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Abstract

The locating chromatic number remains an active topic in graph theory. It combines the concepts
of partition dimension and proper vertex coloring. A necessary condition for determining the
locating chromatic number is that each vertex must have a unique color code under a minimal
coloring. This paper investigates the locating chromatic number of the (k, n)-split cycle graph and
its barbell operation.
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1. Introduction

Let G = (V, F) be a finite and connected graph. A [—coloring of G is a function ¢ : V(G) —
1,2,--- 1, where c(u) # ¢(v) for any two adjacent vertices u # vin G. LetIl = {C4,Cy,--- ,C}}
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be a partition of V(G), where C; is the set of all vertices colored by the color i for 1 < i < [. The
color code cri(v) of a vertex v in G is defined as the [—ordinate (d(v, CY),d(v, Cs),- -+ ,d(v,C})),
where d(v, C;) = min{d(v,x);x € C;} for 1 <i < [. The [—coloring ¢ of G such that all vertices
have different color codes is called a locating coloring of GG. The locating chromatic number of G,
denoted by x1,(G), is the minimum [ such that G has a locating coloring.

The locating chromatic number was studied by Chartrand et al. [4] for paths, cycles, complete
multipartite graphs, double stars. Next, Chartrand et al. [5] gave a characterization of all graphs of
order n with locating chromatic number (n — 1). Asmiati et al. [1] obtained the locating chromatic
number of amalgamation of stars, firecracker graphs [2], whereas Irawan et al.[8] for origami
graphs, and Syofyan et al.[12] for homogeneous lobster. In 2018, Asmiati et al. [3] determined
the locating chromatic number of barbell graphs contains complete graph and generalized Petersen
graphs. For other operations, Baskoro and Purwasih [6] determined the locating chromatic number
of corona product, Behtoei and Anbarloei [7] for join of graphs, and Sudarsana et al.[11] for
shadow of a connected graph. Next, Ridwan et al. [10] discussed some general connections among
partition dimension and locating chromatic number of graphs.

The following definition of (k,n)—split cycle graph is taken from [9]. A (k,n)—split cycle
graph has the vertex set V = {v;,v/;i € [1,n],j € [1,k]} and the edge set £ = {v;v;41;i €
[1,n — 1]} U{vo1 } Ufoivl, 50 € [1,n — 1],5 € [1, K]} U{vav]; 5 € [1,K]} U{viavl;i € [1,n —
1],7 € [1,k]} U{vvi; 5 € [1,k]}.

Prawinasti et al. [9] determined the locating chromatic number of (1, n)—split cycle graph for
n > 3. In this paper, we do further results about the locating chromatic number of(k, n)—split
cycle graph, for k& > 2 and its barbell operation. The barbell of a (k,n)—split cycle graph is
formed by taking two copies of the (k,n)—split cycle graph and connecting them by a bridge,
denoted by B(k,n)—split cycle graph. A B(k,n)—split cycle graph has the vertex set V =
{v, wi,v!,wl;i € [1,n],5 € [1,k]} and the edge set E = {vv, 1, wwis;i € [1,n — 1]}
U{vvr, wawr } U{val, wiwl, 50 € [Lin — 1], > 1,0 = j} Uf{o0], wawi; j > 1} U
{vip1v) , wipw!yi € [1,n—1],5 > 1,0 = j} U{v10d, wiwi; j > 1} U {e}, where e = (vh,,wk.,)

2 2

is a bridge for odd n and e = (v%, w’%) for even n.
The following basic theorems are needed to determine the lower bound of the locating chro-
matic number of a graph. The set of neighbors of a vertex ¢ in G is denoted by N (q).

Theorem 1.1. (see [4]). Let ¢ be a locating coloring in a connected graph G. If u and v are two
distinct vertices of G such that d(u, w) = d(v,w) for all w € V(G) — {u, v}, then c(u) # c(v). In
particular, if u and v are nonadjacent vertices such that N (u) = N (v), then c(u) # c(v).

Locating chromatic number of (1,7n)—split cycle graph for n > 3 is given in the following
theorem.

Theorem 1.2. (see [9]). Let G be a (1,n)—split cycle graph with n > 3. Then the locating
chromatic number of G is 4 if n is odd and 5 if n is even. .

2. Main results

The following theorems give the locating chromatic number of (k, n)—split cycle graph and
B(k,n)—split cycle graph, respectively.
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Theorem 2.1. Forn > 3 and k > 2, the locating chromatic number of (k,n)—split cycle graph is
(k + 2) if n is odd and (2k + 3) if n is even.

