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1. Introduction

In this paper we give a detailed discussion of a new graph product that we have recently intro-
duced and analysed in two conference contributions [3, 4]. While the two conference papers were
focussing more on the applications, here we mainly deal with the graph theoretical and computa-
tional complexity issues.

Here we also introduce a new decision problem on directed trees. It is motivated by the appli-
cations from the context of periodic real-time processes, and it is based on the new graph product.
However, this tree problem can be based on any graph product (or, in fact on any binary operation).
Therefore we introduce it now, before going into the technical details of the particular application
that motivated it.

1.1. A directed tree problem
Let T be a tree, so a connected acyclic (undirected) graph. We orient the tree by replacing each

of the edges of T by an arc, in precisely one of the two directions, so we obtain an acyclic weakly
connected directed graph, which we call a ditree. A source in a ditree is a vertex with in-degree 0.
This is usually referred to as a leaf. A sink in a ditree is a vertex with out-degree 0. We call such a
vertex a target of the ditree. We say that a ditreeD is a target tree ifD has the following properties.
Each vertex except for the leaves has in-degree 2; each vertex except for one has out-degree 1; the
unique vertex of D (if D has more than one vertex) with in-degree 2 and out-degree 0 is called the
target of D.

In our later application, the target v of a target tree D will be interpreted as a special product of
two graphs (to be defined in the sequel) that are represented by the two in-neighbours u and w of v
in D. If u is a target vertex of D � v, then analogously u can be interpreted as the product of two
graphs, etc. On the other hand, each of the ways to compute the product of the graphs G1, . . . , Gn

can be represented as a target tree on n leaves and n � 1 internal vertices (non-leaves). As an
example, in Figure 1 we depicted a target tree corresponding to a solution of one of the heuristics
called MNSA in the sequel. The leaves at the top represent graphs corresponding to processes, and
the internal vertices represent products, e.g., the internal vertex numbered 1 represents the product
of G16 and G2, the vertex numbered 8 represents the product of this new graph with G1, etc., and
the vertex numbered 15 represents the product of the graphs represented by the vertices numbered
14 and 13, respectively. For the MNSA heuristic the order in which the products of the graphs are
calculated are given by the numbers of the internal vertices. So the vertex numbered 1 represents
the first product, the vertex numbered 2 represents the second product, and so on.
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Figure 1. Target tree representing a solution of the MNSA heuristic.

In the sequel we will introduce two graph parameters ` and M that represent the processing
time and memory occupancy of the graph corresponding to (the execution of) a process, and we
will define how to compute the value of these parameters for the product of two graphs. As we will
see, for the product of two graphs G1 and G2, the `-value is usually lower than the sum of the two
`-values of G1 and G2 (if the corresponding processes synchronise on certain actions), whereas the
M -value of the product is usually larger than the sum of the two M -values. If for the execution
of a number of processes on one processor we have a limited memory capacity and a deadline to
make, this leads to a decision problem: can we combine the processes in such a way that we can
execute them on the processor, meeting the deadline and memory restrictions?

Turning back to the target tree representation, every leaf and every internal vertex of the target
tree has an associated `-value andM -value, and corresponds to one process (the leaves) or a subset
(product) of more than one process (the internal vertices). Each combination of all the processes
into several subsets (products) in which each process occurs in precisely one subset, is represented
by a number of leaves (possibly zero) and a number of internal vertices (possibly zero), so that all
the chosen vertices of the target tree cover all the leaves. Here a chosen vertex v of the target tree is
said to cover all the vertices in all the directed paths from the leaves terminating in v (i.e., v covers
all vertices in the (sub)ditree with target vertex v that results after deleting the arc which is directed
away from v). We call a set of vertices that covers all the leaves of a target tree D precisely once a
leaf cover ofD. As an example, the target vertex is a leaf cover of cardinality 1 and the set of leaves
is a leaf cover of cardinality n. Every leaf cover also has an associated `-value and M -value (given
by the combination of processes it represents, in a way we will explain later). We say that a target
tree D on n leaves is feasible if it admits a leaf cover for which the associated `-value and M -value
are within the deadline and memory restrictions, so the corresponding combination of processes
(corresponding to the sets of products of the graphs G1, . . . , Gn associated with the n leaves) can
be executed correctly on the processor. The above question translates into the following decision
problem: given n graphs G1, . . . , Gn (representing n processes), can we construct a feasible target
tree D on n leaves (representing the graphs)? We call this the Synchronised Product Decision
Problem. We will show that this decision problem is NP-complete. In fact, for obvious reasons,
we will also be interested in a solution, so a target tree together with a leaf cover that provides a
YES answer. If the leaf cover contains more than one vertex (so if it is not the target vertex of the
target tree), the solution in fact corresponds to a forest of target trees for mutually disjoint subsets
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of the n leaves.

1.2. General introduction
We continue with a general introduction that also contains the motivation for introducing the

new graph product.
The software of applications of embedded control systems is often designed using a General

Purpose Computing System (GPCS). Such a GPCS often has more processing power and memory
available than the embedded control system. The embedded control system is the target system on
which the software will run. The hardware of the target system can be very limited with respect to
available memory and processing power. If such a target system has to be periodic hard real-time,
it has deadlines D for its processes to fulfil the timing requirements, together with memoryM to
store the data of these processes.

