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Abstract

The locating chromatic number remains an active topic in graph theory. It combines the concepts
of partition dimension and proper vertex coloring. A necessary condition for determining the
locating chromatic number is that each vertex must have a unique color code under a minimal
coloring. This paper investigates the locating chromatic number of the (k, n)-split cycle graph and
its barbell operation.
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1. Introduction

Let G = (V,E) be a finite and connected graph. A l−coloring of G is a function c : V (G) −→
1, 2, · · · , l, where c(u) ̸= c(v) for any two adjacent vertices u ̸= v in G. Let Π = {C1, C2, · · · , Cl}
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be a partition of V (G), where Ci is the set of all vertices colored by the color i for 1 ≤ i ≤ l. The
color code cΠ(v) of a vertex v in G is defined as the l−ordinate (d(v, C1), d(v, C2), · · · , d(v, Cl)),
where d(v, Ci) = min{d(v, x);x ∈ Ci} for 1 ≤ i ≤ l. The l−coloring c of G such that all vertices
have different color codes is called a locating coloring of G. The locating chromatic number of G,
denoted by χL(G), is the minimum l such that G has a locating coloring.

The locating chromatic number was studied by Chartrand et al. [4] for paths, cycles, complete
multipartite graphs, double stars. Next, Chartrand et al. [5] gave a characterization of all graphs of
order n with locating chromatic number (n−1). Asmiati et al. [1] obtained the locating chromatic
number of amalgamation of stars, firecracker graphs [2], whereas Irawan et al.[8] for origami
graphs, and Syofyan et al.[12] for homogeneous lobster. In 2018, Asmiati et al. [3] determined
the locating chromatic number of barbell graphs contains complete graph and generalized Petersen
graphs. For other operations, Baskoro and Purwasih [6] determined the locating chromatic number
of corona product, Behtoei and Anbarloei [7] for join of graphs, and Sudarsana et al.[11] for
shadow of a connected graph. Next, Ridwan et al. [10] discussed some general connections among
partition dimension and locating chromatic number of graphs.

The following definition of (k, n)−split cycle graph is taken from [9]. A (k, n)−split cycle
graph has the vertex set V = {vi, vji ; i ∈ [1, n], j ∈ [1, k]} and the edge set E = {vivi+1; i ∈
[1, n− 1]} ∪{vnv1} ∪{vivji+1; i ∈ [1, n− 1], j ∈ [1, k]} ∪{vnvj1; j ∈ [1, k]} ∪{vi+1v

j
i ; i ∈ [1, n−

1], j ∈ [1, k]} ∪{v1vjn; j ∈ [1, k]}.
Prawinasti et al. [9] determined the locating chromatic number of (1, n)−split cycle graph for

n ≥ 3. In this paper, we do further results about the locating chromatic number of(k, n)−split
cycle graph, for k ≥ 2 and its barbell operation. The barbell of a (k, n)−split cycle graph is
formed by taking two copies of the (k, n)−split cycle graph and connecting them by a bridge,
denoted by B(k, n)−split cycle graph. A B(k, n)−split cycle graph has the vertex set V =
{vi, wi, v

j
i , w

j
i ; i ∈ [1, n], j ∈ [1, k]} and the edge set E = {vivi+1, wiwi+1; i ∈ [1, n − 1]}

∪{vnv1, wnw1} ∪{vivji+1, wiw
j
i+1; i ∈ [1, n− 1], j ≥ 1, i = j} ∪{vnvj1, wnw

j
1; j ≥ 1} ∪

{vi+1v
j
i , wi+1w

j
i ; i ∈ [1, n−1], j ≥ 1, i = j} ∪{v1vjn, w1w

j
n; j ≥ 1} ∪ {e}, where e = (vkn+1

2

, wk
n+1
2

)

is a bridge for odd n and e = (vkn
2
, wk

n
2
) for even n.

The following basic theorems are needed to determine the lower bound of the locating chro-
matic number of a graph. The set of neighbors of a vertex q in G is denoted by N(q).

Theorem 1.1. (see [4]). Let c be a locating coloring in a connected graph G. If u and v are two
distinct vertices of G such that d(u,w) = d(v, w) for all w ∈ V (G)−{u, v}, then c(u) ̸= c(v). In
particular, if u and v are nonadjacent vertices such that N(u) = N(v), then c(u) ̸= c(v).