Proof. First, we determine the lower bound for the locating-chromatic number of (k, n)—split
cycle graph, n > 3 and k > 2. Observe that d(u, v}') = d(u,v!) forallu € V(G) —{vl v!}, where
h,l > 1 and h # . Then, by Theorem 1.1, we have c(v!) # c(v!). As a result, we need at least
(k 4+ 2) colors for (k — spl(C,,)), n > 3 and k > 2. Similarly, we have (k, n)—split cycle graph
> (2k + 3) for even n.

Next, We now construct an upper bound of locating chromatic number for (k, n)—split cycle

graph, n > 3 and £ > 2. Consider the following two cases.

Case 1. n is odd. Let ¢ be a coloring using (k + 2) colors as follows :

1, fori=1;
c(v;) = ¢ 2, foroddi > 3;
3, foreveni,i > 2.

1, fore=1;
c(v?) =<2, forodd i;
3, foreveni.
c(v}) = 4fori € [1,n]
c(vly =7+ 2forj € [3,k],i € [l,n]
The color codes of (k, n)—split cycle graph for odd n are :
(i —1, 1 ordinate for 7 < 2
n—i+1, 1°ordinate fori > 2
cr(v) =40, 274 ordinate for even i;
37 ordinate for odd i ,i > 3;
other ordinates.
i—1, 1 ordinate for 2 < < % j =1,3;
1 ordinate for i < 21, j = 2;
n—1+1, 1% ordinate for i > ”T“, j>1;
0, 4% ordinate fori > 1, j = 1;
274 ordinate for even i , j = 2;
37 ordinate for odd i ,i > 3, j = 2;
(4 + 2)™ ordinate for j > 3,7 > 1, n;

1, 274 ordinate for odd i, j > 1
37 ordinate fori = 1 and odd i, j > 1
2, other ordinates.

\

Since all vertices of (k,n)—split cycle graph for odd n, n > 3 and k£ > 2 have distinct color
codes, then ¢ is a locating coloring using k+2 colors. As aresult, (k, n)—split cycle graph < k+2.
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Thus x 1 ((k, n)—split cycle graph)= k + 2.

Case 2. n is even. Let ¢ be a coloring using (2% + 3) colors for & > 2 as follows :
(1, fori=1;

2, foreveni, 2<i<n-—1,;

3, foroddi, 1 > 3;

(4, fori=n.

(3, fori=1and j = 1;

4, fori =nandj = 1;

274+3, for1 <3<k 2<i<n-—1,

(27 +2, for2<j53<k,1=1n.

The color godes of (k,n)—split cycle graph for even n are :

1 —1, 1°" ordinate for i < %;
(4+2j)" ordinate for3 < i <%, n>6, j > 1;
n—i+1, 1% ordinate fori > %;
i, 4™ ordinate for i < %;
_Jn—i, (4+2j)" ordinate for 2 +1<i<n—2,n>6, j > 1;
exlvs) = 0, 277 ordinate for eveni, 2 <i <n — 2;
37 ordinate for odd i, 7 > 3;
2, 274 ordinate for i = n;
37 ordinate for i = 1;
L1, other ordinates.
i —1, 1°* ordinate for 2 < i < %, j > 1;
(4+2j)" ordinate for4 <i <2, n>8, j>1;
n—i+1, 1° ordinate fori > %, j > 1;
i 4t ordinate for i < 2, j > 1;
n—i, 4" ordinate for i > 2, j = 1;
4" ordinate for 2 +1<i<n—1, j > 2;
er(v)) = (4+2j)" ordinate for 2 + 1 <i<n—3, j > 1, n>§;
0, 374 ordinate fori = 1, j = 1;
(27 + 3)™ ordinate for j > 1, 2 <i <n — 1;
(27 + 2)™ ordinate for j > 2, i = 1 and n;
1, 274 ordinate for odd i, j > 1;
37 ordinate for even i, j > 1;
2, other ordinates.

\
Since all vertices in (k,n)—split cycle graph for even n have distinct color codes, then c is a

274



The locating chromatic number of (k,n)-split cycle graph and its barbell operation |  Asmiati et al.

locating coloring using 2k + 3 colors for k£ > 1. As aresult, x((k, n)—split cycle graph)< 2k + 3.
Thus x((k, n)—split cycle graph)= 2k + 3 for even n. O

Theorem 2.2. The locating chromatic number of B(k,n)—split cycle graph, n > 3 and k > 2 is
(k + 3) for odd n > 3 and (2k + 4) for otherwise.

