

Electronic Journal of Graph Theory and Applications

The locating chromatic number of (k, n)-split cycle graph and its barbell operation

Asmiati*a, Kasandra Prawinastia, Maharani Damayantib, Lyra Yuliantic

asmiati.1976@fmipa.unila.ac.id, kasandraprawinasti45@gmail.com, maharanidamayanti56@gmail.com, lyra@sci.unand.ac.id

Abstract

The locating chromatic number remains an active topic in graph theory. It combines the concepts of partition dimension and proper vertex coloring. A necessary condition for determining the locating chromatic number is that each vertex must have a unique color code under a minimal coloring. This paper investigates the locating chromatic number of the (k,n)-split cycle graph and its barbell operation.

Keywords: locating chromatic number, split cycle graph, barbell operation.

Mathematics Subject Classification: 05C12, 05C15

DOI: 10.5614/ejgta.2025.13.2.3

1. Introduction

Let G = (V, E) be a finite and connected graph. A l-coloring of G is a function $c : V(G) \longrightarrow 1, 2, \cdots, l$, where $c(u) \neq c(v)$ for any two adjacent vertices $u \neq v$ in G. Let $\Pi = \{C_1, C_2, \cdots, C_l\}$

Received: 3 October 2024, Revised: 3 June 2025, Accepted: 15 June 2025.

^aDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Lampung Jalan Sumantri Brojonegoro no 1, Bandar Lampung, Indonesia

^bDepartment of Mathematics, Faculty of Sciences, Institut Teknologi dan Sains Nahdlatul Ulama Lampung Jalan Dahlia, Labuhan Dalam, Bandar Lampung, Indonesia

^cDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Andalas Kampus UNAND Limau Manis Padang 25163, Indonesia

^{*}corresponding author

be a partition of V(G), where C_i is the set of all vertices colored by the color i for $1 \le i \le l$. The color code $c_{\Pi}(v)$ of a vertex v in G is defined as the l-ordinate $(d(v,C_1),d(v,C_2),\cdots,d(v,C_l))$, where $d(v,C_i)=\min\{d(v,x);x\in C_i\}$ for $1\le i\le l$. The l-coloring c of G such that all vertices have different color codes is called a locating coloring of G. The locating chromatic number of G, denoted by $\chi_L(G)$, is the minimum l such that G has a locating coloring.

The locating chromatic number was studied by Chartrand et al. [4] for paths, cycles, complete multipartite graphs, double stars. Next, Chartrand et al. [5] gave a characterization of all graphs of order n with locating chromatic number (n-1). Asmiati et al. [1] obtained the locating chromatic number of amalgamation of stars, firecracker graphs [2], whereas Irawan et al.[8] for origami graphs, and Syofyan et al.[12] for homogeneous lobster. In 2018, Asmiati et al. [3] determined the locating chromatic number of barbell graphs contains complete graph and generalized Petersen graphs. For other operations, Baskoro and Purwasih [6] determined the locating chromatic number of corona product, Behtoei and Anbarloei [7] for join of graphs, and Sudarsana et al.[11] for shadow of a connected graph. Next, Ridwan et al. [10] discussed some general connections among partition dimension and locating chromatic number of graphs.

The following definition of (k,n)—split cycle graph is taken from [9]. A (k,n)—split cycle graph has the vertex set $V = \{v_i, v_i^j; i \in [1,n], j \in [1,k]\}$ and the edge set $E = \{v_i v_{i+1}; i \in [1,n-1]\} \cup \{v_n v_1\} \cup \{v_i v_{i+1}^j; i \in [1,n-1], j \in [1,k]\} \cup \{v_n v_1^j; j \in [1,k]\} \cup \{v_1 v_i^j; i \in [1,n-1], j \in [1,k]\} \cup \{v_1 v_n^j; j \in [1,k]\}.$

