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Abstract

A 2-nearly Platonic graph of type (k|d) is a k-regular planar graph with f faces, f − 2 of which
are of size d and the remaining two are of sizes d1, d2, both different from d. Such a graph is called
balanced if d1 = d2. We show that all connected 2-nearly Platonic graphs are necessarily balanced.
This proves a recent conjecture by Keith, Froncek, and Kreher.
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1. Introduction

Throughout this paper, all graphs we consider are finite, simple, connected, planar, undirected
and non-trivial graph.

A graph is said to be planar, or embeddable in the plane, if it can be drawn in the plane such
that each common point of two edges is a vertex. This drawing of a planar graph G is called a
planar embedding of G and can itself be regarded as a graph isomorphic to G. Sometimes, we

Received: 25 August 2021, Revised: 2 October 2022, Accepted: 23 October 2022.

659



www.ejgta.org

On families of 2-nearly Platonic graphs | Dalibor Froncek et al.

call a planar embedding of a graph a plane graph. By this definition, it is clear that we need some
matters of the topology of the plane. Immediately, after deleting the points of a plane graph from
the plane, we have some maximal open sets (or regions) of points in the plane called faces of the
plane graph. There exist exactly one unbounded region that we call it the outerface of the plane
graph and other faces (if they exist) are called as internal faces. The boundary of a face is the set
of points of vertices and edges touching the face. In the graph-theoretic language, the boundary of
a face is a closed walk. The number of edges located on the boundary of a face is called the degree
of the face. A face is said to be incident with the vertices and edges in its boundary, and two faces
are adjacent if their boundaries have an edge in common.

A graph G is k-regular when the degrees of all vertices are equal to k. A regular graph is one
that is k-regular for some k. Let G = (V,E, F ) be a graph with the vertex set V , edge set E, and
face set F . The well-known Euler’s formula states that if G is a connected planar graph, then

|V | − |E|+ |F | = 2.

The size of a face in a plane graph G is the total length of the closed walk(s) bounding the face in
G. A cut-edge belongs to the boundary of only one face, and it contributes twice to its size.

A graph G is k-connected if |V (G)| > k and G − X is connected for every set X ⊆ V (G)
with |X| < k.

Platonic solids are a well-known family of five three-dimensional polyhedra. There is no reli-
able information about their first mention, and different opinions have been taken [1, 17]. However,
they are attractive for mathematicians and others, in terms of some symmetries that they have. In
the last two centuries, many of authors have paid attention to the polyhedra and they have extended
it to convex and concave polytopes, see, e.g., [8].

But what matters from the combinatorial point of view is that a convex polyhedron can be
embedded on a sphere, and then we can map it on a plane so that the images of lines on the sphere
do not cut each other in the plane. In this way, we have corresponded a polyhedron on the sphere
with a planar graph in the plane. Steinitz’s theorem (see, e.g., [8]) states that a graph G with at
least four vertices is the network of vertices and edges of a convex polyhedron if and only if G is
planar and 3-connected.

A k-regular planar graph with f faces is a t-nearly Platonic graph of type (k|d) if f > 2t, f− t
of its faces are of size d and the remaining t faces are of sizes other than d. The faces of size d are
often called common faces, and the remaining ones exceptional or disparate faces. When t ≥ 2
and all disparate faces are of the same size, then the graph is called a balanced t-nearly Platonic
graph.

In 1967, Grünbaum considered 3-regular and connected planar graphs and he got some results.
For example, for a 3-regular connected planar graph and b ∈ {2, 3, 4, 5}, it is proved that if the size
of all faces but t faces is divisible by b, then t ≥ 2 and if t = 2 then two exceptional faces have
not a common vertex [8]. In 1968, in his Ph.D thesis, Malkevitch proved the same results for 4
and 5-regular 3-connected planar graphs [18]. Several papers are devoted to the study of this topic,
but all of them have considered planar graphs such that the sizes of all faces but some exceptional
faces are a multiple of b and b ∈ {2, 3, 4, 5} (see [2, 10, 11, 13, 14]).

Keith, Froncek, and Kreher [15, 16] and Froncek, Khorsandi, Musawi, and Qiu [6] proved
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recently that there are no 1-nearly Platonic graphs.
Deza, Dutour Sikirič, and Shtogrin [4] classified for each admissible pair (k|d) all possible

sizes of the exceptional faces of balanced 3-nearly Platonic graphs and sketched a proof of the
completeness of the list. Froncek and Qiu [5] provided a detailed combinatorial proof of existence
of infinite families of such graphs for each of the listed exceptional sizes.

There are 14 well-known families of balanced connected 2-nearly Platonic graphs (see, e.g., [4]
or [15]). Deza, Dutour Sikirič, and Shtogrin [4] provide a list and offer a sketch of a proof of the
completeness of the list. Keith, Froncek, and Kreher conjectured [15] that every connected 2-nearly
Platonic graph must be balanced.

We show that the only admissible types of 2-nearly Platonic graphs are (3|3), (3|4), (3|5), (4|3),
and (5|3), and that all connected 2-nearly Platonic graphs are balanced. We also prove in detail
that the list of 14 families of connected 2-nearly Platonic graphs presented by Deza, Dutour Sikirič,
and Shtogrin [4] is complete.

In a recent preprint [12], Jendrol’ lists 15 families of 2-nearly Platonic graphs. According to
his paper, two of them are topologically non-isomorphic although they are isomorphic in the usual
sense, when one only considers mutual adjacency of vertices. That is, two graphs G1(V1, E1, F1)
and G2(V2, E2, F2) are isomorphic if there exists a bijection φ : V1 → V2 such that φ(x)φ(y) ∈ E2

if and only if xy ∈ E1.
Note that every disconnected 2-nearly Platonic graph is the disjoint union of a connected 2-

nearly Platonic graph and a number of Platonic graphs of the same type. So, throughout this paper,
all 2-nearly Platonic graphs we consider are connected.

2. Terminology and notation

We say that the two exceptional faces are touching each other or simply touching, if they share
at least one vertex. Similarly, an exceptional face will be called self-touching if a vertex appears
on the boundary of the face more than once.

Definition 2.1. Let G be a graph and S ⊆ V (G). Then ⟨S⟩, the subgraph induced by S, denotes
the graph on S whose edges are precisely the edges of G with both ends in S. Also, G − S
is obtained from G by deleting all the vertices in S and their incident edges. If S = {x} is a
singleton, then we write G− x rather than G− {x}.

Definition 2.2. A (k; k1, k2|d)-block B of order n is a 2-connected planar graph with n−2 vertices
of degree k, two vertices x and y with deg(x) = k1, deg(y) = k2 where 2 ≤ k2 ≤ k1 < k, all faces
but one of degree d, and the remaining face of degree h ̸= d, where vertices x, y belong to the face
of degree h.

Definition 2.3. A (k; k1|d)-endblock of order n is a 2-connected planar graph with n− 1 vertices
of degree k, one vertex x with deg(x) = k1 where 2 ≤ k1 < k, all faces but one of degree d, and
the remaining face of degree h ̸= d, where the vertex x belongs to the face of degree h.

When we speak about blocks, we always assume that the exceptional face is the outerface. Let
the boundary path of the exceptional face of (k; k1, k2|d)-block B be of size h. We denote the
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boundary of the exceptional face x = x0, x1, . . . , xa = y, xa+1, . . . , xa+b−1 such that h = a + b
and always assume that a ≤ b. When we need to specify a and b in our arguments, we denote such
a block as (k; k1, k2|d, ⟨a, b⟩)-block.

Similarly, if we need to specify the size h of the exceptional face in an endblock, we will denote
it as (k; k1|d, ⟨h⟩)-endblock.