Proof. First, we determine the lower bound of locating-chromatic number for B(k, n)—split cycle
graph with odd n. Since B(k,n)—split cycle graph contains (k,n)—split cycle graph, then by
Theorem 2.1, we need at least £ + 2 colors. Suppose that ¢ is a (k + 2)-locating coloring of
B(k,n)—split cycle graph. B(k,n)—split cycle graph contains two (k, n)—split cycle graphs and
c(vf) # c(vl), where s # t, s,t > 0. Since we use (k + 2) colors, then we have c(vf) = c(w;)
such that ¢, (vf) = ¢, (w}), a contradiction. As a result, x(B(k,n)—split cycle graph) > k + 3
for odd n. The case is similar for even n.

Next, we determine the upper bound of the locating chromatic number for B(k, n)—split cycle
graph, n > 3 and k£ > 2. Consider the following two cases.

Case 1. n is odd. Let ¢ be a coloring using (k -+ 2) colors as follows:
1, fori =1,
c(v;)) = ¢ 2, foreven i;
3, foroddi, ¢ > 3.

, fori=1,

, foroddi, i # 1andi # "TH;

n+1
5 -

1, for: =1,

2, foreveni, i # "T“;
3

5

1, forz=1,
c(?) = 2, foreven ¢, i # ”T“;
4

, fori=

, foroddi, i # 1andi # "+,

, fori="H
1, fori =1,
Case k > 3. c(v?) = { 2, foreveni;

3, foroddi, i > 3.
1, forz=1,
c(v?) =<2, foreven i
3, foroddi, ¢ > 3.

275



The locating chromatic number of (k,n)-split cycle graph and its barbell operation

c(v])=j+2fori>1land3 <j <k
c(w]))=j5+3,fori >1land3 < j < k.
The color codes of B(k,n)—split cycle graph for odd n are:

cr (i)

i—1,
n—it+1,
n+1+1_27
. n+1
+1- g,
0,

3,

1,

1" ordinate for i < 2, n > 3;
1% ordinate for 7 > ”“, n>3;
5t ordinate for i < %, n >3, j =1;
(j + 3)" ordinate for i < %, n >3, j > 2;
5t" ordinate for i > 254, n >3, j = 1;
(j + 3)" ordinate for i > %+, n >3, j > 2;
274 ordinate for even i;
37 ordinate for odd i ,i > 3;
5t cordinate for i = 2+, n >3, j =1;
(5 + 3)" ordinate for i = 1 n >3, j > 2;

other ordinates.
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1 —1, 13tordinatef0r2§i§"7“, n>3,75>3;
1 ordinate for; < 2, n >3, j =2;
n—i+1, 1 ordinate for i > ", n >3, j > 1;

(2 +1—4, 5" ordinate fori < () —1, n > 5, k < 2;
(j + 5)" ordinate for i < (") —1, n>5, k>3, j > 1;
i+1— (%), 5" ordinate fori > (") +1, n>5, j <2
(7 + 5)" ordinate for i > () +1, n>5, k>3, j > 1;
0, 4" ordinate fori = 1,...,n, n >3, j = 1;
2" ordinate foreven i, i # 25, n >3, k=2, j =2
274 ordinate foreveni, n >3, k>3, j = 2;
3" ordinate forodd 4, i > 3, i #£ . n >3, k>2, j=2;
37 ordinate forodd i, i > 3, n >3, k>3, j = 2;
4™ ordinate for i = 24, n >3, k<2, j = 2;
(7 + 2)% ordinate fori = 1,...,n, k >3, j > 3;
1, 5t ordinate for i = 2, n >3, k <2, k = j;
274 ordinate for odd i, n > 3, j > 1;
37 ordinate foreveniandi = 1, n > 3, j > 1;
(j + 3)" ordinate for i = 2+, n >3, k>3, k = j;
3, 5" ordinate fori = landi=n, n =3, k <2, k = j;
(7 + 3)™" ordinate fori = land i =n, n =3, k > 3, k = j;
(j +4)" ordinate fori > 1, n=3, k>2, j < k—1;

(j +4)" ordinate fori = 2+, n > 5, k> 2, j <k —1;

4, (j + 4)" ordinate for i = (") —landi = (%) +1, n>5, k>2, j >

\2, other ordinates.