Prawinasti et al. [9] determined the locating chromatic number of (1,n)-split cycle graph for $n \geq 3$. In this paper, we do further results about the locating chromatic number of (k,n)-split cycle graph, for $k \geq 2$ and its barbell operation. The barbell of a (k,n)-split cycle graph is formed by taking two copies of the (k,n)-split cycle graph and connecting them by a bridge, denoted by B(k,n)-split cycle graph. A B(k,n)-split cycle graph has the vertex set $V = \{v_i,w_i,v_i^j,w_i^j;i\in[1,n],j\in[1,k]\}$ and the edge set $E=\{v_iv_{i+1},w_iw_{i+1};i\in[1,n-1]\}$ $\cup\{v_nv_1,w_nw_1\}\cup\{v_iv_{i+1}^j,w_iw_{i+1}^j;i\in[1,n-1],j\geq 1,i=j\}\cup\{v_1v_n^j,w_1w_n^j;j\geq 1\}\cup\{e\}$, where $e=(v_{n+1}^k,w_{n+1}^k)$ is a bridge for odd n and $e=(v_{n}^k,w_{n}^k)$ for even n.

The following basic theorems are needed to determine the lower bound of the locating chromatic number of a graph. The set of neighbors of a vertex q in G is denoted by N(q).

Theorem 1.1. (see [4]). Let c be a locating coloring in a connected graph G. If u and v are two distinct vertices of G such that d(u, w) = d(v, w) for all $w \in V(G) - \{u, v\}$, then $c(u) \neq c(v)$. In particular, if u and v are nonadjacent vertices such that N(u) = N(v), then $c(u) \neq c(v)$.

Locating chromatic number of (1,n)-split cycle graph for $n\geq 3$ is given in the following theorem.

Theorem 1.2. (see [9]). Let G be a (1,n)-split cycle graph with $n \geq 3$. Then the locating chromatic number of G is 4 if n is odd and 5 if n is even.

2. Main results

The following theorems give the locating chromatic number of (k, n)-split cycle graph and B(k, n)-split cycle graph, respectively.

Theorem 2.1. For $n \geq 3$ and $k \geq 2$, the locating chromatic number of (k, n)-split cycle graph is (k+2) if n is odd and (2k+3) if n is even.

Proof. First, we determine the lower bound for the locating-chromatic number of (k, n)-split cycle graph, $n \geq 3$ and $k \geq 2$. Observe that $d(u, v_i^h) = d(u, v_i^l)$ for all $u \in V(G) - \{v_i^h, v_i^l\}$, where $h, l \ge 1$ and $h \ne l$. Then, by Theorem 1.1, we have $c(v_i^h) \ne c(v_i^l)$. As a result, we need at least (k+2) colors for $(k-spl(C_n))$, $n\geq 3$ and $k\geq 2$. Similarly, we have (k,n)-split cycle graph $\geq (2k+3)$ for even n.

Next, We now construct an upper bound of locating chromatic number for (k, n)-split cycle graph, $n \ge 3$ and $k \ge 2$. Consider the following two cases.

Case 1. n is odd. Let c be a coloring using (k+2) colors as follows:

$$c(v_i) = \begin{cases} 1, & \text{for } i = 1; \\ 2, & \text{for odd } i \ge 3; \\ 3, & \text{for even } i, i \ge 2. \end{cases}$$

$$c(v_i^2) = \begin{cases} 1, & \text{for } i = 1; \\ 2, & \text{for odd } i; \\ 3, & \text{for even } i. \end{cases}$$

$$c(v_i^1) = 4 \text{ for } i \in [1, n]$$

$$c(v_i^j) = j + 2 \text{ for } j \in [3, k], i \in [1, n]$$

The color codes of (k, n)-split cycle graph for odd n are :

The color codes of
$$(k,n)$$
—split cycle graph for odd n are :
$$c_{\pi}(v_i) = \begin{cases} i-1, & 1^{st} \text{ ordinate for } i \leq \frac{n+1}{2}; \\ n-i+1, & 1^{st} \text{ ordinate for } i > \frac{n+1}{2}; \\ 0, & 2^{nd} \text{ ordinate for even } i; \\ 3^{rd} \text{ ordinate for odd } i, i \geq 3; \\ 1, & \text{other ordinates.} \end{cases}$$