Periodic real-time robotic applications can be designed using formal methods like process al-
gebras [8, 9]. While designing, the designer distributes the required behaviour over up to several
hundreds of processes. These processes very often synchronise over actions, e.g. to assert that a
set of processes will be ready to start executing at the same time. Due to this synchronisation the
application suffers from a considerable overhead related to extra context switches.

In [4] we have defined periodic real-time processes as finite deterministic directed acyclic la-
belled multi-graphs, where these graphs are closely related to state transition systems. The (la-
belled) arcs in such a graph represent actions in a periodic real-time process. The label represents
the name of the action and its duration. As, per action, there is a context switch, the longest path in
such a graph is the most time consuming with respect to the context switch and therefore the worst
case. We introduced in [4] a Vertex-Removing Synchronised Product (VRSP) to reduce the num-
ber of context switches. VRSP is based on the synchronised product of Wöhrle and Thomas [10],
which is used in model-checking synchronised products of infinite transition systems.

The VRSP reduces the number of context switches and realises a performance gain for periodic
real-time applications. This is achieved by (repetitively) combining two graphs representing two
processes that synchronise over some action. This combined graph represents a process that will
have only one context switch per synchronising action, where the two processes each have a context
switch per synchronising action [4].

Using the VRSP, the set of graphs is transformed into a new set of graphs. For this new
set of graphs, either the processes that they represent meet their deadline and fit into the available
memory, or there is no set of processes with strong-bisimular behaviour with respect to the original
set of processes that will do so.

To be able to compose the set of graphs in a meaningful manner, the VRSP has to be idem-
potent, commutative and associative. We have defined the notion of consistency for which VRSP is
associative. Consistency implies that the processes represented by the graphs are deadlock free in
the sense that each process must reach the state where for the process no more actions are specified.
In process algebraic terms this is also a deadlock, which we exclude from our definition.

Furthermore we investigate the number of leaf covers in the set of target trees that G can
generate under VRSP. This number is given by the Bell number[1].

We introduce a Synchronised Product Decision Problem (SPDP), which describes a solution
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out of the exponential number of leaf covers in the set of target trees and show that it is NP-
complete.

We have given in [3] heuristics that will calculate in polynomial time a leaf cover under VRSP.
Each of the heuristics that we have investigated generates one target tree. These heuristics give no
guarantee that the requirements will be fulfilled. In this paper we give another heuristic based on
the memory occupancy of the set of graphs. We compare this heuristic with the heuristics given in
[3].

The terminology is given in Section 2. From the definition of consistency we derive in Section 2
corollaries that show that the VRSP of two consistent graphs is deadlock free. In Section 3 we
show that the VRSP has an identity graph I , that it is commutative, idem-potent and (for consistent
components) associative. In Section 4 we give a tree representation of all the combinations of
graphs representing a process specification with respect to the summation over the VRSPs. In
Section 5 we define the Synchronised Product Decision Problem (SPDP) for the tree representation
of Section 4 and show that it is NP-complete. A heuristic based on the memory occupancy is given
in Section 6. We finish with the conclusions in Section 7. The pseudo-code of the heuristics is
given in the Appendix.

2. Terminology

We use Bondy and Murty [2], Hammack et al. [5], Hell and Nešetřil [6] and Milner [9] for
terminology and notation on graphs and processes not defined here and consider finite labelled
weighted deterministic directed acyclic multi-graphs only. In order to make this paper self con-
tained as far as the new terminology is concerned, we repeat the notions as they were introduced in
[4] for convenience. So, if we use G to denote a graph, we mean a labelled weighted deterministic
directed acyclic multi-graph. Thus G consists of a set of vertices V , a multi-set of arcs A, and a
surjective mapping λ : AÑ L, where L is a set of label pairs. G is also denoted as G � pV,A, Lq.

An arc a P A which is directed from a vertex v P V (the tail) to a vertex w P V (the head) will
usually be denoted as a � vw. For each arc a P A, λpaq P L consists of a pair plpaq, tpaqq, where
lpaq is a string representing an action and tpaq is a positive real number representing the worst-case
execution time of the action represented by lpaq. If an arc has multiplicity k ¡ 1, then all copies
have different label pairs, otherwise we could replace two copies of an arc with identical label pairs
by one arc, because they represent exactly the same action at the same stage of the process. If two
arcs a, b P A have label pairs λpaq � plpaq, tpaqq and λpbq � plpbq, tpbqq such that lpaq � lpbq, then
this implies that tpaq � tpbq; this follows since lpaq � lpbq means that the arcs a and b represent
the same action at different stages of a process.

The identity graph consists of one vertex and no arcs (and therefore no label pairs) and is
denoted as I , so I � ptiu,H,Hq.

The empty graph consists of no vertices and no arcs and is denoted asGH, soGH � pH,H,Hq.
A graph G is called deterministic if its arcs have the following property. If viwi, vjwj P A with

wi � wj have identical label pairs λpviwiq � λpvjwjq, then vi � vj .
This is equivalent to determinism in the set of processes that represents the graph G.
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A directed path in G is a sequence of distinct vertices v1v2 . . . vk of G such that vjvj�1 P A for

j � 1, . . . , k � 1. The length of a directed path v1v2 . . . vk is defined as
k�1°
i�1

tpvivi�1q.