We observe that when the exceptional faces of a 2-nearly Platonic graphs touch in exactly one
vertex, say z, then by splitting z into two vertices x and y we obtain a (k; k1, k2|d, ⟨a, b⟩)-block,
where deg(x) ≥ 2, deg(y) ≥ 2 and a and b are the sizes of the two original exceptional faces,
k2 = 2 and 2 ≤ k1 ≤ 3. Consequently, such a graph would have to be of type (4|3) or (5|3).

3. Related results

We will use the following results in our proofs.

Theorem 3.1. [19, Exercise 6.1.6] A plane graph is 2-connected if and only if for every face, the
bounding walk is a cycle.

Theorem 3.2 ([16]). There are no 2-connected 1-nearly Platonic graphs.

The following result, without any proof, is stated in [3]. For a detailed proof, see [6, Theorem
6.1].

Theorem 3.3. There are no (k; k1|d)-endblocks of any admissible type.

The non-existence of 1-nearly Platonic graphs with connectivity 1 follows directly from the
above Theorem.

Theorem 3.4 ([6]). There are no 1-nearly Platonic graphs with connectivity 1.

Theorem 3.5. Every connected 2-nearly Platonic graph is 2-connected.

Proof. If a graph G is connected but not 2-connected, it must contain at least two endblocks. Let
the endblocks be B1 and B2 with outer faces F1 and F2, respectively, and the boundary be a part of
the outer face F ′

1 of G. The length of the boundary of F1 is at least 3, and the same applies for the
boundary of the rest of F ′

1. Therefore, F ′
1 has a boundary of length at least 6 and must be one of

the two exceptional faces. Since two endblocks B1 and B2 have at most a vertex in common, they
cannot share in a face and so, at least one of B1 and B2 does not contain the other exceptional face.
But then this endblock is a (k; k1|d)-endblock as defined above. This is a contradiction, since it
follows from Theorem 3.3 that no (k; k1|d)-endblock can exist in a k-regular planar graph. Hence,
a connected 2-nearly Platonic graph must be at least 2-connected.

Proposition 3.1. Suppose that G = (V,E, F ) is a 2-nearly Platonic graph of type (k, d). Then
3 ≤ d ≤ 5 for k = 3 and d = 3 for k = 4, 5.

Proof. Let |V | = n, |E| = m, |F | = f and d1 and d2 be the sizes of two exceptional faces. The
graph is k-regular and so we have kn = 2m. On the other hand, 2m = (f − 2)d + d1 + d2 and
by Euler’s formula f − 2 = m − n = 1

2
(k − 2)n. Therefore, kn = 1

2
(k − 2)nd + d1 + d2 or

d = 2k
k−2

− 2(d1+d2)
(k−2)n

which implies that d < 2k
k−2

. Now, if k = 3, then 3 ≤ d ≤ 5 and if k ∈ {4, 5},
then d = 3.
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Remark 3.1. Since blocks and endblocks in this paper are induced subgraphs of 2-nearly platonic
graphs, Proposition 3.1 applies to them as well.

4. Touching exceptional faces

Most proofs in this section are done by contradiction. We will assume a specific (k; k1, k2|d)-
block B exists and attempt to build it step by step, adding vertices in our already built subgraph of
B, until we find out that a vertex cannot be properly placed, or a face of size d cannot be created.

We introduce two notions that we will repeatedly use. In a (k; k1, k2|d)-block, a vertex is
saturated, if it is of its desired degree, that is, k, k1, or k2. A path of length d − 1 is weakly
saturated, if all its internal vertices are saturated.

4.1. No self-touching exceptional face
First we observe that if there are two touching exceptional faces, each of them must be touching

the other but not itself.

Lemma 4.1. There is no self-touching exceptional face in any connected 2-nearly Platonic graph.

Proof. Suppose that in a connected 2-nearly Platonic graph G there is a self-touching exceptional
face. Then G has a cut-vertex, which contradicts Theorem 3.5.

4.2. Excluding non-admissible values of a
Now we reduce the family of blocks that we need to investigate just to the cases where a ≤ d.

Recall that we denote the boundary of the exceptional face of a (k; k1, k2|d, ⟨a, b⟩)-block B by
x = x0, x1, . . . , xa = y, xa+1, . . . , xa+b−1. We will use this notation in the proofs of the following
lemmas.

Lemma 4.2. If there exists a (k; k− 1, k2|d, ⟨a, b⟩)-block B with a > d, then there exists a (k; k−
1, k2|d, ⟨a′, b′⟩)-block B′ with a′ < a.

Proof. We observe that the edge x0xd−1 is not present in B. If k = 3, vertex x0 is only adjacent
to x1 and xa+b−1. If k = 4, then d = 3. Suppose for the sake of contradiction that the edge
x0x2 belongs to B. Then the remaining neighbors of x1, say y1 and y2, must be inside the cycle
C : x0, x1, x2. This means that one of the paths yi, x1, x0 is weakly saturated and should be
completed into a triangle. However, this is impossible, since x0 is already of degree three.

Essentially the same argument can be made when k = 5 and the fourth neighbor of x0 is placed
outside of C. Hence, we are left with the case when k = 5, vertex x0 has a neighbor y0 inside
C. Because x0 is saturated, both paths x1, x0, y0 and x2, x0, y0 are weakly saturated and must be
completed into triangles. This implies that y0 is adjacent to both x1 and x2. Also we observe that
now the path xa+b−1, x0, x2 is weakly saturated and we must have the edge xa+b−1x2. This means
that x2 is saturated. Now, both of triangles x1, x2, y0 and x0, x1, y0 are faces of B. Therefore, x1 is
of degree 3, a contradiction.

We are now ready to prove our claim. Take the block B, remove edge xd−1xd and replace it
by edge x0xd−1. Notice that the edge x0xd−1 can be added, since it is not present in B as proved
above.
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Vertex x0 is now of degree k while xd is of degree k − 1.
If k = 4 or 5, we first consider the case when the triangular face containing the edge xd−1xd

had the third vertex on the boundary of the outerface, call it xj , where d+1 < j ≤ a+ b−1. Then
the subgraph bounded by the cycle x0, xd−1, xj, xj+1, xa+b−1 is an endblock with the exceptional
vertex xj of degree 2 or 3, and we contradict Theorem 3.3.

Therefore, the new face x0, x1, . . . , xd−1 and the new outerface are cycles. The lengths of the
boundary segments are now a− d and b+ d, respectively. Other faces are the same as the faces of
B. Thus, in this new graph all facial boundaries are cycles.

Now, by Theorem 3.1, this new graph is 2-connected. Therefore, we have found the desired
(k; k − 1, k2|d, ⟨a− d, b+ d⟩)-block B′.

Hence, from now on we can only consider (k; k − 1, k2|d)-blocks with 1 ≤ a ≤ d. First we
exclude the existence of (k; k − 1, k2|d)-blocks with a = d.

Lemma 4.3. There is no (k; k − 1, k2|d)-block with a = d for any admissible k.

Proof. Suppose such a block exists. First assume k2 = 2. We remove the vertex xd = y and add
the edge x0xd−1 = xxd−1.

Notice that the edge x0xd−1 can be added, since it is not present in B as proved in the proof of
Lemma 4.2. This way we obtain a new internal face of size d. Vertex x0 is now of degree k, vertex
xd+1 is now of degree k − 1 and all other vertices are of degree k.

Similarly as in the proof of Lemma 4.2, all facial boundaries are cycles and so by Theorem 3.1,
this new graph is 2-connected. But then we have a (k; k − 1|d)-endblock, which does not exist by
Theorem 3.3.

If k2 ≥ 3, then 4 ≤ k ≤ 5 and we must have d = a = 3. Remove the edge x2x3 = x2y and
replace it by the edge x0x2 = xx2. This creates a new internal triangular face. Vertex x0 is now of
degree k, vertex x3 = y is of degree k2 − 1 ≥ 2 and all other vertices are of degree k.

