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Abstract

Vizing conjectured that χ′
ℓ(G) ≤ ∆ + 1 for all graphs. For a graph G and nonnegative integer k,

we say G is a k-list-edge-critical graph if χ′
ℓ(G) > k, but χ′

ℓ(G− e) ≤ k for all e ∈ E(G). We use
known results for list-edge-critical graphs to verify Vizing’s conjecture for G with mad(G) < ∆+3

2

and ∆ ≤ 9.
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1. Introduction

We consider only simple graphs in this paper. It will be convenient for us to define for a graph
G, the vertex set Vx = {v ∈ V (G) | d(v) = x} and the set V[x,y] = {v ∈ V (G) | x ≤ d(v) ≤ y}.
An edge-coloring of G is a function which maps one color to every edge of G such that adjacent
edges receive distinct colors. A k-edge-coloring of G is an edge-coloring of G which maps a total
of k colors to E(G). The chromatic index χ′(G) is the minimum k such that G is k-edge-colorable.
Vizing’s Theorem [10] gives us χ′(G) ≤ ∆+ 1 for all graphs G where ∆ is the maximum degree
of G.

We are interested in a variation of edge-coloring called list-edge-coloring. A list-edge-coloring
is an edge-coloring with the extra constraint that each edge can only be colored from a preassigned
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list of colors. Specifically, we say an edge-list-assignment of G is a function which maps a set of
colors to every edge in G. If L is an edge-list-assignment of G, then we refer to the set of colors
mapped to e ∈ E(G) as the list, L(e). We say that G is L-colorable if G can be properly edge-
colored with every edge e receiving a color from L(e). We say that G is k-list-edge-colorable if G
is L-colorable for all L such that |L(e)| ≥ k for all e ∈ E(G). We note this concept is referred to
as k-edge-choosable in other papers. The list-chromatic index, χ′

ℓ(G), is the minimum k such that
G is k-list-edge-colorable. So, we want to achieve a list-edge-coloring for all list-assignments L
with minimal list-size k.

It is easy to see that χ′
ℓ(G) ≥ χ′(G) ≥ ∆ for all graphs. The List-Edge Coloring Conjecture

proposes that χ′
ℓ(G) = χ′(G), but this has only been verified for a few special families of graphs,

such as Galvin’s result for the family of bipartite graphs [6]. In this paper, we will focus on a
relaxation of the LECC proposed by Vizing.

Conjecture 1 (Vizing [9]). If G is a graph, then χ′
ℓ(G) ≤ ∆+ 1.

This conjecture has been verified for all graphs with ∆ ≤ 4. The ∆ = 3 case was proved by
Vizing [9] in 1976 and independently by Erdős, Rubin, and Taylor [5] in 1979. The ∆ = 4 case of
Conjecture 1 was proved in 1998 by Juvan, Mohar, Škrekovski [8].

The average degree of a graph G is ad(G) =
∑

d(v)
v(G)

. The maximum average degree of a graph
G is mad(G) = max{ad(H) : H ⊆ G}. That is, mad(G) is the maximum of the set of average
degrees of all subgraphs G.

Motivated by Vizing and the List Edge Coloring Conjecture, Woodall conjectured [11] if G has
mad(G) < ∆− 1, then χ′

ℓ(G) = ∆. Together with Borodin and Kostochka, Woodall [2] was able
to verify his conjecture when mad(G) <

√
2∆.

We say that a graph G is k-list-edge-critical if χ′
ℓ(G) > k, and χ′

ℓ(G−e) ≤ k for all e ∈ E(G).
By taking advantage of known results for list-edge-critical graphs, we relax Woodall’s conjecture
by bounding ∆(G) ≤ 9 to verify Conjecture 1 when mad(G) < ∆(G)+3

2
.