$$\begin{cases} i-1, & 1^{st} \text{ ordinate for } 2 \leq i \leq \frac{n+1}{2}, \ j=1,3; \\ 1^{st} \text{ ordinate for } i \leq \frac{n+1}{2}, \ j=2; \\ n-i+1, & 1^{st} \text{ ordinate for } i \geq \frac{n+1}{2}, \ j\geq 1; \\ 0, & 4^{th} \text{ ordinate for } i \geq 1, \ j=1; \\ 2^{nd} \text{ ordinate for even } i, j=2; \\ 3^{rd} \text{ ordinate for odd } i, i \geq 3, \ j=2; \\ (j+2)^{th} \text{ ordinate for odd } i, j \geq 1 \\ 3^{rd} \text{ ordinate for odd } i, j \geq 1 \\ 2, & \text{other ordinates.} \end{cases}$$

Since all vertices of (k, n)-split cycle graph for odd $n, n \ge 3$ and $k \ge 2$ have distinct color codes, then c is a locating coloring using k+2 colors. As a result, (k, n)—split cycle graph $\leq k+2$. Thus $\chi_L((k, n)$ -split cycle graph)= k + 2.

Case 2. n is even. Let c be a coloring using (2k+3) colors for $k \ge 2$ as follows:

$$c(v_i) = \begin{cases} 1, & \text{for } i = 1; \\ 2, & \text{for even } i, \ 2 \le i \le n - 1; \\ 3, & \text{for odd } i, \ i \ge 3; \\ 4, & \text{for } i = n. \end{cases}$$

$$c(v_i^j) = \begin{cases} 3, & \text{for } i = 1 \text{ and } j = 1; \\ 4, & \text{for } i = n \text{ and } j = 1; \\ 2j + 3, & \text{for } 1 \le j \le k, \ 2 \le i \le n - 1; \\ 2j + 2, & \text{for } 2 \le j \le k, \ i = 1, n. \end{cases}$$
The color codes of (k, n) -split cycle graph for even n are:
$$\begin{cases} (i - 1) & \text{if ordinate for } i \le \frac{n}{2}; \end{cases}$$

Since all vertices in (k, n)-split cycle graph for even n have distinct color codes, then c is a

locating coloring using 2k+3 colors for $k \ge 1$. As a result, $\chi_L((k,n)-\text{split}$ cycle graph) $\le 2k+3$. Thus $\chi_L((k,n)-\text{split}$ cycle graph) = 2k+3 for even n.

Theorem 2.2. The locating chromatic number of B(k, n)-split cycle graph, $n \ge 3$ and $k \ge 2$ is (k+3) for odd $n \ge 3$ and (2k+4) for otherwise.

Proof. First, we determine the lower bound of locating-chromatic number for B(k,n)-split cycle graph with odd n. Since B(k,n)-split cycle graph contains (k,n)-split cycle graph, then by Theorem 2.1, we need at least k+2 colors. Suppose that c is a (k+2)-locating coloring of B(k,n)-split cycle graph. B(k,n)-split cycle graph contains two (k,n)-split cycle graphs and $c(v_i^s) \neq c(v_i^t)$, where $s \neq t$, $s,t \geq 0$. Since we use (k+2) colors, then we have $c(v_i^s) = c(w_i^s)$ such that $c_\pi(v_i^s) = c_\pi(w_i^s)$, a contradiction. As a result, $\chi_L(B(k,n))$ -split cycle graph) $\geq k+3$ for odd n. The case is similar for even n.

Next, we determine the upper bound of the locating chromatic number for B(k, n)—split cycle graph, $n \ge 3$ and $k \ge 2$. Consider the following two cases.

Case 1. n is odd. Let c be a coloring using (k+2) colors as follows:

$$c(v_i) = \begin{cases} 1, & \text{for } i = 1; \\ 2, & \text{for even } i; \\ 3, & \text{for odd } i, i \geq 3. \end{cases}$$

$$c(w_i) = \begin{cases} 1, & \text{for } i = 1; \\ 2, & \text{for even } i; \\ 3, & \text{for odd } i, i \geq 3. \end{cases}$$