Again as in the proof of Lemma 4.2, we first consider the case when the triangular face con-
taining the edge xd−1xd had the third vertex on the boundary of the outerface, say xj , where
3 < j ≤ a+ b− 1. Then the subgraph bounded by the cycle x0, x2, xj, xj+1, xa+b−1 is an endblock
with the exceptional vertex xj of degree 2 or 3, which contradicts Theorem 3.3.

Therefore, all facial boundaries are cycles and by Theorem 3.1 this new graph is 2-connected.
Now, the edge x2x3 must have belonged to a triangle x2, x3, z and we have a (k; k2 − 1|d)-

endblock with boundary x0, x2, z, x3, . . . , xa+b−1 and x3 of degree k2 − 1 ≥ 2, which does not
exist by Theorem 3.3.

The case of a = d− 1 can be easily excluded for k2 < k − 1.

Lemma 4.4. There is no (k; k − 1, k2|d)-block with a = d− 1 and k2 < k − 1 for any admissible
k.

Proof. If such a block exists, then by adding edge xy we create a new internal face of size d.
Notice that the edge xy = x0xd−1 can be added, since it is not present in B as proved in the proof
of Lemma 4.2. Vertex y is still of degree less than k while all other vertices are of degree k. This
new graphs would be a (k; k2|d)-endblock, which does not exist by Theorem 3.3.

664



www.ejgta.org

On families of 2-nearly Platonic graphs | Dalibor Froncek et al.

Now we exclude the existence of (k; k − 1, k − 1|d)-blocks with a = 1.

Lemma 4.5. There is no (k; k − 1, k − 1|d)-block with a = 1 for any admissible k.

Proof. Suppose such a block B exists. If d = 3, then add a new vertex z and edges xz and yz.
This creates a (k, 2|3)-endblock, which does not exist by Theorem 3.3.

For d = 4, create a copy B′ of B with vertices x′ and y′ corresponding to x and y, respectively.
Then add edges xx′ and yy′ to create a new internal face of size four. All vertices in this new graph
are of degree k = 3, and the outerface is of size at least six. The resulting graph would now be
2-connected and 1-nearly Platonic, but such a graph does not exist by Theorem 3.2.

For d = 5, again create B′ as above, and an extra vertex z. Add edges xx′, yz, y′z to obtain a
new internal face x, x′, y′, z, y of size five, vertex z of degree two, and all other vertices of degree
k = 3. The new graph now would be a (k; 2|5)-endblock, which does not exist by Theorem 3.3.

For k = 5, we can even exclude large values of a even for k1 = k − 2 = 3.

Lemma 4.6. If there is a (5; 3, k2|3, ⟨a, b⟩)-block B with a > 3, then there is a (5; 3, k2|3, ⟨a −
3, b+ 3⟩)-block. Consequently, there exists a (5; 3, k2|3, ⟨a′, b′⟩)-block B′ with 1 ≤ a′ ≤ 3.

Proof. As always, b ≥ a by our assumptions above.
First, call z the common neighbor of x2 and x3. Take the edge x2x3 and replace it by edge

x0x2. We have a new triangular face x0, x1, x2 and deg(x0) = deg(x3) = 4 and deg(xa) = k2.
Now take the edge zx3 and replace it by edge x0z. We have a new triangular face x0, x2, z and
deg(x0) = 5, deg(x3) = 3 and deg(xa) = k2. If the original triangular face x2, x3, z had z = xj

for some j > a, then the cycle x0, z = xj, xj+1, . . . , xa+b−1 is now bounding a (5; 3|d′)-endblock
for some d′ ≤ 4, which is impossible by Theorem 3.3.

Hence, z is an inner vertex of the block B. But in this case we have obtained another block
(5; 3, k2|d, ⟨a− 3, b+ 3⟩). If a− 3 ≤ 3, we are done. Otherwise, we repeat the reduction until we
arrive at a block (5; 3, k2|d, ⟨a′, b′⟩) with a′ = a− 3t ≤ 3 as desired.

4.3. Uniqueness of (3; 2, 2|d)-blocks
We can now show uniqueness of the (3; 2, 2|d)-blocks for all d = 3, 4, 5.

Lemma 4.7. The (3; 2, 2|d)-blocks are unique for each d = 3, 4, 5.

Proof. Case 1. d = 3
Since the case of a ≥ 3 is impossible by Lemmas 4.2 and 4.3 and of a = 1 by Lemma 4.5, we

only need to investigate the case a = 2.
When a = 2, then we can add the edge xy = x0x2 to obtain a 3-regular 2-connected graph

with all faces size d = 3, except possibly the outer one. If the new outerface is of size greater than
three, then we have obtained a 2-connected 1-nearly Platonic graph. By Theorem 3.2, there is no
such graph, hence the outerface must be a triangle x0, x2, x3 and the new graph is the tetrahedron.
Thus, the original (3; 2, 2|3)-block was the tetrahedron without one edge shown in Figure 1.
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Figure 1: Unique (3; 2, 2|3)-block

Case 2. d = 4
Similarly as above, by Lemmas 4.2, 4.3 and 4.5, we only need to consider 2 ≤ a ≤ 3.
If a = 2, by adding a new vertex z and edges x0z and zx2, both x0 and x2 now have degree 3,

and we obtain a (3; 2|4)-endblock, which does not exist by Theorem 3.3.
When a = 3, then by adding the edge xy = x0x3 we obtain a 3-regular 2-connected graph with

all faces except possibly the outer one of size d = 4. By Theorem 3.2, there is no 2-connected
1-nearly Platonic graph, hence the outerface must be a 4-cycle x0, x3, x4, x5 and the new graph is
the cube. Thus, the original (3; 2, 2|4)-block was the cube without one edge shown in Figure 2.

Figure 2: Unique (3; 2, 2|4)-block

Case 3. d = 5
We must consider only 2 ≤ a ≤ 4 as proved in Lemmas 4.2, 4.3 and 4.5.
For a = 2, we take two copies of B and add two new vertices z1, z2 and edges z1z2, xz1, yz2,

x′z1 and y′z2. This creates two new faces of size five, bounded by cycles x = x0, x1, x2 = y, z2, z1
and x′ = x′

0, x
′
1, x

′
2 = y′, z2, z1. The outerface of this new amalgamated graph is of size at least

eight, which is impossible, since the graph would be 2-connected and 1-nearly Platonic, which is
impossible by Theorem 3.2.

For a = 3, adding a new vertex z and edges xz = x0z and zy = zx3 we would obtain a
(3; 2|5)-endblock, which does not exist by Theorem 3.3.

Finally, when a = 4, by adding the edge xy = x0x4 we get a new face of size five bounded
by x0, x1, x2, x3, x4 and all vertices are now of degree three. By Theorem 3.2, there are no 2-
connected 1-nearly Platonic graphs. Since our new graph is 2-connected, the new outerface must
be a pentagon as well. Thus, the new graph is a dodecahedron and the original graph was a
dodecahedron without one edge shown in Figure 3.

Figure 3: Unique (3; 2, 2|5)-block
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4.4. Uniqueness of (4; k1, k2|d)-blocks
Now we discuss existence of (4; k1, k2|d)-blocks. The only admissible value of d is d = 3, and

the only possibilities are (4; 3, 3|3)-blocks, (4; 3, 2|3)-blocks, and (4; 2, 2|3)-blocks.

Lemma 4.8. The (4; 3, 3|3)-block is unique.