2. Main Result

In 1990, Borodin verified Conjecture 1 for planar graphs with ∆ ≥ 9 (see [3]). This was
improved to planar graphs with ∆ ≥ 8 by Bonamy in 2015 (see [1]). In 2010, before Bonamy’s
result, Cohen and Havet wrote a new proof of Borodin’s theorem which reduced the argument to
about a single page (see [4]). Their new proof used the minimality of list-edge-critical graphs and
a clever discharging argument. We state one of their lemmas below.

Lemma 2.1 (Cohen & Havet [4]). If G is (∆+1)-list-edge-critical, then deg(u)+deg(v) ≥ ∆+3.

Lemma 2.1, together with Borodin, Kostochka, Woodall’s generalization [2] of Galvin’s The-
orem, were used to prove the following lemma. This lemma is listed as Lemma 9 in [7] and was
used to achieve edge-precoloring results.

Lemma 2.2 (Harrelson, McDonald, Puleo [7]). Let a0, a, b0 ∈ N such that a0 > 2, b0 > a, and
a+ b0 = ∆+ 3. If G is (∆ + 1)-list-edge-critical, then
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2
a∑

i=a0

|Vi| <
∆∑

j=b0

(a+ j −∆− 2)|Vj|.

We apply Lemma 2.2 directly to graphs of bounded maximum average degree to prove our
main result.

Theorem 2.1. If G has ∆(G) = ∆ ≤ 9 and mad(G) < ∆+3
2

, then χ′
ℓ(G) ≤ ∆+ 1.

Proof. Let m = ∆+3
2

and assign integers, which we will call an initial charge, to every vertex
and an artificial, global pot P . We denote and define these initial charges as follows: α(P ) = 0
and α(v) = d(v) for all v ∈ V (G). Let α(G) denote the sum of all initial charges. We know
ad(G) =

∑
d(v)

v(G)
, rather α(G) = ad(G) · v(G) < m · v(G). We will apply a discharging step and

denote α′(v) as the final charge for v ∈ V (G) after discharing. We will also use α′(P ) and α′(G) to
denote the final charges of P and G, respectively, after the discharging step. To get a contradiction,
we will prove α′(G) ≥ m · v(G) by showing α′(P ) > 0 and α′(v) ≥ m for all v ∈ V (G).

We note that this theorem is known for ∆ ≤ 4 so we may assume 5 ≤ ∆ ≤ 9. For each of
these values of ∆, we provide Tables 1 through 5. Each table provide a list of triples (a0, a, b0)
and their resulting inequalities from Lemma 2.2. Each table also presents the discharging step and
verifies α′(v) ≥ m for all v ∈ V (G). We let xi be the sum of coefficients of Vi from the first table.
For all values of ∆, we discharge in the following way; If deg(v) = i ≥ m, then v will give xi to
P . If deg(v) = i < m, then v will take xi from P .

For all values of ∆, we verify α′(P ) > 0 by using only strict inequalities and noting the lesser
side of every inequality only contains vertices with degree less than m and the greater side every
inequality only contains vertices with degree greater than m. This means more charge is put into
P than is taken from P due to how we defined xi in our discharging step.

If ∆ = 9, then we consider the ordered triples in the form of (a0, a, b0) and the system of
inequalities resulting from Lemma 2.2 as displayed in Table 1. We note that the final charge of P
is positive since adding all inequalities together yields:

x3V3 + x4V4 + x5V5 < x7V7 + x8V8 + x9V9.

The final charges from Table 1 gives

a′(G) = α′(P ) +
∑

v∈V (G)

α′(v) > m · v(G)

This is a contradiction for ∆ = 9. We proceed through the remaining values of ∆ using the
same argument. We present a table for each value of ∆. Each table displays inequalities resulting
from Lemma 2.2 and each table displays the discharging step to verify α′(v) > m and α′(P ) > 0.
Note that, for ∆ = 8, we multiply the first inequality by 1/2.

This completes the proof of Theorem 2.1.
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Table 1. Inequalities and final charges for ∆ = 9.