Locating chromatic number of (1, n)−split cycle graph for n ≥ 3 is given in the following
theorem.

Theorem 1.2. (see [9]). Let G be a (1, n)−split cycle graph with n ≥ 3. Then the locating
chromatic number of G is 4 if n is odd and 5 if n is even. .

2. Main results

The following theorems give the locating chromatic number of (k, n)−split cycle graph and
B(k, n)−split cycle graph, respectively.
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Theorem 2.1. For n ≥ 3 and k ≥ 2, the locating chromatic number of (k, n)−split cycle graph is
(k + 2) if n is odd and (2k + 3) if n is even.

Proof. First, we determine the lower bound for the locating-chromatic number of (k, n)−split
cycle graph, n ≥ 3 and k ≥ 2. Observe that d(u, vhi ) = d(u, vli) for all u ∈ V (G)−{vhi , vli}, where
h, l ≥ 1 and h ̸= l. Then, by Theorem 1.1, we have c(vhi ) ̸= c(vli). As a result, we need at least
(k + 2) colors for (k − spl(Cn)), n ≥ 3 and k ≥ 2. Similarly, we have (k, n)−split cycle graph
≥ (2k + 3) for even n.

Next, We now construct an upper bound of locating chromatic number for (k, n)−split cycle
graph, n ≥ 3 and k ≥ 2. Consider the following two cases.

Case 1. n is odd. Let c be a coloring using (k + 2) colors as follows :

c(vi) =


1, for i = 1;

2, for odd i ≥ 3;

3, for even i , i ≥ 2.

c(v2i ) =


1, for i = 1;

2, for odd i;

3, for even i.

c(v1i ) = 4 for i ∈ [1, n]
c(vji ) = j + 2 for j ∈ [3, k], i ∈ [1, n]
The color codes of (k, n)−split cycle graph for odd n are :

cπ(vi) =



i− 1, 1st ordinate for i ≤ n+1
2
;

n− i+ 1, 1st ordinate for i > n+1
2
;

0, 2nd ordinate for even i;

3rd ordinate for odd i , i ≥ 3;

1, other ordinates.

cπ(v
j
i ) =



i− 1, 1st ordinate for 2 ≤ i ≤ n+1
2
, j = 1, 3;

1st ordinate for i ≤ n+1
2
, j = 2;

n− i+ 1, 1st ordinate for i > n+1
2
, j ≥ 1;

0, 4th ordinate for i ≥ 1, j = 1;

2nd ordinate for even i , j = 2;

3rd ordinate for odd i , i ≥ 3, j = 2;

(j + 2)th ordinate for j ≥ 3, i ≥ 1, n;

1, 2nd ordinate for odd i, j ≥ 1

3rd ordinate for i = 1 and odd i, j ≥ 1

2, other ordinates.
Since all vertices of (k, n)−split cycle graph for odd n, n ≥ 3 and k ≥ 2 have distinct color

codes, then c is a locating coloring using k+2 colors. As a result, (k, n)−split cycle graph ≤ k+2.
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Thus χL((k, n)−split cycle graph)= k + 2.

Case 2. n is even. Let c be a coloring using (2k + 3) colors for k ≥ 2 as follows :

c(vi) =


1, for i = 1;

2, for even i, 2 ≤ i ≤ n− 1;

3, for odd i, i ≥ 3;

4, for i = n.

c(vji ) =


3, for i = 1 and j = 1;

4, for i = n and j = 1;

2j + 3, for 1 ≤ j ≤ k, 2 ≤ i ≤ n− 1;

2j + 2, for 2 ≤ j ≤ k, i = 1, n.

The color codes of (k, n)−split cycle graph for even n are :

cπ(vi) =



i− 1, 1st ordinate for i ≤ n
2
;

(4 + 2j)th ordinate for 3 ≤ i ≤ n
2
, n ≥ 6, j ≥ 1;

n− i+ 1, 1st ordinate for i > n
2
;

i, 4th ordinate for i ≤ n
2
;

n− i, (4 + 2j)th ordinate for n
2
+ 1 ≤ i ≤ n− 2, n ≥ 6, j ≥ 1;

0, 2nd ordinate for even i, 2 ≤ i ≤ n− 2;

3rd ordinate for odd i, i ≥ 3;

2, 2nd ordinate for i = n;