Proof. Again by Lemmas 4.2, 4.3 and 4.5, we only need to consider the case a = 2.
We again add to B the edge xy = x0x2 similarly as in the case of k = 3 and obtain a 4-regular

2-connected graph with all internal faces of size d = 3. By Theorem 3.2, there is no 2-connected
1-nearly Platonic graph, hence the outerface must be a triangle x0, x2, x3 and the new graph is the
octahedron. Thus, the original (4; 3, 3|3)-block was the octahedron without one edge shown in
Figure 4.

Figure 4: Unique (4; 3, 3|3)-block

The following result is a direct corollary of Lemmas 4.3, 4.4, and 4.5.

Lemma 4.9. There is no (4; 3, 2|3)-block.

Proof. First assume such a block B exists for a = 1. Then we take two copies of B, say B and
B′ and amalgamate vertices y and y′, obtaining another vertex of degree three and add edge xx′.
But then we have constructed a 2-connected 1-nearly Platonic graph of type (4|3), which does not
exist by Theorem 3.2.

We cannot have a = 2 by Lemma 4.4, or a = 3 by Lemma 4.3. Hence, the proof is complete.

The only remaining case for 4-regular blocks is more complex.

Lemma 4.10. The (4; 2, 2|3)-block is unique.

Proof. Let such a block be called B. If a = 1, we create three copies B0, B1, B2 of B with the
vertices of degree two denoted xi and yi in each copy Bi. Assume that B has t internal triangular
faces and observe that b > 1 . Then we amalgamate xi with yi+1 for all i = 0, 1, 2, where the
superscripts are calculated modulo 3. This way we obtain a 2-connected 4-regular graph with
3t + 1 inner triangular faces and the outerface of size 3b ≥ 6. Because no such graph exists by
Theorem 3.2, this case is impossible.

When a = 2, then we add the edge xy = x0x2 and obtain a (4; 3, 3|3)-block with the vertices
of degree three joined by an edge, which cannot exist by Lemma 4.5. Hence, a ̸= 2.

For a = 3 and b = 3, the boundary is the 6-cycle x0, x1, . . . , x5 with deg(x0) = deg(x3) = 2.
Therefore, inside the 4-cycle x1, x2, x4, x5 with edges x1x2, x2x4, x4x5, x5x1 there must be a vertex
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v, adjacent to all vertices of the cycle. This gives the unique (4; 2, 2|3)-block shown in Figure 5.
Notice that amalgamating x0 with x3 produces an octahedron.

Figure 5: Unique (4; 2, 2|3)-block

Now we need to show that when a = 3, we cannot have b > 3. Suppose we can. But then
by amalgamating x0 with x3 as above into a vertex x′ we obtain one new inner triangular face
x′, x1, x2 and an outerface x0, x

′, x3, . . . , x3+b−1, x0 of size b + 1. Because b > 3, the outerface
is of size at least four, and we have a 2-connected 1-nearly Platonic graph of type (4|3). No such
graph exists by Theorem 3.2, which implies b = 3, contradicting our assumption that b > 3.

Finally, let a > 3. Let a = 3c + r for some c ≥ 1 and 0 ≤ r ≤ 2. Remove edges
x2x3, x5x6, . . . , x3c−1x3c and replace them by edges x0x2, x3x5, . . . , x3c−3, x3c−1.

Let i be the smallest subscript such that the edge x3i−1x3i belonged to a triangle x3i−1, x3i, xj

for some j > a and the previous edges (if any) x3s−1x3s belonged to triangles x3s−1, x3s, z3s, where
z3s is not a boundary vertex. Then the graph bounded by the cycle x0, x2, z3, x3, x5, . . . , x3i−1, xj ,
xj+1, . . . , xa+b−1 has x0 of degree 3 and xj of degree 2 or 3. However, if deg(xj) = 2, no such
graph can exist by Lemmas 4.2 and 4.3.

If deg(xj) = 3, the graph B∗ bounded by x0, x2, z3, x3, x5, . . . , x3i−1, xj , xj+1, . . . , xa+b−1

would be a (4; 3, 3|3)-block. However, such a block is unique with a = 2, while here we have
a∗ ≥ 3, because of the path x0, x2, z3, x3, x5, . . . , x3i−1, xj , where i ≥ 1. Therefore, this possibility
can be ruled out as well.

Thus, no edge x3s−1x3s belongs to a triangle x3i−1, x3i, xj .
Now if a = 3c, after performing the edge operations above, we are left with xa having degree

one and its only remaining neighbor is xa+1. Removing xa we obtain again a (4; 3, 3|3)-block as
in the previous paragraph, and the same contradiction.

When a = 3c + 1, we end up with deg(x0) = deg(xa−1) = 3 and deg(xa) = 2. We create
two copies of the block, say B and B′, amalgamate xa with x′

a and add a new edge xa−1x
′
a−1. This

way we obtain a (4; 3, 3|3, ⟨2a− 1, 2b⟩)-block. Since 2b > 2a− 1 ≥ 7, no such block can exist by
Lemma 4.8.

Finally, for a = 3c+2 we transform the graph so that deg(x0) = deg(xa−2) = 3 and deg(xa) =
2. By adding the edge xa−2xa we create a new inner triangle xa−2, xa−1, xa and deg(xa−2) = 4
and deg(xa) = 3. The resulting graph is a (4; 3, 3|3, ⟨a− 1, b⟩)-block.. But b > a− 1 ≥ 4, and no
such block can again exist by Lemma 4.8.

4.5. Uniqueness of (5; k1, k2|d)-blocks
Again, we must have d = 3. Hence, we are left with blocks of type (5; k1, k2|3) for 4 ≥ k1 ≥

k2 ≥ 2.

Lemma 4.11. The (5; 4, 4|3)-block is unique.
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Proof. It follows from Lemma 4.5 that we only have to consider a = 2.
By adding the edge x0x2 = xy, we obtain a 5-regular graph with all internal faces of size

three. By Theorem 3.2, the outerface now must be also a triangle, as otherwise we would have
a 2-connected 1-nearly Platonic graph with the outerface of size more than three. Therefore, the
new graph is the icosahedron and the original one was the icosahedron without an edge shown in
Figure 6.

Figure 6: Unique (5; 4, 4|3)-block

Lemma 4.12. A (5; 4, 3|3)-block does not exist.

Proof. We have 1 ≤ a ≤ 3 by Lemma 4.2. But we cannot have a = 3 by Lemma 4.3, or a = 2 by
Lemma 4.4. Hence, a = 1.

We again create two copies of B with t inner triangular faces and assume deg(x) = deg(x′) = 4
and deg(y) = deg(y′) = 3. Now we add a new vertex z and edges zx, zx′, zy, zy′, yy′. This way
we obtain a 2-connected graph with 2t + 3 inner triangular faces in which deg(z) = 4 and all
other vertices are of degree five. This graph would be a (5; 4|3)-endblock, which does not exist by
Theorem 3.3.

Lemma 4.13. A (5; 4, 2|3)-block does not exist.

Proof. We have a = 1 by Lemmas 4.2, 4.3 and 4.4.
Suppose deg(y) = 2. We remove y and obtain a (5; 4, 3|3)-block. But by Proposition 4.12, it

is impossible.

Now we investigate (5; 3, k2|3)-blocks.

Lemma 4.14. A (5; 3, 3|3)-block does not exist.

Proof. By Lemma 4.6 we have 1 ≤ a ≤ 3. If a = 1, we create two copies of the block B
with t inner triangular faces (and b > 1) and amalgamate the edges xy and x′y′. This creates a
2-connected 5-regular graph with 2t inner triangular faces and the outerface of size 2b ≥ 4. Such
graph would be 1-nearly Platonic and cannot exist by Theorem 3.2.

When a = 2, then by adding the edge xy = x0x2 we would obtain a (5; 4, 4|3)-block whose
non-existence was proved in Lemma 4.11.