$$c(v_i^1) = 4, & \text{for } i \geq 1$$

$$c(w_i^1) = 5, & \text{for } i \geq 1$$

$$c(w_i^2) = \begin{cases} 1, & \text{for } i = 1; \\ 2, & \text{for even } i, i \neq \frac{n+1}{2}; \\ 3, & \text{for odd } i, i \neq 1 \text{ and } i \neq \frac{n+1}{2}; \\ 4, & \text{for } i = \frac{n+1}{2}. \end{cases}$$

$$c(w_i^2) = \begin{cases} 1, & \text{for } i = 1; \\ 2, & \text{for even } i, i \neq \frac{n+1}{2}; \\ 3, & \text{for odd } i, i \neq 1 \text{ and } i \neq \frac{n+1}{2}; \\ 5, & \text{for } i = \frac{n+1}{2}. \end{cases}$$

$$\mathbf{Case} \ k \geq 3. \ c(v_i^2) = \begin{cases} 1, & \text{for } i = 1; \\ 2, & \text{for even } i; \\ 3, & \text{for odd } i, i \geq 3. \end{cases}$$

$$c(v_i^2) = \begin{cases} 1, & \text{for } i = 1; \\ 2, & \text{for even } i; \\ 3, & \text{for odd } i, i \geq 3. \end{cases}$$

$$\begin{array}{l} c(v_i^j)=j+2 \text{, for } i\geq 1 \text{ and } 3\leq j\leq k.\\ c(w_i^j)=j+3 \text{, for } i\geq 1 \text{ and } 3\leq j\leq k. \end{array}$$

The color codes of B(k,n)—split cycle graph for odd n are:

The color codes of
$$B(k,n)$$
—split cycle graph for odd n are:
$$\begin{cases} i-1, & 1^{st} \text{ ordinate for } i \leq \frac{n+1}{2}, \ n \geq 3; \\ n-i+1, & 1^{st} \text{ ordinate for } i > \frac{n+1}{2}, \ n \geq 3; \\ \frac{n+1}{2}+1-i, & 5^{th} \text{ ordinate for } i < \frac{n+1}{2}, \ n \geq 3, \ j=1; \\ (j+3)^{th} \text{ ordinate for } i < \frac{n+1}{2}, \ n \geq 3, \ j \geq 2; \\ i+1-\frac{n+1}{2}, & 5^{th} \text{ ordinate for } i > \frac{n+1}{2}, \ n \geq 3, \ j=1; \\ (j+3)^{th} \text{ ordinate for } i > \frac{n+1}{2}, \ n \geq 3, \ j \geq 2; \\ 0, & 2^{nd} \text{ ordinate for even } i; \\ 3^{rd} \text{ ordinate for odd } i, i \geq 3; \\ 3, & 5^{th} \text{ cordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ j = 1; \\ (j+3)^{th} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ j \geq 2; \\ 1, & \text{ other ordinates.} \end{cases}$$

```
The locating chromatic number of (k, n) -split cycle graph and its barbell operation <math display="block">\begin{cases} i-1, & 1^{st} \text{ ordinate for } 2 \leq i \leq \frac{n+1}{2}, \ n \geq 3, \ j \geq 3; \\ n-i+1, & 1^{st} \text{ ordinate for } i \leq \frac{n+1}{2}, \ n \geq 3, \ j \geq 1; \\ (\frac{n+1}{2})+1-i, & 5^{th} \text{ ordinate for } i < (\frac{n+1}{2})-1, \ n \geq 5, \ k \leq 2; \\ (j+5)^{th} \text{ ordinate for } i < (\frac{n+1}{2})+1, \ n \geq 5, \ k \geq 3, \ j \geq 1; \\ i+1-(\frac{n+1}{2}), & 5^{th} \text{ ordinate for } i < (\frac{n+1}{2})+1, \ n \geq 5, \ k \geq 3, \ j \geq 1; \\ 0, & 4^{th} \text{ ordinate for } i > (\frac{n+1}{2})+1, \ n \geq 5, \ k \geq 3, \ j \geq 1; \\ 0, & 4^{th} \text{ ordinate for } i = 1, \dots, n, \ n \geq 3, \ j = 1; \\ 2^{nd} \text{ ordinate for even } i, \ i \neq \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j = 2; \\ 2^{nd} \text{ ordinate for oven } i, \ n \geq 3, \ k \geq 3, \ j = 2; \\ 3^{rd} \text{ ordinate for oven } i, \ n \geq 3, \ k \geq 2, \ j = 2; \\ 3^{rd} \text{ ordinate for oven } i, \ n \geq 3, \ k \geq 2, \ j = 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j = 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j = 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j = 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j = 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j = 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j = 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j = 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j = 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j \geq 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j \geq 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j \geq 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j \leq k - 1; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2; \\ 3^{rd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2; \\ 3^{rd} \text{ ordinate for } i > \frac{n+1}{2}, \ n \geq 3, \ k \geq 2; \\ 3^{rd} \text{ ordinate for } i > \frac{n+1}{2}, \ n \geq 3, \ k \geq 2; \\ 3^{rd} \text{ ordinate for } i
                                                                                                                                                                                                                                                                                                                                                                                                                                                           (j+4)^{th} ordinate for i \geq 1, \ n=3, \ k \geq 2, \ j \leq k-1; (j+4)^{th} ordinate for i=\frac{n+1}{2}, \ n \geq 5, \ k \geq 2, \ j \leq k-1; (j+4)^{th} ordinate for i=(\frac{n+1}{2})-1 and i=(\frac{n+1}{2})+1, \ n \geq 5, \ k \geq 2, \ j \geq 1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    other ordinates.
```