A directed cycle is a directed path v1v2 . . . vk together with an additional arc vkv1, and is de-
noted by v1v2 . . . vkv1. G is called acyclic if G does not contain any directed cycles.

We consider finite directed acyclic graphs, G, only. In general, such a graph consists of several
components, where each component, Gi, is weakly connected (i.e. all vertices are connected by
sequences of arcs, ignoring arc directions) and corresponds to one sequential process. For such
components, `pGiq is defined as the maximum length taken over all directed paths in Gi. For the
whole graph, which corresponds to a parallel set of sequential processes that must each run to
completion, the maximum path length, `pGq, is the sum of all the individual `pGiq, so `pGq �
n°

i�1

`pGiq.

For a component Gi we denote its set of vertices V pGiq as Vi, its multi-set of arcs ApGiq as Ai

and its set of label pairs LpGiq as Li.
If G represents one process, then mpGq represents the amount of memory needed to store the

related data-structures. We consider finite graphs only, thereforempGq is finite. UsuallyG consists
of several components, where each component Gi of G corresponds to one process. Then mpGiq
represents the amount of memory needed to store the related data-structures for Gi.

An arc ai with label pair λpaiq in component Gi is a synchronising arc with respect to compo-
nent Gj , if and only if there exists an arc aj P Aj with label pair λpajq such that λpaiq � λpajq.
The source of a component Gi is the set of vertices tvi|vi P Viu with d�Gi

pviq � 0. The sink of a
component Gi is the set of vertices tvi|vi P Viu with d�Gi

pviq � 0. A full path in a graph G is a path
from the source to the sink of the component Gi.

For each Gi we define Si
0 to denote the set of vertices with in-degree 0 in Gi, Si

1 the set of
vertices with in-degree 0 in the graph obtained from Gi by deleting the vertices of Si

0 and all arcs
with tails in Si

0, and so on, until the final set Si
ti

contains the remaining vertices with in-degree 0
and there are no arcs in the remaining component. As in the acyclic ordering, this ordering implies
that arcs of Gi can only exist from a vertex in Si

j1
to a vertex in Si

j2
if j1   j2. If a vertex v P Vi is

in the set Si
j in the above ordering, we also say that v is at level j in Gi.

Whenever G consists of components G1, � � � , Gn this is denoted as G �
n°

i�1

Gi.

The union of two vertex-disjoint graphs Gi and Gj is the graph consisting of the union of the
vertex sets of Gi and Gj together with all the multi-arcs and label pairs defined by Gi and Gj .

2.1. Graph Products
The Cartesian product Gi �Gj of Gi and Gj is defined as the multi-graph on vertex set Vi,j �

Vi�Vj (the Cartesian product of the vertex sets of Gi and Gj) with two types of arcs. Arcs of type
1 (type 2) are between pairs pvi, vjq P Vi,j and pwi, wjq P Vi,j with viwi P Ai and vj � wj (with
vi � wi and vjwj P Aj), so arcs of type 1 and 2 correspond to arcs of Gi and Gj , respectively.
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This definition of the Cartesian product is an extension of the Cartesian product in [5]:

V pGi �Gjq � tpvi, vjq|vi P Vi and vj P Vju

ApGi �Gjq � tpvi, vjqpv
1
i, v

1
jq|vi � v1i ^ vjv

1
j P Aj , or viv1i P Ai ^ vj � v1ju

LpGi �Gjq =

tλppvi, vjqpv
1
i, v

1
jqq|viv

1
i P Ai ^ vj � v1j ^ λppvi, vjqpv

1
i, v

1
jqq � λpvi, v

1
iqu�

tλppvi, vjqpv
1
i, v

1
jqq|vjv

1
j P Aj ^ vi � v1i ^ λppvi, vjqpv

1
i, v

1
jqq � λpvj, v

1
jqu

For k ¥ 3, the Cartesian productG1�G2�. . .�Gk is defined recursively as ppG1�G2q�. . .q�Gk.
In the sequel the Cartesian product Gi�Gj is denoted as GilGj; a notation we adopted from [5].
The synchronised product of Gi and Gj is constructed in two stages.

Firstly, the intermediate stage, denoted as Gi b Gj of Gi and Gj , is defined as the graph on
vertex set Vi,j � Vi � Vj with two types of arcs:

- Arcs of type 1 are between pairs pvi, vjq P Vi,j and pwi, wjq P Vi,j with viwi P Ai , vj �
wj and λpviwiq R Lj (with vi � wi and vjwj P Aj , and λpvjwjq R Li). These arcs of
Gi b Gj are called asynchronous arcs, and the set of these arcs is denoted as Aa

i,j . Thus,
Aa

i,j � tpvi, vjqpv
1
i, v

1
jq|vi, v

1
i P Vi, vj, v

1
j P Vj with viv1i P Ai, vj � v1j and λpviv1iq R Lj, or

vjv
1
j P Aj, vi � v1i and λpvjv1jq R Liu

- Arcs of type 2 are between pairs pvi, vjq P Vi,j and pwi, wjq P Vi,j with viwi P Ai, vjwj P Aj

and λpviwiq � λpvjwjq. These arcs of Gi b Gj are called synchronous arcs, and the set
of these arcs is denoted as As

i,j . Thus, As
i,j � tpvi, vjqpv

1
i, v

1
jq|vi, v

1
i P Vi, vj, v

1
j P Vj with

viv
1
i P Ai, vjv

1
j P Aj and λpviv1iq � λpvjv

1
jqu and Ai,j � Aa

i,j

�
As

i,j .