For a = 3, we replace the edge x2x3 = x2y by edge x0x2, creating a new triangular face.
Now deg(x) = 4, deg(y) = 2 and the boundary path from x to y is x = x0, x2, v, y for some v. If
v = xj for some j > 3, then the block bounded by x0, x2, xj, xj+1, . . . , xa+b−1 is a (5; 4, 3|3)-block
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or (5; 4, 2|3)-block where v = xj is of degree three or two, respectively. Such blocks do not exist
by Lemmas 4.12 and 4.13.

If v is an inner vertex of B, then we obtain a (5; 4, 2|3)-block with a = 3, which cannot exist
by Lemma 4.3. All cases have been covered and the proof is complete.

Lemma 4.15. The (5; 3, 2|3)-block is unique.

Proof. By Lemma 4.6 we have 1 ≤ a ≤ 3. If a = 1, we create three copies B0, B1, B2 of
the block B with deg(xi) = 3 and deg(yi) = 2 in each copy Bi. Assume that B has t internal
triangular faces and observe that b > 1 . Then we amalgamate xi with yi+1 for all i = 0, 1, 2,
where the superscripts are calculated modulo 3. This way we obtain a 2-connected 5-regular graph
with 3t + 1 inner triangular faces and the outerface of size 3b ≥ 6. Because no such graph exists
by Theorem 3.2, this case is impossible.

When a = 2, then we add the edge xy = x0x2 and obtain a (5; 4, 3|3)-block, which cannot
exist by Lemma 4.12.

Now let a = 3 and the outerface be x0, x1, . . . , xa+b−1, where deg(x0) = 3, deg(x3) = 2, and
deg(xi) = 5 otherwise.

Amalgamate x0 and x3 into a new vertex x′ of degree five so that the new triangular face is
x′, x1, x2 and it is an inner face. The outerface is now x′, x4, x5, . . . , xa+b−1, and has size a+ b−3.

If b > 3, we have a+b−3 ≥ 4. But then the resulting graph is a 1-nearly Platonic graph of type
(5|3) with exceptional face of size at least four, which is non-existent by Theorem 3.2. Therefore,
b = 3. But then the new amalgamated graph has outer boundary of size three, namely x′, x4, x5.
Clearly, we have obtained the icosahedron, and the original block shown in Figure 7 is unique.

Figure 7: Unique (5; 3, 2|3)-block

Since there are no other values of a to investigate, the proof is now complete.

4.6. Classification: touching exceptional faces
Lemma 4.16. In a 2-nearly Platonic graphs, two exceptional faces cannot touch at exactly one
vertex.

Proof. Let G be a 2-nearly Platonic graphs with two exceptional faces F1 and F2 touching at
exactly one vertex. Suppose that the boundary of F1 is the cycle x1, x2, . . . , xn and the boundary
of F2 is the cycle y1, y2, y3, . . . , ym, where x1 = y1. Since {x2, xn, y2, ym} ⊆ N(x1), we have
k ∈ {4, 5} and d = 3.

If k = 4, then by splitting x1 into two vertices x′ and x′′ such that N(x′) = {xn, ym} and
N(x′′) = {x2, y2}, we obtain a (4; 2, 2|3⟨|F1|, |F2|⟩)-block. Now, by Lemma 4.10 this block is
unique. This implies that |F1| = |F2| = 3 and G is an octahedron, a contradiction.
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If k = 5, then without loss of generality (WLOG) suppose that the fifth neighbor of x1 is z and
adjacent to x2 and y2. By splitting x1 into two vertices x′ and x′′ such that N(x′) = {xn, ym} and
N(x′′) = {x2, y2, z}, we obtain a (5; 3, 2|3⟨|F1|, |F2|⟩)-block. Now, by Lemma 4.15 this block is
unique. This implies that |F1| = |F2| = 3 and G is an icosahedron, a contradiction.

Lemma 4.17. Every 2-nearly Platonic graph of type (k|d) with touching exceptional faces is con-
structed by the (k; k1, k2|d)-blocks and K2.

Proof. Let G be a 2-nearly Platonic graphs with two exceptional faces F1 and F2 touching at
vertices z1, z2, . . . , zℓ. Note that by Lemma 4.16, ℓ ≥ 2. Suppose that the boundary of F1 is
the cycle x1, x2, . . . , xn and the boundary of F2 is the cycle y1, y2, . . . , ym and suppose they are
located clockwise from x1 and y1. Also, WLOG assume that the z1 = x1 = y1, z2 = xi = yj
and it is located clockwise from x1. If i = 2, then x1 is adjacent to x2 and since x1 = y1 and
x2 = yj , it follows that y1 is adjacent to yj . Thus j = 2 and so the edge x1x2 is common
in F1 and F2. It is a block K2. Similarly, if j = 2, then i = 2. If i > 2, then j > 2 and
{x2, . . . , xi−1} ∩ {y2, . . . , yj−1} = ∅. We consider the subgraph H induced by vertices belong on
and inside of the cycle x1, x2, . . . , xi, yj−1, yj−2, . . . , y2. Note that all faces in H are cycles and
by Theorem 3.1, H is 2-connected. All vertices in H are of degree k except x1 and xi which are
of degree less than k. Also, all interior faces are of size d. Now, H is a (k; k1, k2|d)-block. This
completes the proof.

Based on our lemmas, we can now state the main result of this section.

Theorem 4.1. There are exactly seven infinite families of 2-nearly Platonic graphs with touching
exceptional faces; one of each of types (3|3), (3|4), (3|5), two of type (4|3), and two of type (5|3),
shown in Figures 8–14.

Moreover, all these graphs have the two exceptional faces of the same size.

Proof. By Lemma 4.17, every 2-nearly Platonic graph of type (k|d) with touching exceptional
faces is constructed by the (k; k1, k2|d)-blocks and K2.

For constructing the graphs of type (3|d), we must use K2 and (3; 2, 2|d)-blocks which are all
unique by Lemma 4.7.

For type (3|3) the only possible block is the (3; 2, 2|3, ⟨2, 2⟩)-block isomorphic to the tetrahed-
ron with one removed edge, and the graph must be a chain alternating the (3; 2, 2|3, ⟨2, 2⟩)-blocks
and graphs K2.

Figure 8: Chain of blocks of type (3; 2, 2|3) and K2, tetrahedron edge cycle

Next, for type (3|4) the only possible block is the (3; 2, 2|4, ⟨3, 3⟩)-block isomorphic to the
cube with one removed edge, and the graph is a chain alternating the (3; 2, 2|4, ⟨3, 3⟩)-blocks and
graphs K2.

671



www.ejgta.org

On families of 2-nearly Platonic graphs | Dalibor Froncek et al.

Figure 9: Chain of blocks of type (3; 2, 2|4) and K2, cube edge cycle

Once again, for type (3|5) the only possible block is the (3; 2, 2|5, ⟨4, 4⟩)-block isomorphic to
the dodecahedron with one removed edge, and the graph is a chain alternating the (3; 2, 2|5, ⟨4, 4⟩)-
blocks and graphs K2.

Figure 10: Chain of blocks of type (3; 2, 2|5) and K2, dodecahedron edge cycle

For type (4|3), the blocks could possibly be only of type (4; 3, 3|3), (4; 3, 2|3), or (4; 2, 2|3). A
(4; 3, 2|3)-block does not exist by Lemma 4.9; the other two are unique by Lemmas 4.8 and 4.10.
Hence, the graph is either a chain consisting of the (4; 3, 3|5, ⟨2, 2⟩)-blocks (that is, octahedrons
without an edge) and graphs K2, or a chain of (4; 2, 2|5, ⟨3, 3⟩)-blocks, arising from octahedron by
splitting one vertex.