(i — 1, 1 ordinate for i < 2+, n > 3;
n—1+1, 1% ordinate for i > ", n > 3;
(%) 4+ 1 —4, 4™ ordinate fori < %+, n >3, k <2
i+ 1— (%), 4" ordinate fori > 2 n >3, k <2;
(%) +3 —i, 4" ordinate fori < *, n >3, k> 2;

cr(wi) = Qi+ 3 — (%), 4% ordinate fori > 25 n >3, k> 3;
0, 274 ordinate for even i, n > 3;
374 ordinate for odd 4, i > 3, n > 3;
3, 4™ coordinate for i = 2, n >3, k < 2;
5, 4™ ordinate for i = 24, n >3, k > 3;
L1, other ordinates.
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(i —1, 15t0rdinatef0r2§i§"7“, j=1land k > 3;
1“ ordinate for ¢ < % n >3, j=2;
n—1i+1, 1 ordinate for i > 2 n >3, k > 1;

(%4) +1—1i, 4" coordinate fori < (") —1, n >5, k < 2;
i+1— (%), 4" ordinate fori > (") +1, n>5, k<2;
(%) +3 —4, 4™ ordinate fori < (") -1, n>5, k > 3;
i+3— (%), 4" ordinate fori > (") +1, n>5, k> 3;
0, 5 ordinate fori > 1, n >3, k=1, j = 1;
2" ordinate foreven i, i # 25, n >3, k=2, j =2
274 ordinate for eveni, n >3, k > 3, j = 2;
37 ordinate forodd i, i >3, i £ L n >3, k=2, j =2;
37 ordinate forodd i, i > 3, n >3, k>3, j = 2;
5™ ordinate fori = " 1>3, n >3, k>3, j =2
cr(w!) = (7 + 3)" ordinate fori > 1, n > 2, k >3, j > 3;
1, 4™ ordinate for i = 2+, n >3, k <2, k= j;
274 ordinate for odd i, n > 3, k > 1;
37 ordinate foreveniandi = 1, n > 3, k > 1;
3, 4% ordinate fori = landi =n, n =3, k<2, k = j;
4% ordinate fori > 1, n=3, k=2, j =k — 1;
4™ ordinate fori = %+, n > 5, k=2, j =k —1;
th ordinate for i = ", n =3, k >3, k = j;
4, 4t ordinate for i = (") —landi = (®+)+1, n >5, k<2, j > 1;
5, 4" ordinate fori > 1, n =3, k>3, j <k — 1;
4% ordinate fori = landi =n, n =3, k > 3, k = j;
4™ ordinate for i = 21, n > 5,k >4, j > 1;
6, 4 ordinate for i = (") —landi = (®+)+1, n >5, k<4, j > 1;

2, other ordinates.

BEEL

Since all vertices in B(k, n)—split cycle graph for odd n have distinct color codes, then c is a
locating coloring using colors for £ > 1. As a result, y.(B(k,n)—split cycle graph) < 2k + 3.
Thus x,(B(k,n)—split cycle graph) = 2k + 3 for odd n.

Case 2. n is even. Let ¢ be a coloring using 2k + 4 colors as follows :
1, fori=1;

2, foreven i, 2<1<n-—2;

3, foroddi, i > 3;
4

, fori=n.

c(v;) =
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(1, fori=1;

2, foreven 7, 2<i1<n-—2;
c(w;) = .

3, foroddi, i > 3;

(4, fori=n.

(3, fori=1, j =1,
C('U'Z) — 7‘ Orz n’ .] ’.

2j+2, fori=1andn, j > 2;

(27 +3, for2<i<n—-1,752>1.

3, fori =1, 7 =1,
() = , ori=n, j ;

2j+3, fori=1andn, j > 2;
2j4+4, for2<i<n-—1,75>1.

| Asmiati et al.

Since color 2k + 4 is only assigned to one (k, n)—split cycle graph of B(k,n)—split cycle graph,
i.e. at the vertices v; for some i, then the color codes of all of the vertices will be different. Since
all vertices in B(k,n)—split cycle graph for even n have distinct color codes, then ¢ is a locating
coloring for k > 1. As aresult, x(B(k,n)—split cycle graph) < 2k + 4. Thus x (B(k,n)—split

cycle graph) = 2k + 4 for even n.

O

Figure 1. A minimum locating coloring of B(3, 8)—split cycle graph
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