to have repeated entries. However, if that is
the case, it means that Rk−1, Rk−2 also differ by 2, so again we reselect indices to pick the entry
−ak−1 from the lowermost diagonal of L′. When the algorithm ends, the resulting matrix M is
block upper triangular, with blocks alternating between lower and upper triangular, and its main
diagonal consists of the entries −ai1 , . . . , ait . Therefore detM = ±ai1 · · · ait .

Example 1. Here we provide an example of how to utilize the algorithm in the proof of Theorem
3.1. Suppose n = 10 and we wish to find the minor of the Laplacian L equal to ±a1a2a3a5a6a7a9a10.

Step 1. The index set is I = {1, 2, 3, 5, 6, 7, 9, 10} and we have

M ′ =



−a1 0 0 0 0 0 −a10 a10 + a1
a1 + a2 −a2 0 0 0 0 0 −a1
−a2 a2 + a3 −a3 0 0 0 0 0
0 0 −a4 −a5 0 0 0 0
0 0 0 a5 + a6 −a6 0 0 0
0 0 0 −a6 a6 + a7 −a7 0 0
0 0 0 0 0 −a8 −a9 0
0 0 0 0 0 0 a9 + a10 −a10


.

However, M ′ has no row or column consisting of exactly one nonzero entry. Indeed, Table 1 verifies
the necessary and sufficient condition on the indices, namely, that for each k, at least one element
from each of the sets {ik − 1, ik − 2}, {ik + 1, ik + 2} is contained in I . Thus we must proceed to
Step 2.

Step 2. Table 2 shows each iteration of the algorithm that will modify the indices appearing in R
and C until the desired matrix M is obtained. The bold entries indicate each change in R and
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Table 2. Each iteration of the algorithm in Step 2 of Theorem 3.1, applied to Example 1.

Iteration k Rk −Rk−1 Resulting R Resulting C

1 8 10-9=1 no change no change
2 7 9-7=2 (1,2,3,5,6,8,9,10) (1,2,3,5,6,6,9,10)
3 6 8-6=2 (1,2,3,5,7,8,9,10) (1,2,3,5,5,6,9,10)
4 5 7-5=2 (1,2,3,6,7,8,9,10) (1,2,3,4,5,6,9,10)
5 4 6-3=3 no change no change
6 3 3-2=1 no change no change
7 2 2-1=1 no change no change

C. The resulting matrix with row indices R = (1, 2, 3, 6, 7, 8, 9, 10) and column indices C =
(1, 2, 3, 4, 5, 6, 9, 10) is

M =



−a1 0 0 0 0 0 −a10 a10 + a1
a1 + a2 −a2 0 0 0 0 0 a1
−a2 a2 + a3 −a3 0 0 0 0 0
0 0 0 −a5 a5 + a6 −a6 0 0
0 0 0 0 −a6 a6 + a7 0 0
0 0 0 0 0 −a7 0 0
0 0 0 0 0 0 −a9 0
0 0 0 0 0 0 −a9 + a10 −a10


.

The bold entries are the desired factors of the determinant, while the shaded regions are the trian-
gular blocks on the diagonal. Since below the blocks are zeros the determinant of M is equal to
the product of the determinants of the blocks.

4. Consequences

In this section, we discuss some consequences of Theorem 1.

4.1. Permutations of thick cycle multiplicities
We consider the implication of our result to thick cycles whose edge multiplicities are permu-

tations of each other. That is, we consider when the edge multiplicity vectors of two thick cycles
are equivalent up to permutation.

We note that the invariant factors of a thick cycle graph’s sandpile group are dependent solely
dependent upon the edge multiplicities. Thus, the order in which the edge multiplicities are ar-
ranged in our graph has no influence on them. Hence, any permutation of the n edges in an n-thick
cycle graph will yield the same sandpile group.