Figure 11: Chain of blocks of type (4; 3, 3|3) and K2, octahedron edge cycle

Figure 12: Chain of blocks of type (4; 2, 2|3), octahedron vertex cycle

For type (5|3), blocks of type (5; 4, 3|3) and (5; 4, 2|3) do not exist by Lemmas 4.12 and 4.13,
respectively. The block of type (5; 4, 4|3) is unique by Lemma 4.11; it is the (5; 4, 4|3, ⟨2, 2⟩)-
block, isomorphic to the icosahedron with one removed edge. The resulting graph then is a chain
of the (5; 4, 4|3, ⟨2, 2⟩)-blocks alternating with graphs K2.

Figure 13: Chain of blocks of type (5; 4, 4|3) and K2, icosahedron edge cycle
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For blocks of type (5; k1, k2|3), where k1 ≤ 3, we cannot use the block K2. Otherwise, there
exist some vertices of degree less than 5, a contradiction.

If two blocks have one vertex z1 in common, then z1 belongs to a block B1 of type (5; 3, k2|3).
Block of type (5; 3, 3|3) does not exist by Lemma 4.14. Thus B1 is of type (5; 3, 2|3) which is
unique by Lemma 4.15; it is the (5; 3, 2|3, ⟨3, 3⟩)-block, obtained from the icosahedron by split-
ting one vertex into two vertices z1 and z2 of degree three and two, respectively. Similarly, z2
belongs to a block B2 of type (5; 3, 2|3, ⟨2, 2⟩). By repeating this process, we obtain a chain of the
(5; 3, 2|3, ⟨2, 2⟩)-blocks.

Figure 14: Chain of blocks of type (5; 3, 2|3), icosahedron vertex cycle

5. Non-touching exceptional faces

5.1. New notions
Let F1, F2 be the disjoint outer and inner disparate faces, respectively. We denote their respec-

tive boundaries by x1, x2, . . . , xn, and y1, y2, . . . , ym in clockwise order. We define the distance
between F1 and F2 as

dist(F1, F2) = min{dist(xi, yj)|xi ∈ F1, yj ∈ F2}.

In a subgraph of a 2-nearly Platonic graph of type (k|d), a vertex is saturated, if it is of degree k.
It should be obvious that in a 2-nearly Platonic graph with non-touching exceptional faces, each
vertex must belong to at least two faces of size d. Similarly, in a subgraph of a 2-nearly Platonic
graph of type (k|d), a path of length d − 1 is weakly saturated, if all its internal vertices are of
degree k.

We start with some easy observations regarding the graphs of types (3|3), (3|4), and (4|3).

5.2. Graphs of types (3|3), (3|4), and (4|3)
Observation 5.1. There is no 2-nearly Platonic graph of type (3|3) with non-touching exceptional
faces.

Proof. By contradiction. Let dist(F1, F2) = 1. Then there is an edge xiyi for some i. Because
the faces are non-touching, we have xa ̸= yb for any a, b. Vertex xi is saturated, having neighbors
xi−1, xi+1, yi, and must belong to a triangular face xi, xi+1, yi. But then yi is of degree at least four,
a contradiction.

If dist(F1, F2) = dist(xi, yi) ≥ 2, then we have a path xi, v1, v2, . . . , yi (where possibly v2 =
yi). Again, xi is saturated, hence must belong to triangular faces xi, xi−1, v1 and xi, xi+1, v1, and
v1 must be of degree at least four, a contradiction again.
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Observation 5.2. The only 2-nearly Platonic graph of type (3|4) with non-touching exceptional
faces is a prism.

Proof. If dist(F1, F2) = 1, the graph will be a prism. Let the shortest path be x1y1, weakly
saturating the path x2, x1, y1, y2, and since the common face is of degree four, x2y2 is forced.
Using the same argument repeatedly, edge xiyi is forced for every i. Hence, the graph must be a
prism.

If dist(F1, F2) = dist(x1, y1) ≥ 2, let x1, v1, v2, . . . , y1 be the shortest path, where v2 can be
equal to y1. Then v1 will have one more neighbor, say w1, WLOG in the clockwise direction.
This saturates v1 and thus v2 and xn are adjacent. But now we have a shorter path xn, v2, . . . , y1, a
contradiction.

Observation 5.3. The only 2-nearly Platonic graph of type (4|3) with non-touching exceptional
faces is an antiprism.

Proof. If dist(F1, F2) = 1, the graph will be an anti-prism. Let x1y1 be a shortest path. Vertex x1

has neighbors x2, xn, y1 and some v1, which can be placed WLOG so that the edge x1v1 is placed
between edges x1xn and x1y1. Then x1 is saturated, and we must have edge x2y1. Now y1 is
saturated, which forces edge x2y2. After repeating the argument n times, we obtain an anti-prism.

Now suppose that dist(F1, F2) = dist(x1, y1) ≥ 2, and x1, v1, v2, . . . , y1 is the shortest path,
where v2 can again be equal to y1.

Let w1 be the fourth neighbor of x1 and WLOG suppose it is located counter-clockwise from
x1. Now x1 is saturated and v1 and x2 are adjacent. For the same reason, saturation of x1, we
must have the edge w1v1. Notice that v1 is now saturated, which forces also the edge x2v2. This
would mean that dist(x2y1) < dist(x,y1) = dist(F1, F2), which is a contradiction, and the proof
is complete.

5.3. Graphs of type (3|5)
For the (3|5) case, we need several lemmas to determine the distance between the two non-

touching exceptional faces.

Lemma 5.1. Suppose G is a 2-nearly Platonic graph of type (3|5) with non-touching exceptional
faces F1, F2.

Let l = dist(F1, F2) and suppose l ≥ 3. Let x1, v1, v2, . . . , y1 be a path of length l. Denote
by wi the third neighbor of vi for i = 1, 2, . . . , l − 1, and assume w1 is located clockwise from v1.
Then all vertices w2j+1 are located clockwise from the path x1, v1, v2, . . . , y1, while all vertices w2j

are located counter-clockwise from x1, v1, v2, . . . , y1.

Proof. First observe that w2 must be placed counter-clockwise from v2. For if not, then the path
xn, x1, v1, v2, v3 is weakly saturated and forces edge xnv3. Then dist(xn, y1) < dist(x1, y1) =
dist(F1, F2), which is a contradiction.

Now let i be the smallest subscript such that wi and wi+1 are both placed in the same direction,
say counter-clockwise from vi and vi+1, respectively. Then the path wi−1, vi−1, vi, vi+1, vi+2 is
weakly saturated, which forces edge wi−1vi+1. However, this creates a path x1, v1, . . . , vi−1, wi−1,
vi+2, vi+3, y1 of length l− 1 < dist(F1, F2), which is impossible. This contradiction completes the
proof.
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Lemma 5.2. Suppose G is a 2-nearly Platonic graph of type (3|5) with non-touching exceptional
faces F1, F2 and dist(F1, F2) = l. Then the only possible values of l are 1 and 3.

Proof. Let the shortest path be as in the previous proof, and third neighbors wi of vi be placed
clockwise for odd subscripts, and counter-clockwise for even subscripts. We first want to show
that the shortest path cannot have length more than three.

Suppose it does. Then w2 is placed counter-clockwise, and xn, x1, v1, v2, w2 is a weakly satura-
ted path, forcing edge xnw2. Similarly, w4 (which can be equal to ym) is placed counter-clockwise,
and w2, v2, v3, v4, w4 is a weakly saturated path, forcing edge w2w4. This creates a path xn, w2, w4,
v4, v5 . . . , y1 of length at most l − 1, a contradiction.

Now suppose l = 2, and denote the shortest path between F1 and F2 by x1, v1, y1. Again
suppose that the third neighbor w1 of v1 is placed clockwise from v1. Then since the path xn, x1, v1,
y1, ym is weakly saturated, we muse have xnym as an edge. Then dist(F1, F2) = dist(xn, ym) = 1,
which is impossible.