The locating chromatic number of (k, n)-split cycle graph and its barbell operation Asmiati et al.

```
c_{\pi}(w_i^j) = \begin{cases} i-1, & 1^{st} \text{ ordinate for } 2 \leq i \leq \frac{n+1}{2}, \ j=1 \text{ and } k \geq 3; \\ 1^{st} \text{ ordinate for } i \leq \frac{n+1}{2}, \ n \geq 3, \ j=2; \\ n-i+1, & 1^{st} \text{ ordinate for } i > \frac{n+1}{2}, \ n \geq 3, \ k \geq 1; \\ \left(\frac{n+1}{2}\right)+1-i, & 4^{th} \text{ coordinate for } i < \left(\frac{n+1}{2}\right)-1, \ n \geq 5, \ k \leq 2; \\ i+1-\left(\frac{n+1}{2}\right), & 4^{th} \text{ ordinate for } i < \left(\frac{n+1}{2}\right)+1, \ n \geq 5, \ k \leq 2; \\ \left(\frac{n+1}{2}\right)+3-i, & 4^{th} \text{ ordinate for } i < \left(\frac{n+1}{2}\right)+1, \ n \geq 5, \ k \geq 3; \\ i+3-\left(\frac{n+1}{2}\right), & 4^{th} \text{ ordinate for } i < \left(\frac{n+1}{2}\right)+1, \ n \geq 5, \ k \geq 3; \\ 0, & 5^{th} \text{ ordinate for } i \geq 1, \ n \geq 3, \ k=1, \ j=1; \\ 2^{nd} \text{ ordinate for } i \geq 1, \ n \geq 3, \ k \geq 1, \ j=1; \\ 2^{nd} \text{ ordinate for odd } i, \ i \geq 3, \ i \neq \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ j \\ 3^{rd} \text{ ordinate for odd } i, \ i \geq 3, \ n \geq 3, \ k \geq 3, \ j=2; \\ 5^{th} \text{ ordinate for } i = \frac{n+1}{2}, 1 \geq 3, \ n \geq 3, \ k \geq 3, \ j=2; \\ 5^{th} \text{ ordinate for } i = \frac{n+1}{2}, 1 \geq 3, \ n \geq 3, \ k \geq 3, \ j=2; \\ 5^{th} \text{ ordinate for } i = \frac{n+1}{2}, 1 \geq 3, \ n \geq 3, \ k \geq 3, \ j=2; \\ 2^{nd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 2, \ k=j; \\ 2^{nd} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 3, \ k \geq 1; \\ 3^{rd} \text{ ordinate for even } i \text{ and } i=1, \ n \geq 3, \ k \geq 1; \\ 3^{rd} \text{ ordinate for even } i \text{ and } i=1, \ n \geq 3, \ k \geq 1; \\ 3^{rd} \text{ ordinate for even } i \text{ and } i=1, \ n \geq 3, \ k \geq 1; \\ 3^{rd} \text{ ordinate for even } i \text{ and } i=1, \ n \geq 3, \ k \geq 1; \\ 3^{rd} \text{ ordinate for even } i \text{ and } i=1, \ n \geq 3, \ k \geq 1; \\ 3^{rd} \text{ ordinate for even } i \text{ and } i=1, \ n \geq 3, \ k \geq 1; \\ 3^{rd} \text{ ordinate for even } i \text{ and } i=1, \ n \geq 3, \ k \geq 1; \\ 3^{rd} \text{ ordinate for even } i \text{ and } i=1, \ n \geq 3, \ k \geq 1; \\ 3^{rd} \text{ ordinate for even } i \text{ and } i=1, \ n \geq 3, \ k \geq 1; \\ 3^{rd} \text{ ordinate for even } i \text{ and } i=1, \ n \geq 3, \ k \geq 1; \\ 3^{rd} \text{ ordinate for even } i \text{ and } i=1, \ n \geq 3, \ k \geq 1; \\ 3^{rd} \text{ ordinate for even } i \text{ and } i=1, \ n \geq 3, \ k \geq 1; \\ 3^{rd} \text{ ordinate for even } i \text{ and } i=1, \ n \geq 3, \ k \geq 1;
                                                                                                                                                                                                         2^{nd} ordinate for even i,\ i \neq \frac{n+1}{2},\ n \geq 3,\ k=2,\ j=2;