3rd ordinate for i = 1;

1, other ordinates.

cπ(v
j
i ) =



i− 1, 1st ordinate for 2 ≤ i ≤ n
2
, j ≥ 1;

(4 + 2j)th ordinate for 4 ≤ i ≤ n
2
, n ≥ 8, j ≥ 1;

n− i+ 1, 1st ordinate for i > n
2
, j ≥ 1;

i, 4th ordinate for i ≤ n
2
, j ≥ 1;

n− i, 4th ordinate for i > n
2
, j = 1;

4th ordinate for n
2
+ 1 ≤ i ≤ n− 1, j ≥ 2;

(4 + 2j)th ordinate for n
2
+ 1 ≤ i ≤ n− 3, j ≥ 1, n ≥ 8;

0, 3rd ordinate for i = 1, j = 1;

(2j + 3)th ordinate for j ≥ 1, 2 ≤ i ≤ n− 1;

(2j + 2)th ordinate for j ≥ 2, i = 1 and n;

1, 2nd ordinate for odd i, j ≥ 1;

3rd ordinate for even i, j ≥ 1;

2, other ordinates.
Since all vertices in (k, n)−split cycle graph for even n have distinct color codes, then c is a
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locating coloring using 2k+3 colors for k ≥ 1. As a result, χL((k, n)−split cycle graph)≤ 2k+3.
Thus χL((k, n)−split cycle graph)= 2k + 3 for even n.

Theorem 2.2. The locating chromatic number of B(k, n)−split cycle graph, n ≥ 3 and k ≥ 2 is
(k + 3) for odd n ≥ 3 and (2k + 4) for otherwise.

Proof. First, we determine the lower bound of locating-chromatic number for B(k, n)−split cycle
graph with odd n. Since B(k, n)−split cycle graph contains (k, n)−split cycle graph, then by
Theorem 2.1, we need at least k + 2 colors. Suppose that c is a (k + 2)-locating coloring of
B(k, n)−split cycle graph. B(k, n)−split cycle graph contains two (k, n)−split cycle graphs and
c(vsi ) ̸= c(vti), where s ̸= t, s, t ≥ 0. Since we use (k + 2) colors, then we have c(vsi ) = c(ws

i )
such that cπ(vsi ) = cπ(w

s
i ), a contradiction. As a result, χL(B(k, n)−split cycle graph) ≥ k + 3

for odd n. The case is similar for even n.
Next, we determine the upper bound of the locating chromatic number for B(k, n)−split cycle

graph, n ≥ 3 and k ≥ 2. Consider the following two cases.

Case 1. n is odd. Let c be a coloring using (k + 2) colors as follows:

c(vi) =


1, for i = 1;

2, for even i;

3, for odd i, i ≥ 3.

c(wi) =


1, for i = 1;

2, for even i;

3, for odd i, i ≥ 3.

c(v1i ) = 4, for i ≥ 1
c(w1

i ) = 5, for i ≥ 1

c(v2i ) =


1, for i = 1;

2, for even i, i ̸= n+1
2
;

3, for odd i, i ̸= 1 and i ̸= n+1
2
;

4, for i = n+1
2
.

c(w2
i ) =


1, for i = 1;

2, for even i, i ̸= n+1
2
;

3, for odd i, i ̸= 1 and i ̸= n+1
2
;

5, for i = n+1
2
.

Case k ≥ 3. c(v2i ) =


1, for i = 1;

2, for even i;

3, for odd i, i ≥ 3.

c(v2i ) =


1, for i = 1;

2, for even i;

3, for odd i, i ≥ 3.
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c(vji ) = j + 2, for i ≥ 1 and 3 ≤ j ≤ k.
c(wj

i ) = j + 3, for i ≥ 1 and 3 ≤ j ≤ k.
The color codes of B(k, n)−split cycle graph for odd n are:

cπ(vi) =



i− 1, 1st ordinate for i ≤ n+1
2
, n ≥ 3;

n− i+ 1, 1st ordinate for i > n+1
2
, n ≥ 3;

n+1
2

+ 1− i, 5th ordinate for i < n+1
2
, n ≥ 3, j = 1;

(j + 3)th ordinate for i < n+1
2
, n ≥ 3, j ≥ 2;

i+ 1− n+1
2
, 5th ordinate for i > n+1

2
, n ≥ 3, j = 1;