Corollary 4.1. Given a thick cycle Ca⃗, the sandpile group S(Ca⃗) is equal to the sandpile group
S(Cb⃗), where b⃗ is any permutation of the components of a⃗.
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4.2. Sandpile groups of dual graphs
A dual graph Γ′ of a planar graph Γ is constructed by placing a vertex of the dual in every face

of Γ and creating edges by connecting vertices of Γ′ across edges of Γ. We note that under this
definition, a planar graph Γ may have many different duals, depending on its embedding. Dual
graphs are a generalization of dual tessellations and of dual polyhedra, the latter of which are used
in linear and integer programming. R. Cori and D. Rossin showed in 1990 [19] that the sandpile
groups of a graph and any of its dual are isomorphic.

As an example, recall that the book graph, B(n, k), is the graph Cartesian product of the star
graph Sn+1 and the path graph Pk. It has been proved by Emig, et al [22] that B(n, k) is a dual of
the subfamily of thick cycle graphs, the thick (k + 1)-cycles C(1,n−1,...,n−1). Hence, by computing
the sandpile group for the general thick cycle graph, we recover and indeed generalize the formula
for the sandpile group of book graphs.

Corollary 4.2. The sandpile group of a book graph B(n, k), with k n-cycle pages, is equal to

S(B(n, k)) = Zk−2
n−1.

Additionally, consider the so-called subdivided banana graphs as in [23]. A subdivided banana
graph is any graph which can be constructed in the following manner: consider two nodes a and
b with k edges between them. On each of the edges 1 ≤ l ≤ k, we introduce sl new nodes,
subdividing the edge from a to b into a path of length l + 2. This yields the subdivided banana
Bs1+1,s2+1,...,sk+1. D. Lorenzini [30] computed the order of specific elements in the sandpile group
for subdivided banana graphs. The thick cycle graph Ca⃗ is a planar dual to the subdivided banana
graph Bs⃗, where a⃗ = s⃗. Our result is consistent with the formulae in [11].

4.3. Bilinear pairings
In this paper, as in Shokreih [36], we consider a bilinear pairing to be a well-defined, symmet-

ric, non-degenerate map ⟨·, ·⟩ : M × N → K, where M,N and K are groups. We note that the
exact specifications of bilinear maps may vary by field (for example, in cryptography the map may
be defined over R−Modules, or require M and N to have prime order).

On any graph Γ, the sandpile group S(Γ) comes with a bilinear pairing of the form

⟨·, ·⟩ : S(Γ)× S(Γ) → Q/Z

with ⟨·, ·⟩ specifically described by [36]. This map is called the monodromy pairing (introduced
as early as 1997 in [1] in the context of graphs and later in [10]). Shokrieh uses the monodromy
pairing to study the discrete logarithm problem on the Jacobian of finite graphs. In addition, L.
Gaudet, et al. [23] have previously used thick cycle graphs to study bilinear pairings as they arise
from the sandpile groups of various classes of graphs.

5. Future Work

Thick cycles are one of the first families of multi-graphs, and the first family of non-regular
multi-graphs, to have their sandpile group computed. The methods and results in this paper can
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hopefully be utilized in computing the sandpile groups of more families of non-regular multi-
graphs. One such particularly interesting family are the series parallel graphs, of which thick
cycles are a subfamily. Series parallel graphs are widely studied in electrical networks and are
also researched in computational complexity theory. Thick cycles have already proved useful in
studying this wider class of graphs [33]. In addition, thick cycle graphs will be of even more use in
studying bilinear forms, now that a general formula for their sandpile groups has been computed.
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[12] S.H. Chan, H.D.L. Hollmann, and D.V. Pasechnik, Sandpile groups of generalized de Bruijn
and Kautz graphs and circulant matrices over finite fields, J. Algebra 421 (2015), 268–295.

[13] P. Chen and Y. Hou, On the sandpile group of P4 × Cn, European J. Combin. 29(2) (2008),
532–534.

[14] P. Chen, Y. Hou, and C. Woo, On the critical group of the Mőbius ladder graph, Australas.
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