The intermediate stage of the synchronised product is similar to the synchronised product defined
by Wöhrle and Thomas [10].

Secondly, all vertices at level 0 in the intermediate stage that are at level ¡ 0 in GilGj are
removed, together with all the arcs that have one of these vertices as a tail. This is then repeated in
the newly obtained graph, and so on, until there are no more vertices at level 0 in the current graph
that are at level ¡ 0 in GilGj . The resulting graph is called the Vertex Removing Synchronised
Product (VRSP) of Gi and Gj , denoted as Gi nGj . VRSP is also called the synchronised product
if no confusion can arise. For k ¥ 3, the VRSP G1 n G2 n . . . n Gk is defined recursively as
ppG1 nG2qn . . .qnGk.

The summation over products of components is denoted as G
°

n
�

k°
i�1

n
jPIi
Gj , Ii � t1, � � � , nu,

Ii1
�
Ii2 � H, i1 � i2,

�
i

Ii � t1, � � � , nu.

Remark 2.1. The asynchronous arcs are created in a similar fashion as the arcs in the Cartesian
product.

Remark 2.2. A pair of synchronous arcs from G1 and G2 are replaced by one arc in G1 bG2.
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2.2. Graph-morphisms
A homomorphism f of Gi to Gj , f : Gi Ñ Gj , is a mapping f : Vi Ñ Vj such that fpvqfpwq P

Aj whenever vw P Ai and λpfpvqfpwqq � λpvwq.
A weak-homomorphism f : Gi Ñ Gj , is a map f : Vi Ñ Vj for which vw P Ai implies

fpvqfpwq P Aj and λpfpvqfpwqq � λpvwq, or fpvq � fpwq. f Induces a mapping from Ai to Aj ,
which is denoted by f�.
Remark 2.3. Label pairs have been added to the definition of a weak-homomorphism as defined
by Hammack et al. [5].

Components Gi, Gj are isomorphic, denoted Gi � Gj if there exists a bijection φ from Vi to
Vj , such that viwi P Ai with λpviwiq � pk, lq ô φpviqφpwiq P Aj with λpφpviqφpwiqq � pk, lq and
λpviwiq � λpφpviqφpwiqq.

Components Gi and Gj are consistent if and only if the following two requirements apply:

1. There exist weak-homomorphisms ρi and ρj such that ρi : GinGj Ñ G1
i and ρj : GinGj Ñ

G1
j implies Gi � G1

i and Gj � G1
j .

2. GinGjpV
�q � V �

i �V
�
j andGinGjpV

�q � V �
i �V

�
j . Where V �

i � tvi|vi P Vi^d
�
Gi
pviq �

0u, V �
i � tvi|vi P Vi ^ d�Gi

pviq � 0u.

Corollary 2.1. Let components G1 and G2 be consistent. For every full path of G1 n G2 there
exists a full path of G1 (possibly after skipping arcs of the path in G1nG2 that then belong to G2)
and there exists a full path of G2 (possibly after skipping arcs of the path in G1 n G2 that then
belong to G1; the skipped arcs are asynchronous arcs.)

Proof. Because G1 and G2 are consistent there exist weak-homomorphisms ρ1 and ρ2 such that
ρ1 : G1 nG2 Ñ G1

1 and ρ2 : G1 nG2 Ñ G1
2 implies G1 � G1

1 and G2 � G1
2.

These weak-homomorphisms ρ1 and ρ2 have the property that for all full paths w1w2 . . . wn

in G1 n G2 and for every arc wiwi�1 there is an arc ujuj�1 in A1 with λpwiwi�1q � λpujuj�1q
or there is an arc vkvk�1 in A2 with λpwiwi�1q � λpvkvk�1q. Such an arc may exist for both
weak-homomorphisms ρ1 and ρ2, so for ρ1pwiwi�1q � ujuj�1 and ρ2pwiwi�1q � vkvk�1 with
λpwiwi�1q � λpvkvk�1q � λpujuj�1q.

Letwi, wi�1 R G1nG2pV
�q
�
G1nG2pV

�q. If for an arcwiwi�1 with λpwiwi�1q � a, ρ1 maps
wi and wi�1 to uj then ujuj�1 with λpujuj�1q � a is not in A1. By repetition, skipping arcs that
map by ρ2 to A2, there must be a wjwj�1 with ρ1pwjq � uj, ρ1pwj�1q � uj�1 and ujuj�1 P A1 and
λpwjwj�1q � λpujuj�1q, because otherwise uj P V � and there is a vertex vx P G2pV

�q for which
puj, vxq P G1nG2pV

�q. Analogously, by repetition, skipping arcs that map by ρ2 toA2, there must
be a wj�1wj with ρ1pwj�1q � uj�1, ρ1pwjq � uj and uj�1uj P A1 and λpwj�1wjq � λpuj�1ujq,
because otherwise uj P V � and there is a vertex vx P G2pV

�q for which puj, vxq P G1 nG2pV
�q.