                                                                                                                                                                                                          3^{rd} ordinate for odd i, i \ge 3, i \ne \frac{n+1}{2}, n \ge 3, k = 2, j = 2;
                                                                                                                                                                                                          5^{th} ordinate for i = \frac{n+1}{2}, 1 \ge 3, \ n \ge 3, \ k \ge 3, \ j = 2;
                                                                                                                                                                                                          4^{th} ordinate for i = 1 and i = n, n = 3, k \le 2, k = j;
                                                                                                                                                                                                          4^{th} ordinate for i \ge 1, n = 3, k = 2, j = k - 1;
                                                                                                                                                                                                         \begin{array}{l} 4^{th} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 5, \ k = 2, \ j = k-1; \\ 4^{th} \text{ ordinate for } i = \frac{n+1}{2}, \ n = 3, \ k \geq 3, \ k = j; \end{array}
                                                                                                                                                                                                        4^{th} \text{ ordinate for } i = (\frac{n+1}{2}) - 1 \text{ and } i = (\frac{n+1}{2}) + 1, \ n \geq 5, \ k \leq 2, \ j \geq 1; 4^{th} \text{ ordinate for } i \geq 1, \ n = 3, \ k \geq 3, \ j \leq k-1; 4^{th} \text{ ordinate for } i = 1 \text{ and } i
                                                                                                                                                                                                          4^{th} ordinate for i = 1 and i = n, n = 3, k \ge 3, k = j;
                                                                                                                                                                                                         \begin{array}{l} 4^{th} \text{ ordinate for } i = \frac{n+1}{2}, \ n \geq 5, k \geq 4, \ j \geq 1; \\ 4^{th} \text{ ordinate for } i = \left(\frac{n+1}{2}\right) - 1 \text{ and } i = \left(\frac{n+1}{2}\right) + 1, \ n \geq 5, \ k \leq 4, \ j \geq 1; \end{array}
                                                                                                                                                                                                          other ordinates.
```