So we just proved that the distance can only be one or three. In fact, the structures of the graphs
for both cases are determined for both cases, which will be shown in the next lemma. Specifically,
for the distance one case, we will shown that by some operations, every such graph could become a
2-nearly Platonic graphs with touching faces while the sizes of the exceptional faces do not change.
And for the distance three case, we could reduce it to the smallest such graph and determine its
structure.

Lemma 5.3. There is exactly one infinite class of 2-nearly Platonic graphs of type (3|5) with
non-touching exceptional faces F1, F2 and dist(F1, F2) = 1.

Proof. Let H be a graph satisfying the assumptions of our lemma, the sizes of F1 and F2 are equal
to m( ̸= 5) and n(̸= 5), respectively and assume there is an edge x1y1. We can now split the edge
into two edges x′

1y
′
1 and x′′

1y
′′
1 . We create five copies of this graph H1, H2, . . . , H5, and amalgamate

the edge x′′
1y

′′
1 in the i-th copy with x′

1y
′
1 in the (i+ 1)-st copy, with i taken modulo 5. It should be

clear that the new graph is still 2-nearly Platonic with two exceptional faces, one of size 5n, and
the other of size 5m.

Then we relabel the vertices of the exceptional faces. Denote one of the edges x′
1y

′
1 by

w1z1, and let our two exceptional faces be w1w2 . . . w5n and z1z2 . . . z5m. We add edges w1w5,
w6w10, . . . , w5n−4w5n and remove edges wnw1, w5w6, . . . , w5n−5w5n−4. Notice that none of the
edges w5s−4w5s for s = 1, 2, . . . , n existed in the graph before we added it. If w5s−4 and w5s

belong to the same copy Hj , then they correspond to some boundary vertices xt and xt+4 and so
n > 5. If xtxt+4 is an edge in H , then the induced subgraph by all vertices on and inside of the
cycle xt, xt+1, . . . , xt+4 is a (3; 2, 2|5)-block with a = 1, which does not exist by Lemma 4.5.

Also, w5s−4 and w5s cannot belong to two consecutive copies Hj and Hj+1, since we were not
adding any new edges when amalgamating Hj and Hj+1 along the edges x′

1y
′
1 and x′′

1y
′′
1 .

This way we obtain a 2-nearly Platonic graph with touching faces since the two new faces share
the vertex z1. Note that this operation does not change the size of the exceptional faces.

As we proved before, the conjecture is true for the touching exceptional faces case, thus we can
conclude that 5m = 5n, or m = n. Since we have classified the structure of the 2-nearly Platonic
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graphs for the touching exceptional faces, we can determine the structure of all the non-touching
case of type (3|5) by reversing the operations. The fundamental block of this type is shown in
Figure 15.

Figure 15: Fundamental block with non-touching faces of type (3|5) with l = 1

Lemma 5.4. There is exactly one infinite class of 2-nearly Platonic graphs of type (3|5) with
non-touching exceptional faces F1, F2 and dist(F1, F2) = 3.

Proof. Recall that the exceptional faces F1 and F2 are bounded by cycles x1, x2, . . . , xn and
y1, y2, . . . , ym, respectively with n ≤ m. We have dist(F1, F2) = 3 and denote a shortest path
by x1, v1, w1, y1 and the third neighbors of x2 by v2. Since the path v2, x2, x1, v1, w1 is a weakly
saturated path, thus w1v2 is an edge. Now, we denote the third neighbor of y2 by w2 and since the
path w2, y2, y1, w1, v2 is a weakly saturated path, thus v2w2 is an edge. By repeating this process,
we construct the path v1, w1, v2, w2, . . . , vn, wn. For each i = 1, 2, . . . , n, vi and wi are the third
adjacents of xi and yi, respectively.

xn−1

xn
x1 x2

x3

yn−1

yn
y1 y2

y3

vn−1

wn−1

vn wn
v1 w1 v2 w2 v3 w3

Figure 16: Fundamental block with non-touching faces of type (3|5) with l = 3

We have a weakly saturated path v1, x1, xn, vn, wn and so wnv1 is an edge. Finaly, the path
yn, wn, v1, w1, y1, is a weakly saturated path and two vertices yn and y1 have to be adjacent. This
concludes that m = n and the constructed graph is a balanced 2-nearly Platonic graph as desired.
The fundamental block of this type is shown in Figure 17.
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Figure 17: Fundamental block with non-touching faces of type (3|5) with l = 3

Hence in either case, we know the structure of the graph and the two exceptional faces have
the same degree for each case.

5.4. Graphs of type (5|3)
For the (5|3) case, we also first discuss the distance between the two exceptional faces.
We start by showing that the number of vertices on F1 and F2 is half of the order of the graph.

Denote the order of the graph by |V |, and we know there are m and n vertices on F1 and F2,
respectively. Since the graph is 5-regular, there are 5|V |/2 edges. Also, we can count the number
of edges using the number of faces. By Euler’s formula, the number of faces, denoted by |F |, is
|E| − |V |+ 2, which is 5|V |/2− |V |+ 2, or 3|V |/2 + 2. Since all faces except two are triangles,
and the other two faces are of degree m and n, respectively, we have 3(|F | − 2) +m+ n = 2|E|.
Because |F | = 3|V |/2+2 and |E| = 5|V |/2, we have 9|V |/2+m+n = 5|V |, or 2(m+n) = |V |,
as desired.

We summarize these findings as follows.

Observation 5.4. Let G with vertex set V be a 2-nearly Platonic graph with non-touching excep-
tional faces of sizes m and n, respectively. Then |V | = 2(m+ n).

Now we use the fact that |V | = 2(m + n) to show the distance between F1 and F2 cannot be
greater than two.

Lemma 5.5. Let G be a 2-nearly Platonic graph of type (5|3) with non-touching exceptional faces
F1 and F2 and dist(F1, F2) = l. Then 1 ≤ l ≤ 2. In particular, if l = 2, then G is balanced and
N(F1) = N(F2).

Proof. Suppose the distance is three or more, and define the neighborhoods of F1, F2 as

N(Fj) = {u | ux ∈ E(G) for some x ∈ Fj and u ̸∈ Fj},where j = 1, 2.

Thus, four sets F1, F2, N(F1) and N(F2) are pairwise distinct and so

|F1|+ |F2|+ |N(F1)|+ |N(F2)| ≤ |V |. (1)

We want to show that |N(Fj)| = 2|Fj|. Let the n-cycle x1, x2, . . . , xn be the boundary of F1

and u0
i , u

1
i , u

2
i ∈ N(F1) be the three neighbors of xi, placed in that order. Since the common faces

are all triangles, u2
i and u0

i+1 must be the same vertex. Also, u0
i and u1

i are forced to be adjacent, as
well as u1

i and u2
i . So in N(F1), we would have n distinct vertices that have exactly two neighbors
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in F1 each, and n distinct vertices with exactly one neighbor in F1 each. Thus, together there are
2n vertices.

By applying the same argument to N(F2), we have |N(F2)| = 2m. Because we have |F1| =
n, |F2| = m and by Observation 5.4, |V | = 2(m + n), it follows that by the inequality (1),
n+m+ 2n+ 2m ≤ 2(n+m), a contradiction.

If l = 2, then the three sets F1, F2 and N(F1) ∪ N(F2) are pairwise distinct and so we have
|F1| + |F2| + |N(F1) ∪ |N(F2)| ≤ |V |. Thus, |N(F1) ∪ |N(F2)| ≤ m + n. Since N(F1) ⊆
N(F1) ∪N(F2) and

2n = |N(F1)| ≤ |N(F1) ∪N(F2)| ≤ n+m, (2)

we have n ≤ m. By symmetry, looking at N(F2), we obtain m ≤ n, which implies m = n. Now,
by the inequalities (2), N(F1) = N(F1) ∪N(F2) = N(F2). This completes the proof.