Vice versa for ρ2 and arcs that are not in G2.
From this it follows that all pathsw2w3 . . . wn�1 by ρ1 (ρ2) are mapped to some path u2u3 . . . uk

(v2v3 . . . vl). But ρ1 (ρ2) maps w1 to u1 (v1) and wn to uk�1 (vl�1) and therefore u1u2 . . . uk�1

(v1v2 . . . vl�1) is a full path of G1 (G2).

Corollary 2.2. Let components G1 and G2 be consistent. For every full path in G1 pG2q there
exists a full path in G1 n G2 (posibly after skipping arcs of the path in G1 n G2 that then belong
to G2 pG1q).
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Proof. Because ρ1 (ρ2) maps G1 n G2 to G1
1 � G1 (G1

2 � G2) together with Corollary 2.1, for
every full path in G1 (G2) there exists a full path in G1 nG2.

Corollary 2.3. If components G1 and G2 are consistent, then G1 nG2 is deadlock free.

Proof. Follows directly from Corollary 2.1 and Corollary 2.2.

Both requirements of consistency are necessary to exclude a deadlock in the processes rep-
resented by the components. The first requirement of consistency ensures that all paths in the
components are (upto isomorphism) also in the VRSP of these components. An example that
violates this requirement is given in Figure 2.

a b

Gi Gj

Gj

Gi

d

e

a

b

d

d

e e

Figure 2. Inconsistent components Gi and Gj violating requirement 1.

The second requirement of consistency ensures that for two components Gi, Gj , for all paths
in component Gi there is a path in the GinGj (possibly after skipping arcs that belong to Gj) and
vice versa. A path in one component containing arcs with label pairs in opposite order as a path
in the other component is avoided. An example that violates this requirement is given in Figure 3.
Note that both examples satisfy only one of the two requirements of consistency.
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a

a a

b

c

c

c

c

b

e e
e

f f f

Gi

Gj

Gi  Gj

Figure 3. Inconsistent components Gi and Gj violating requirement 2.

An example of consistent components is given in Figure 4, where we have the components
G1 � ptv1, v2, v3, v4u, tv1v2, v2v3, v3v4u, tλpv1v2q � a, λpv2v3q � b, λpv3v4q � cuq,
G2 � ptw1, w2, w3u, tw1w2, w2w3u, tλpw1w2q � a, λpw2w3q � cuq,
G1 n G2 � ptpv1, w1q, pv2, w2q, pv3, w2q, pv4, w3qu, tpv1, w1qpv2, w2q, pv2, w2q pv3, w2q, pv3, w2q
pv4, w3qu, tλppv1, w1qpv2, w2qq � a, λppv2, w2qpv3, w2qq � b, λppv3, w2q pv4, w3qq � cuq.
Then we have the weak-homomorphisms
ρ1: pv1, w1q Ñ v1, pv2, w2q Ñ v2, pv3, w2q Ñ v3, pv4, w3q Ñ v4
ρ2: pv1, w1q Ñ w1, pv2, w2q Ñ w2, pv3, w2q Ñ w2, pv4, w3q Ñ w3

Remark 2.4. ρ1 is also a homomorphism.
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w1

w2

a

w3

c

v1 v2a v3b v4c

(v1,w1)

a

b c

G1

G1  G2

G2

(v2,w2)

(v3,w2)

(v4,w3)

ρ1

ρ2

Figure 4. Weak-homomorphisms ρ1 from G1 nG2 to G1 and ρ2 from G1 nG2 to G2

3. Basic Properties of the VRSP

We start with propositions on identity, the empty graph, commutativity and idem-potency,
which are easy to prove. We use deterministic graphs, because of the required idem-potency of
components. An example of a non-deterministic graph is given in Figure 5.

(v0,v0)

G1+G1 G1 G1  G1

v2v1v0

a

a b

v 2

v 1

v 0a
a

b

a

a

b⇔
(v1,v1)

(v2,v2)

(v1,v2)

(v2,v1)

a

a

=

Figure 5. Non-deterministic and not idem-potent component.

We state the six propositions without proof.
Let G be a finite directed acyclic labelled multi-graph.

Proposition 3.1. Gn I � G.

Proposition 3.2. G�GH � G.

Proposition 3.3. GnGH � GH.
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Let G1, G2 and G3 be deterministic finite directed acyclic labelled multi-graphs, in which all com-
ponents are pairwise consistent in Proposition 3.4 through 3.6. Note that G1, G2 and G3 are pair-
wise vertex disjoint. This follows directly from G1, G2 and G3 being components.

Proposition 3.4. The synchronised product of G1 and G2 is commutative up to isomorphism. So
G1 nG2 � G2 nG1.

Proposition 3.5. The synchronised product of G1 and G1, G1 n G1 is idem-potent up to isomor-
phism. So G1 nG1 � G1.