Since all vertices in B(k, n)-split cycle graph for odd n have distinct color codes, then c is a locating coloring using colors for $k \ge 1$. As a result, $\chi_L(B(k,n)-\text{split cycle graph}) \le 2k+3$. Thus $\chi_L(B(k, n)$ —split cycle graph) = 2k + 3 for odd n.

Case 2. n is even. Let c be a coloring using 2k + 4 colors as follows:

$$c(v_i) = \begin{cases} 1, & \text{for } i = 1; \\ 2, & \text{for even } i, \ 2 \le i \le n - 2; \\ 3, & \text{for odd } i, \ i \ge 3; \\ 4, & \text{for } i = n. \end{cases}$$

The locating chromatic number of (k, n)-split cycle graph and its barbell operation Asmiati et al.

$$c(w_i) = \begin{cases} 1, & \text{for } i = 1; \\ 2, & \text{for even } i, \ 2 \le i \le n - 2; \\ 3, & \text{for odd } i, \ i \ge 3; \\ 4, & \text{for } i = n. \end{cases}$$

$$c(v_i^j) = \begin{cases} 3, & \text{for } i = 1, \ j = 1; \\ 4, & \text{for } i = n, \ j = 1; \\ 2j + 2, & \text{for } i = 1 \text{ and } n, \ j \ge 2; \\ 2j + 3, & \text{for } 2 \le i \le n - 1, \ j \ge 1. \end{cases}$$

$$c(w_i^j) = \begin{cases} 3, & \text{for } i = 1, \ j = 1; \\ 4, & \text{for } i = n, \ j = 1; \\ 2j + 3, & \text{for } i = 1 \text{ and } n, \ j \ge 2; \\ 2j + 4, & \text{for } 2 \le i \le n - 1, \ j \ge 1. \end{cases}$$

Since color 2k+4 is only assigned to one (k,n)-split cycle graph of B(k,n)-split cycle graph, i.e. at the vertices v_i^s for some i, then the color codes of all of the vertices will be different. Since all vertices in B(k,n)-split cycle graph for even n have distinct color codes, then c is a locating coloring for $k \ge 1$. As a result, $\chi_L(B(k,n)$ -split cycle graph) $\le 2k+4$. Thus $\chi_L(B(k,n)$ -split cycle graph) = 2k+4 for even n.



Figure 1. A minimum locating coloring of B(3,8)—split cycle graph

References

[1] Asmiati, H. Assiyatun, and E.T. Baskoro, Locating-chromatic number of amalgamation of stars, *ITB J. Sci.*, **43** (1) (2011), 1 – 8.

- [2] Asmiati, H. Assiyatun, E.T. Baskoro, D. Suprijanto D, R. Simanjuntak, and S. Uttunggadewa, Locating-chromatic number of firecracker graphs, *Far East J. Math. Sci.*, **3**(1) (2012), 11–23.
- [3] Asmiati, I.K.S.G. Yana, and L. Yulianti, On the locating chromatic number of certain barbell graphs, *Int. J. Math. Mathematical Sci.*, **2018** (2018), 1 5.
- [4] G. Chartrand, D. Erwin, M.A. Henning, P.J Slater, and P. Zhang, The locating-chromatic number of a graph, *Bull. Inst. Combin. Appl.*, **36** (2002), 89 101.
- [5] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, and P. Zhang, Graph of order n with locating-chromatic number n-1, Discrete Math., **269** (1-3) (2003), 65–79.
- [6] E.T. Baskoro and I.A. Purwasih, The locating-chromatic number for corona product of graphs, *South East Asian J. Sci.*, **1** (1) (2012), 124–134.
- [7] A. Behtoei and M. Anbarloei, The locating chromatic number of the join of graphs, *Bull. Iranian Math. Society*, **40** (6) (2014), 1491-1504.
- [8] A. Irawan, Asmiati, L. Zakaria, and K. Muludi, The locating chromatic number of origami graphs, *Algorithms*, **14** (167) (2021), 1 –15
- [9] K. Prawinasti, M. Ansori, Asmiati, Notiragayu, and G.N. Rofi, The locating chromatic number for split graph of cycle, *J. Phys.: Conf. Ser.*, **1751** (2021), 1 5.
- [10] M. Ridwan, H. Assiyatun, and E.T. Baskoro, The dominating partition dimension and locating chromatic number of graphs, *Electron. J. Graph Theory Appl.*, **11** (2) (2023), 455 465.
- [11] I.W. Sudarsana, F. Susanto, and S. Musdalifah, The locating chromatic number for *m*-shadow of a connected graph, *Electron. J. Graph Theory Appl.*, **10** (2) (2022), 589 –601.
- [12] D.K. Syofyan, E.T. Baskoro, and H. Assiyatun, On the locating-chromatic number of homogeneous lobsters, *AKCE Int. J. Graphs Combin.*, **10** (3) (2013), 245–252.