Lemma 2.2 inequalities for ∆ = 9

(a0, a, b0) Inequality
(3,5,7) V3 + V4 + V5 <

1
2
V7 + V8 +

3
2
V9

(3,4,8) V3 + V4 <
1
2
V8 + V9

(3,3,9) V3 <
1
2
V9

Discharging for ∆ = 9,m = 6

α(v) = i xi α′(v)

3 3 6
4 2 6
5 1 6
6 0 6
7 1

2
13
2

8 3
2

13
2

9 6
2

6

Table 2. Inequalities and final charges for ∆ = 8.

Lemma 2.2 inequalities for ∆ = 8

(a0, a, b0) Inequality
(3,5,6) 1

2
[V3 + V4 + V5] <

1
2
[1
2
V6 +

2
2
V7 +

3
2
V8]

(3,4,7) V3 + V4 <
1
2
V7 +

2
2
V8

(3,3,8) V3 <
1
2
V8

Discharging for ∆ = 8,m = 11
2

α(v) = i xi α′(v)

3 5
2

11
2

4 3
2

11
2

5 1
2

11
2

6 1
4

23
4

7 1 6
8 9

4
23
4

Table 3. Inequalities and final charges for ∆ = 7

Lemma 2.2 inequalities for ∆ = 7

(a0, a, b0) Inequality
(3,4,6) V3 + V4 <

1
2
V6 +

2
2
V7

(3,3,7) V3 <
1
2
V7

Discharging for ∆ = 7,m = 5

α(v) = i xi α′(v)

3 2 5
4 1 5
5 0 5
6 1

2
11
2

7 3
2

11
2
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Table 4. Inequalities and final charges for ∆ = 6.

Lemma 2.2 inequalities for ∆ = 6

(a0, a, b0) Inequality
(3,4,5) V3 + V4 <

1
2
V5 +

2
2
V6

(3,3,6) V3 <
1
2
V6

Discharging for ∆ = 6,m = 9
2

α(v) = i xi α′(v)

3 2 5
4 1 5
5 1

2
9
2

6 3
2

9
2

Table 5. Inequalities and final charges for ∆ = 5.

Lemma 2.2 inequalities for ∆ = 5

(a0, a, b0) Inequality
(3,3,5) V3 <

1
2
V5

Discharging for ∆ = 5,m = 4

α(v) = i xi α′(v)

3 1 4
4 0 4
5 1

2
9
2

3. Conclusion

The application of Lemma 2.2 can be improved for some values of ∆(G) presented in Theorem
2.1 to yield slightly greater values of mad(G). We can also apply Lemma 2.2 to any value of ∆(G),
but this will lower the bound on mad(G). Specifically, we can find optimum values of mad(G)
given ∆(G) for graphs of higher max-degree by “reverse-engineering” the inequalities of Lemma
2.2 as shown in the following example for ∆(G) = 10.

Example 1. Finding an optimal mad(G) for ∆(G) = 10.

Proof. Let mad(G) < m for some m, let α(P ) = 0, and let α(v) = d(v) for all v ∈ V (G). We
wish to determine the largest number m such that α′(P ) > 0 and α′(v) ≥ m for all v ∈ V (G). We
begin by presenting a table of triples and their resulting inequalities from Lemma 2.2; however, we
multiply each inequality by an arbitrary constant.

Table 6. Lemma 2.2 inequalities for ∆ = 10

(a0, a, b0) Inequality
(3, 6, 10) c1(V3 + V4 + V5 + V6 <

1
2
V7 +

2
2
V8 +

3
2
V9 +

4
2
V10)

(3,5,10) c2(V3 + V4 + V5 <
1
2
V8 +

2
2
V9 +

3
2
V10)

(3,4,10) c3(V3 + V4 <
1
2
V9 +

2
2
V10)

(3,3,10) c4(V3 <
1
2
V10)
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As in Theorem 2.1, we let xi be the sum of coefficients of Vi from this table. We will let “high-
degree” vertices give charge to P while “low-degree” vertices take charge from P in the rules that
follow. If deg(v) = i ≥ ⌈1

2
∆+2⌉, then v gives xi to P . If deg(v) = i ≤ ⌊1

2
∆+1⌋, then v takes xi

from P . This yields the list of final charges displayed in Table 6. We set each final charge greater
than or equal to m.