(j + 3)th ordinate for i > n+1
2
, n ≥ 3, j ≥ 2;

0, 2nd ordinate for even i;

3rd ordinate for odd i , i ≥ 3;

3, 5th cordinate for i = n+1
2
, n ≥ 3, j = 1;

(j + 3)th ordinate for i = n+1
2
, n ≥ 3, j ≥ 2;

1, other ordinates.
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cπ(v
j
i ) =



i− 1, 1st ordinate for 2 ≤ i ≤ n+1
2
, n ≥ 3, j ≥ 3;

1st ordinate for i ≤ n+1
2
, n ≥ 3, j = 2;

n− i+ 1, 1st ordinate for i > n+1
2
, n ≥ 3, j ≥ 1;

(n+1
2
) + 1− i, 5th ordinate for i < (n+1

2
)− 1, n ≥ 5, k ≤ 2;

(j + 5)th ordinate for i < (n+1
2
)− 1, n ≥ 5, k ≥ 3, j ≥ 1;

i+ 1− (n+1
2
), 5th ordinate for i > (n+1

2
) + 1, n ≥ 5, j ≤ 2;

(j + 5)th ordinate for i > (n+1
2
) + 1, n ≥ 5, k ≥ 3, j ≥ 1;

0, 4th ordinate for i = 1, ..., n, n ≥ 3, j = 1;

2nd ordinate for even i, i ̸= n+1
2
, n ≥ 3, k = 2, j = 2;

2nd ordinate for even i, n ≥ 3, k ≥ 3, j = 2;

3rd ordinate for odd i, i ≥ 3, i ̸= n+1
2
, n ≥ 3, k ≥ 2, j = 2;

3rd ordinate for odd i, i ≥ 3, n ≥ 3, k ≥ 3, j = 2;

4th ordinate for i = n+1
2
, n ≥ 3, k ≤ 2, j = 2;

(j + 2)th ordinate for i = 1, ..., n, k ≥ 3, j ≥ 3;

1, 5th ordinate for i = n+1
2
, n ≥ 3, k ≤ 2, k = j;

2nd ordinate for odd i, n ≥ 3, j ≥ 1;

3rd ordinate for even i and i = 1, n ≥ 3, j ≥ 1;

(j + 3)th ordinate for i = n+1
2
, n ≥ 3, k ≥ 3, k = j;

3, 5th ordinate for i = 1 and i = n, n = 3, k ≤ 2, k = j;

(j + 3)th ordinate for i = 1 and i = n, n = 3, k ≥ 3, k = j;

(j + 4)th ordinate for i ≥ 1, n = 3, k ≥ 2, j ≤ k − 1;

(j + 4)th ordinate for i = n+1
2
, n ≥ 5, k ≥ 2, j ≤ k − 1;

4, (j + 4)th ordinate for i = (n+1
2
)− 1 and i = (n+1

2
) + 1, n ≥ 5, k ≥ 2, j ≥ 1;

2, other ordinates.

cπ(wi) =



i− 1, 1st ordinate for i ≤ n+1
2
, n ≥ 3;

n− i+ 1, 1st ordinate for i > n+1
2
, n ≥ 3;

(n+1
2
) + 1− i, 4th ordinate for i < n+1

2
, n ≥ 3, k ≤ 2;

i+ 1− (n+1
2
), 4th ordinate for i > n+1

2
, n ≥ 3, k ≤ 2;

(n+1
2
) + 3− i, 4th ordinate for i < n+1

2
, n ≥ 3, k ≥ 2;

i+ 3− (n+1
2
), 4th ordinate for i > n+1

2
, n ≥ 3, k ≥ 3;

0, 2nd ordinate for even i, n ≥ 3;

3rd ordinate for odd i, i ≥ 3, n ≥ 3;

3, 4th coordinate for i = n+1
2
, n ≥ 3, k ≤ 2;

5, 4th ordinate for i = n+1
2
, n ≥ 3, k ≥ 3;

1, other ordinates.
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cπ(w
j
i ) =



i− 1, 1st ordinate for 2 ≤ i ≤ n+1
2
, j = 1 and k ≥ 3;

1st ordinate for i ≤ n+1
2
, n ≥ 3, j = 2;

n− i+ 1, 1st ordinate for i > n+1
2
, n ≥ 3, k ≥ 1;