In the previous lemma, we not only proved the statement, but we observed that if the distance
is two, the conjecture holds. Moreover we can determine the structure in this case. By the proof
of the lemma, all vertices other than the boundary of F1 and F2 are at distance one from both
F1 and F2. Let the vertices having one neighbor on F1 be vi for i = 1, 2, . . . , n and xivi be the
edges. Let the common neighbor of xi and xi+1 be wi. Then there is the inner cycle C2n =
v1, w1, v2, w2, . . . , vn, wn closing the triangles.

By symmetry, all vertices except the boundary of F1 and F2 are at distance one from F2. Thus
they are all in the set {v1, v2, . . . , vn} ∪ {w1, w2, . . . , wn}. Clearly, for i = 1, 2, . . . , n each wi is
already of degree four and must be a neighbor of exactly one vertex on F2, say yj . This forces vi to
be the remaining neighbor of both yi−1 and yi. This uniquely determines the structure of the graph.
We summarize our findings in the following lemma.

Lemma 5.6. The class of 2-nearly Platonic graphs of type (5|3) with non-touching exceptional
faces F1 and F2 and dist(F1, F2) = 2 is unique.

Proof. The proof was given above, and the stucture can be seen in Figure 18 below.

Figure 18: Fundamental block with non-touching faces of type (5|3) with l = 2

There is only one case left now, namely when dist(F1, F2) = 1. The method we will use is
similar to what we did in distance one case for type (3|5). That is, we will use the results for the
touching case to prove the non-touching case.

Lemma 5.7. There are exactly two classes of 2-nearly Platonic graphs of type (5|3) with non-
touching exceptional faces F1 and F2 and dist(F1, F2) = 1.
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Proof. Because dist(F1, F2) = 1, we must have an edge joining the two faces, say x1y1. Up to
symmetry, there are three possible structures for the neighbors of x1 and y1. The first case is that the
two neighbors of x1 inside the boundary are located clockwise from x1y1 while two neighbors of
y1 are counter-clockwise from x1y1. The second case is that only x1 has its two internal neighbors
on the same side of x1y1, say clockwise for it, and y1 has neighbors on both sides of x1y1. The last
case is that the two neighbors of x1 inside the boundary are on different sides of x1y1, and so are
the two neighbors of y1. The reason why the four neighbors cannot be on the same side of x1y1,
say clockwise from x1y1, is that if so, then the path xn, x1, y1 is weakly saturated and we would
need the edge xny1 to complete the triangular face. However, this would make y1 of degree six,
which is impossible. The three possible cases are shown in Figure 19 below.

x1

y1

x1

y1

x1

y1

Figure 19: From left to right: case 1, 2, and 3

In fact, if we have the structure as described in the second case, we obtain the same structure
as in case one. We have the two neighbors of x1 located clockwise from x1y1, which implies that
the path xnx1y1 is weakly saturated, and xny1 must be an edge. Now, xn, x1, y1 form a triangle
and because both x1 and y1 are already saturated, xn cannot have a neighbor inside the triangle.
Thus both remaining internal neighbors of xn are located counter-clockwise from xny1, and the
two remaining neighbors of y1 (one of which is x1) are both on the clockwise side of xny1, which
is what we have in case one up to symmetry.

We reduced the problem to two cases, and will discuss them now one by one. For the first
case where the two neighbors of x1 inside the boundary are located clockwise from x1y1 while two
neighbors of y1 are counter-clockwise from x1y1, we can split the edge x1y1 to obtain a strip. Then
we make three copies of the strip and attach them together, for the vertices that are incident with the
splitting edge are symmetric. This way we obtain a larger 2-nearly Platonic graph with exceptional
faces of degrees 3n and 3m. We label the vertices again so that x1y1 is a path from F1 to F2 and
x1 has two neighbors clockwise from x1y1. So x1y2 will be an edge connecting F1 to F2 as well.
Then we remove edges x3nx1, x3x4, . . . , x3n−3x3n and add edges x1x3, x4x5, . . . , x3n−2xn. The
graph remains 5-regular and all but the two exceptional faces are triangles. Also, the long faces
will have the same size as the graph before the operation. However, now the two exceptional faces
share the vertex y1, so by the previous result, the two faces must have the same size, i.e. 3m = 3n,
thus m = n, as desired.

For the third case, where the two neighbors of x1 inside the boundary are on different sides of
x1y1, and the same holds for y1, we can also split the edge x1y1, make three copies and glue them
together. Then instead of adding and removing edges on only one of the exceptional faces as we
did in the first case, we will add and remove edges on both inner and outerface. Again after the
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operation the two new exceptional faces share a vertex, which is one of the common neighbors of
x1 and y1. Since the operation does not change the face size, we could conclude that 3m = 3n,
and so m = n.

Since the class of 2-nearly Platonic graphs with touching faces obtained by these operations is
unique as described in Lemma 4.15, it should be obvious that starting with graphs in Figure 19 and
reversing the steps, we obtain graphs in Figures 20 and 21, respectively.

Figure 20: Case 1 and Case 2 are isomorphic.

Figure 21: Case 3

5.5. Classification: non-touching exceptional faces
Theorem 5.1. There are exactly seven infinite families of 2-nearly Platonic graphs with non-
touching exceptional faces; the prism of type (3|4) in Figure 22, two graphs of type (3|5) in Fig-
ures 23 and 24, antiprism of type (4|3) in Figure 25, and three graphs of type (5|3) in Figures 26,
27 and 28. Moreover, all these graphs have the two exceptional faces of the same size.

Proof. The non-existence of 2-nearly Platonic graphs of type (3|3) follows from Observation 5.1.
The result for type (3|4) follows from Observation 5.2.

Figure 22: Prism, type (3|4)

For type (3|5) the result follows from Lemmas 5.3 and 5.4.

Figure 23: Barrel, type (3|5)
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Figure 24: Dodecahedron thick cycle, type (3|5)

The result for type (4|3) follows from Observation 5.3.

Figure 25: Antiprism, type (4|3)

Finally, for type (5|3) the result follows from Lemmas 5.6 and 5.7.

Figure 26: Icosahedron wide cycle, type (5|3)

Figure 27: Icosahedron first thick cycle, type (5|3)

Figure 28: Icosahedron second thick cycle, type (5|3)

6. Conclusion

We summarize our results in the form answering in the affirmative the conjecture by Keith,
Froncek, and Kreher [15]. For the respective classes of graphs, we slightly modified the terminol-
ogy introduced in [15].
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Theorem 6.1. All 2-nearly Platonic graphs are balanced and belong to one of the following 14
families, listed by type (k|d):

• Type (3|3):

1. tetrahedron edge cycle (Figure 8)

• Type (3|4):

2. cube edge cycle (Figure 9)

3. prism (Figure 22)

• Type (3|5):

4. dodecahedron edge cycle (Figure 10)

5. barrel (Figure 23)

6. dodecahedron thick cycle (Figure 24)

• Type (4|3):

7. octahedron edge cycle (Figure 11)

8. octahedron vertex cycle (Figure 12)

9. antiprism (Figure 25)

• Type (5|3):

10. icosahedron edge cycle (Figure 13)

11. icosahedron vertex cycle (Figure 14)

12. icosahedron wide cycle (Figure 26)

13. icosahedron first thick cycle (Figure 27)

14. icosahedron second thick cycle (Figure 28)

Remark. This paper was originally written as two independent papers by two disjoint pairs of
co-authors. The methods used in both papers were very similar, and the papers differed mainly in
the structure of theorems and proofs. After we had learned about each other, we decided to join
forces and merge the papers into one [7], which is in its final form presented here.
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