Note that an arc uivi P ApG1q and an arc ujvj P ApG1q, with λpuiviq � λpujvjq, i � j, pui, ujq
has level ¡ 0 in G1lG1 and level � 0 in G1bG1 (possibly after removing vertices with the same
condition) and therefore pui, ujq (and consequently pui, ujqpvi, vjq) will be removed.

Proposition 3.6. The addition over G1 and G1, G1 �G1 is idem-potent. So G1 �G1 � G1.

Propositions 3.1, 3.3, 3.4 and 3.5 follow directly from the definition of the synchronised prod-
uct.

The synchronised product does not distribute over the addition up to isomorphism. So G1 n

pG2 �G3q � pG1 nG2q � pG1 nG3q. This follows from the example shown in Figure 6. The set
of label pairs used by VRSP are restricted to the label pairs in the components that are multiplied.

w
1

w
2

b
w
3

c

v1 v2a b

v1w1

v3w2

v3 v4 v5

a v2w1

c

d

dv4w1 v5w1

G1

G2 G3

b

w
1

w
2

b
w
3

c

v1 v2a b

v1w1

v3w2

v3 v4 v5

a v2w1

c

d

dv4w1 v5w1

G1

G2 G3

b
c

d
v4w2

v5w2

dv4w3 v5w3

b
c

v3w3

b

G1  G2+G1  G3
G1  (G2+G3)

Figure 6. n does not distribute over +.

The propositions 3.1 through 3.3 are necessary for Theorem 3.1.

Theorem 3.1. Let G be a finite deterministic directed acyclic labelled multi-graph, consisting of
componentsG1, G2, G3, whereG1, G2, G3, G1nG2, G1nG3 andG2nG3 are pairwise consistent.
Then the synchronised product is associative up to isomorphism. In particular, given components
G1, G2, and G3, the map φppu1, u2q, u3q � pu1, pu2, u3qq is an isomorphism from pG1 nG2qnG3

to G1 n pG2 nG3q.

Proof. Assume there is a full path x1 . . . xm in G1 n pG2 n G3q and any full path t1 . . . to in
pG1 nG2qnG3, such that x1 . . . xm � t1 . . . to.
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Because G1 and G2 n G3 are consistent, there exist weak-homomorphisms ρ1 and ρ2 with
a full path u1 . . . ui in G1, where ρ1px1 . . . xmq � u1 . . . ui and a full path y1 . . . yl in G2 n G3,
where ρ2px1 . . . xmq � y1 . . . yl. Then there exist weak-homomorphisms ρ3 and ρ4 with a full path
v1 . . . vj in G2, where ρ3py1 . . . ylq � v1 . . . vj and a full path w1 . . . wk in G3, where ρ4py1 . . . ylq �
w1 . . . wk. But, due to Corollary 2.2, because u1 . . . ui is a full path in G1 and v1 . . . vj is a full path
in G2, there is a full path z1 . . . zn in G1nG2. For these two full paths w1 . . . zk and z1 . . . zn there
is a full path t1 . . . to in pG1 nG2qnG3, contradicting our assumption.

Thus for every full path inG1npG2nG3q there exists a full path in pG1nG2qnG3. Analogously
for every full path in pG1 nG2qnG3 there exists a full path in G1 n pG2 nG3q.

Therefore G1 n pG2 nG3q � pG1 nG2qnG3.

Figure 7 shows the weak-homomorphisms ρi from a set of full paths of the VRSP of two
components to these components. Associativity is necessary to calculate the number of possible
leaf covers of a target tree D by the Bell number, given in Section 4.

G1

G2

G3

G2  G3

G1  (G2  G3) G1  G2

(G1  G2) G3)

ρ1

ρ2

ρ4

ρ3

x1x2...xm

t1t2...to

u1u2...ui

y1y2...yl

v1v2...vj

w1w2...wk

z1z2...zn

Figure 7. Weak-homomorphisms from sets of full paths to sets of full paths.

4. Feasibility of a Target Tree

Let D be a target tree. Recall that the leaves of D represent processes as specified by the
designer of the periodic real-time application. A leaf cover of D is a solution if it represents
a set of (combined) processes that meet their deadlines and fit in the available memory. The
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cardinality of the set of leaf covers of all target trees over n leaves is given by the Bell number ,

Bn �
n�1°
k�0

�
n� 1
k



Bk, B0 � 1, [1].

Because for two isomorphic target trees the order in which VRSP is executed over components
can be different, the synchronised product of the components of the graph G has to be associative
(G1n pG2nG3q � pG1nG2qnG3) and commutative (G1nG2 � G2nG1). For this reason the
components in the graph G have to be consistent. Moreover each product of components has to be
consistent with the other remaining components.

Figure 8 gives an example where G1, G2 and G3 are pairwise consistent. But G1 nG2 and G3

are not pairwise consistent.

a b
G1

G1 G2

b c

c a

G2

G3

a b c

c a
G3

Figure 8. VRSP does not preserve consistency.

Therefore a heuristic has to check whether the components are still consistent after every mul-
tiplication by VRSP.

5. Synchronised Product Decision Problem

The cardinality of the set of leaf covers of all target trees over n leaves has an exponential
distribution. We show that a leaf cover of a target tree D can be checked in polynomial time.