Table 7. Final charges for Example 1.

Vi Final Charge ≥ m Name
V3 3 + c1 + c2 + c3 + c4 ≥ m A
V4 4 + c1 + c2 + c3 ≥ m B
V5 5 + c1 + c2 ≥ m C
V6 6 + c1 ≥ m D
. . .
. . .
. . .

V10 10− 4
2
c1 − 3

2
c2 − 2

2
c3 − 1

2
c4 ≥ m E

Increasing the constants c1,c2,c3,c4 increases the final charge of our “low-degree” vertices, but
decreases the final charge of our “high-degree” vertices. We need all final charges to be greater
than or equal to m so we must chose m carefully. While all vertices in V[7,10] give charge away,
the vertices in V10 give the most, meaning inequality E has the strictest bound on m. With this in
mind, we can find an optimal bound for m by adding inequalities in the following way:

2E + A+B + C +D =⇒ 38 + 0x1 + 0x2 + 0x3 ≥ 6m =⇒ 19
3
≥ m

We can now use this bound and the inequalities of the “low-degree” vertices from Table 6 to
solve for c1,c2,c3,c4.

D V6 : 6 + c1 ≥
19

3
=⇒ c1 =

1
3

C V5 : 5 + c1 + c2 ≥
19

3
=⇒ c2 = 1

B V4 : 4 + c1 + c2 + c3 ≥
19

3
=⇒ c3 = 1

A V3 : 3 + c1 + c2 + c3 + c4 ≥
19

3
=⇒ c4 = 1

We have shown that α′(v) ≥ 19
3

for our “low-degree” vertices in V[3,6]. We only need to verify
the values of c1, c2, c3, c4, and m give us appropriate inequalities for the “high-degree” vertices.
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V7 : 7−
1

2
c1 >

19

3

V8 : 8−
2

2
c1 −

1

2
c2 >

19

3

V9 : 9−
3

2
c1 −

2

2
c2 −

1

2
c3 >

19

3

V10 : 10−
4

2
c1 −

3

2
c2 −

2

2
c3 −

1

2
c4 =

19

3

So m = 19
3

is a feasible bound for mad(G) when ∆(G) = 10. This means if a graph H has
∆(H) ≤ 10 and mad(H) < 19

3
, then χ′

ℓ(H) ≤ ∆+ 1.

Lemma 2.2 can be thought of as a generalization Cohen and Havet’s argument in [4]. Both
of these results use forbidden structures to force good counts of low and high degree vertices by
relying on Galvin’s Theorem [6]. In this sense, good counts are achieved from knowing the list-
edge-colorability of bipartite graphs. We are interested in how the list-edge-colorability of other
simple families of graphs could be used to develop counts to verify Vizing’s Conjecture or even
the LECC for a wider range of graphs than is currently known.

References

[1] M. Bonamy, Planar graphs with ∆ ≥ 8 are (∆ + 1)-edge-choosable, Seventh Euro. Con-
ference in Comb., Graph Theory and App., CRM series, Edizioni della Normale 16 (2013).
https://doi.org/10.1137/130927449

[2] O.V. Borodin, A. V. Kostochka, and D. R. Woodall, List edge and list total colorings of multi-
graphs, J. Combin. Theory Ser. B 71 (1997), 184-204. https://doi.org/10.1006/jctb.1997.1780

[3] O.V. Borodin, A generalization of Kotzig’s theorem on prescribed edge coloring of planar
graphs, Mat. Zametki 48 (1990), 1186-1190. https://doi.org/10.1007/BF01240258

[4] N. Cohen and F. Havet, Planar graphs with maximum degree ∆ ≤ 9 are
(∆ + 1)-edge-choosable-a short proof, Discrete Math. 310 (2010), 3049-3051.
https://doi.org/10.1016/j.disc.2010.07.004
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