(n+1
2
) + 1− i, 4th coordinate for i < (n+1

2
)− 1, n ≥ 5, k ≤ 2;

i+ 1− (n+1
2
), 4th ordinate for i > (n+1

2
) + 1, n ≥ 5, k ≤ 2;

(n+1
2
) + 3− i, 4th ordinate for i < (n+1

2
)− 1, n ≥ 5, k ≥ 3;

i+ 3− (n+1
2
), 4th ordinate for i > (n+1

2
) + 1, n ≥ 5, k ≥ 3;

0, 5th ordinate for i ≥ 1, n ≥ 3, k = 1, j = 1;

2nd ordinate for even i, i ̸= n+1
2
, n ≥ 3, k = 2, j = 2;

2nd ordinate for even i, n ≥ 3, k ≥ 3, j = 2;

3rd ordinate for odd i, i ≥ 3, i ̸= n+1
2
, n ≥ 3, k = 2, j = 2;

3rd ordinate for odd i, i ≥ 3, n ≥ 3, k ≥ 3, j = 2;

5th ordinate for i = n+1
2
, ı ≥ 3, n ≥ 3, k ≥ 3, j = 2;

(j + 3)th ordinate for i ≥ 1, n ≥ 2, k ≥ 3, j ≥ 3;

1, 4th ordinate for i = n+1
2
, n ≥ 3, k ≤ 2, k = j;

2nd ordinate for odd i, n ≥ 3, k ≥ 1;

3rd ordinate for even i and i = 1, n ≥ 3, k ≥ 1;

3, 4th ordinate for i = 1 and i = n, n = 3, k ≤ 2, k = j;

4th ordinate for i ≥ 1, n = 3, k = 2, j = k − 1;

4th ordinate for i = n+1
2
, n ≥ 5, k = 2, j = k − 1;

4th ordinate for i = n+1
2
, n = 3, k ≥ 3, k = j;

4, 4th ordinate for i = (n+1
2
)− 1 and i = (n+1

2
) + 1, n ≥ 5, k ≤ 2, j ≥ 1;

5, 4th ordinate for i ≥ 1, n = 3, k ≥ 3, j ≤ k − 1;

4th ordinate for i = 1 and i = n, n = 3, k ≥ 3, k = j;

4th ordinate for i = n+1
2
, n ≥ 5, k ≥ 4, j ≥ 1;

6, 4th ordinate for i = (n+1
2
)− 1 and i = (n+1

2
) + 1, n ≥ 5, k ≤ 4, j ≥ 1;

2, other ordinates.

Since all vertices in B(k, n)−split cycle graph for odd n have distinct color codes, then c is a
locating coloring using colors for k ≥ 1. As a result, χL(B(k, n)−split cycle graph) ≤ 2k + 3.
Thus χL(B(k, n)−split cycle graph) = 2k + 3 for odd n.

Case 2. n is even. Let c be a coloring using 2k + 4 colors as follows :

c(vi) =


1, for i = 1;

2, for even i, 2 ≤ i ≤ n− 2;

3, for odd i, i ≥ 3;

4, for i = n.
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c(wi) =


1, for i = 1;

2, for even i, 2 ≤ i ≤ n− 2;

3, for odd i, i ≥ 3;

4, for i = n.

c(vji ) =


3, for i = 1, j = 1;

4, for i = n, j = 1;

2j + 2, for i = 1 and n, j ≥ 2;

2j + 3, for 2 ≤ i ≤ n− 1, j ≥ 1.

c(wj
i ) =


3, for i = 1, j = 1;

4, for i = n, j = 1;

2j + 3, for i = 1 and n, j ≥ 2;

2j + 4, for 2 ≤ i ≤ n− 1, j ≥ 1.

Since color 2k + 4 is only assigned to one (k, n)−split cycle graph of B(k, n)−split cycle graph,
i.e. at the vertices vsi for some i, then the color codes of all of the vertices will be different. Since
all vertices in B(k, n)−split cycle graph for even n have distinct color codes, then c is a locating
coloring for k ≥ 1. As a result, χL(B(k, n)−split cycle graph) ≤ 2k + 4. Thus χL(B(k, n)−split
cycle graph) = 2k + 4 for even n.

Figure 1. A minimum locating coloring of B(3, 8)−split cycle graph
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