Definition 1. A monoid pG,n q is an algebraic structure which is closed under the associative
operator n and has the identity element I , where G is generated by G under n.

Definition 2. Synchronised Product Decision Problem (SPDP)
Let pG,n q be a monoid, together with a memory budgetM and a deadline D.
Can a feasible target tree D on V pGq be constructed?

Note that G
°

n
is represented by a leaf cover of D.

SPDP is in NP if there exists some oracle that points out a solution and there exists an algorithm
that can check the solution in polynomial time. To formalise this, we need the following definitions,
let:

• Aipaq be the set of arcs tai|ai P Ai ^ λpaiq � au
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• Aij
k paq be the arc-set Akpaq where k � i if |Aipaq| ¤ |Ajpaq| else k � j

• Hij be the graph with arc-set A �
°
a

Aij
k paq and vertex-set tv|v P V ^ A � V � V u.

Then |A1| � � � � � |An| ¤ |A1n���nn| � |
n�1°
i�1

n°
j�i�1

ApHijq|.

mp
n�1°
i�1

n°
j�i�1

Hijq can be calculated in polynomial time. For all i, j, i � j, mpGiq �mpGjq ¥

mpHijq. SompGiq�mpGjq�mpHijq ¤ mpGinGjq. As soon asmpG
°

n
q�

n�1°
i�1

n°
j�i�1

mpHi,jq ¡M

the calculation can stop, as further multiplications will not lead to a solution. In this case, G
°

n
is

not a solution that full-fills the requirements for the deadline and memory occupancy.

Remark 5.1. This is only true because the components (and the products of the components) are
consistent. Furthermore, the calculation is not performed in the target system but in a general
purpose computing system, so the available memory may be significantly greater than the memory
available in the target system.

Having calculated the synchronised product G
°

n
and performing a breadth first search for each

component, we obtain the length of G
°

n
, `pG

°

n
q. Therefore we have in polynomial time an answer

whether the oracle’s solution is valid. Because G
°

n
is represented by a leaf cover in the target tree

D, a valid solution implies that D is feasible.
For these reasons SPDP is in NP.

Leung [7] defines the 0/1-Knapsack Decision Problem (KDP). Given a setU � tu1, u2, � � � , unu
with each item uj having a size sj and a value vj , a knapsack with size K, and a bound B. Is there
a subset U 1 � U such that

°
ujPU 1

sj ¤ K and
°

ujPU 1
vj ¥ B.

Theorem 5.1. SPDP is NP-complete.

Proof. Let G �
n°

i�1

Gi, `pGq �
n°

i�1

`pGiq � T . Let vj be a vertex in a leaf cover LC with

cardinality k of D, where D is a target tree generated by G.
Suppose U � tu1, � � � , uku is a solution for the 0/1 Knapsack Decision Problem, with uj

having size sj � mpvjq �
M
mj

,
k°

j�1

1
mj

¤ 1 and value u1j �
T
kj
� `pvjq,

k°
j�1

1
kj
¤ 1, K � M,

B � T �D.

Because
k°

i�1

si �
k°

j�1

mpvjq ¤M � K and
k°

j�1

`pvjq ¤ D ñ `pGq � `pLCq ¥ T � D � B,

LC is a solution for SPDP.
Conversely, if LC is a solution for SPDP, then `pLCq ¤ D and mpLCq ¤M � K, therefore

k°
j�1

sj ¤M � K and `pLCq ¤ Dñ
k°

i�1

u1i � T �
k°

i�1

`pviq ¥ T �D � B. So U is a solution for

the 0/1 Knapsack Problem.
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This means that, for a Yes-instance of the 0/1 Knapsack Decision Problem, the constructed
instance of the decision version of SPDP is a Yes-instance and, conversely, for a Yes-instance of
the SPDP, the constructed instance of the decision version of 0/1 Knapsack Decision Problem is a
Yes-instance. As the 0/1 Knapsack Decision Problem is NP-complete and SPDP is in NP, SPDP is
NP-complete.

6. Heuristics

In [3] we describe three heuristics that give an answer for SPDP in polynomial time. The

heuristics multiply using VRSP for a graph G �
n°

i�1

Gi up to k ¤ n components. These heuristics

are based on the (number of) actions that synchronise. All heuristics choose two components out
of a series of n components, where

• the Largest Alphabetical Intersection (LAI) heuristic calculates the cardinality of the largest
intersection of the alphabets of two components,

• the Maximising Synchronising Arcs (MSA) heuristic calculates the largest number of syn-
chronising arcs of two components,

• the Minimising Not Synchronising Arcs (MNSA) heuristic calculates the smallest cardinality
of the not-synchronising arcs set of two components.

Another approach is taking the VRSP of components Gi and Gj (containing synchronising
arcs) where the two components chosen for multiplication have the smallest occupancy of memory.
This gives the Minimising Memory Occupancy (MMO) heuristic. So for Gi, Gj , mpGi n Gjq �
pmpGiq � mpGjqq is the minimum of all VRSPs mpGk n Glq � pmpGkq � mpGlqq (containing
synchronising arcs) taken over G1, � � �Gn.
Let LC be a leaf cover of the target tree D with cardinality 1. Then,

1. if mpLCq ¤M and `pLCq ¤ D, LC is a solution for the optimisation problem of G.
2. if mpLCq ¤M and `pLCq ¡ D, there exists no solution for the optimisation problem of G,
3. if mpLCq ¡M and `pLCq ¤ D, a solution may exist for the optimisation problem of G,
4. if mpLCq ¡M and `pLCq ¡ D, there exists no solution for the optimisation problem of G.

Remark 6.1. The solution may not be optimal. That depends on the requirements with respect to
memory occupancy and processor utilisation.

As the same reasoning as for “SPDP is in NP” is valid, if mpLCq ¤ M then items 1 and 2
can be calculated in polynomial time. For item 4 no solution exists, because `pLCq ¡ D [4].
This can be calculated in polynomial time, because as soon as for a leaf cover LC 1, mpLC 1q ¡

M�
n�1°
i�1

n°
j�i�1

mpHijqq the algorithm can stop as no solution exists.

Remains item 3, where mpLCq ¡M and `pLCq ¤ D. As SPDP is NP-complete, an optimal
solution cannot be found in polynomial time (unless P=NP). We compare the three algorithms in

177



www.ejgta.org

On a directed tree problem motivated by a newly introduced graph product | Antoon H. Boode et al.

Figure 9. Deadlines and Memory Occupancy of MNSA, LAI, MMO and MSA.

[3] together with the algorithm introduced in this paper, Minimal Memory Occupancy (MMO),
given in the Appendix, Algorithm 2.

The level of the tail of a synchronising arc determines whether LAI or MMO will perform
better. For two components where these levels are low in one component and high in the other
component, MMO will perform better because the VRSP over these two components will be (al-
most) optimal with respect to memory occupancy. Whereas LAI may choose two components
with a larger alphabetical intersection that have the levels for tails of the synchronising arcs that
are relatively on the same level. But with respect to the length of the product of the components
this can be the opposite.

In Figure 9 we give for the Production Cell case study in [3] the results for the four algorithms,
MNSA, LAI, MSA and MMO. Note the logarithmic scale in the y-abyss. Due to the specification
of the processes where each process synchronises over at least one action with all other processes,
MMO performs best up till the last multiplication. To achieve a length of 37 LAI has the best (is
minimal) memory occupancy.
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The algorithms replace two components by their product until all components are multiplied.
So from a leaf cover with cardinality n to a leaf cover with cardinality 1.

7. Conclusions

A set of processes that does not meet its deadline or does not fit in the available memory can,
under certain conditions, be transformed into a set of processes that will fulfil both requirements.
For this transformation we use our Vertex Removing Synchronised Product (VRSP) on consistent
finite labelled weighted deterministic directed acyclic multi-components.

We have given a definition for consistency such that consistent components are deadlock free.
This is essential for the processes represented by these components, because otherwise in the
target system deadlines will be missed. Missing a deadline leads to a catastrophe in hard real-
time systems.

We have given conditions and proof for VRSP to be commutative, associative and idem-potent.
This is necessary because otherwise components may not be pairwise consistent.

We have introduced a directed tree problem motivated by VRSP in the context of periodic
hard real-time processes. The number of target trees is exponential with respect to the number of
components, representing the original set of processes and is given by the Bell number. We have
dealt with the graph theoretical and computational complexity issues. We have shown that the
directed tree problem is NP-complete and we have presented and compared several heuristics for
this problem.

Because SPDP is NP-complete, in practice heuristics have to be used (like MMO and the ones
we proposed in [3]) to calculate a set of components which represent processes that will not be
tardy and fit in the available memory. We have introduced a new heuristic based on memory
occupancy that shows for our case study that its performance is in most cases better than the
heuristics given in [3].

In our case the new set of processes is calculated off-line during the design process and forms
no burden on the target system, in our case an active real-time system.

Because the components have to be consistent, to compose the original set of components, the
designer is limited in his description of the system. In our view this is not a problem, because, if
the set of graphs would be not consistent, it contains graphs that represent processes that form a
deadlock. This is a situation that has to be avoided.
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Appendix

The Largest Alphabetical Intersection (LAI) heuristic is an exact copy of the LAI algorithm
given in [3]. MMO is almost identical to LAI, but requires more computation, as the VRSP of
all products has to be calculated. Both are very simple straightforward algorithms, that fit in the
algorithms given in [3]. No attempt has been made to optimise these algorithms, although that is
necessary for usage in a tool-chain.

Algorithm 1 Calculating the Largest Alphabetical Intersection
Require: G �

k°

i�1
Gi

1: first � 1

2: second� 2
3: num � 0
4: for i � 1 to k � 1 do
5: for j � i � 1 to k do
6: newNum� |LpGiq

�
LpGjq|

7: if pnewNum ¡ numq then
8: num Ð newNum
9: first Ð i

10: second Ð j

11: return pfirst, secondq

Algorithm 2 Calculating the Minimal Memory Occupancy
Require: G �

k°

i�1
Gi

1: first � 1

2: second� 2
3: mem �8
4: for i � 1 to k � 1 do
5: for j � i � 1 to k do
6: newMEM �mpGi nGjq

7: if pnewMEM   memq then
8: num Ð newNum
9: first Ð i

10: second Ð j

11: return pfirst, secondq

181


