Electronic Journal of Graph Theory and Applications

On the construction of super edge-magic total graphs

Darmaji ${ }^{\text {a }}$, S. Wahyudi ${ }^{\text {a }}$, Rinurwatia ${ }^{\text {a }}$, S.W. Saputro ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
${ }^{b}$ Department of Mathematics, Institut Teknologi Bandung, Jl.Ganesa 10 Bandung, Indonesia

\{darmaji, suhud, rinur\}@matematika.its.ac.id; suhadi@math.itb.ac.id

Abstract

Suppose $G=(V, E)$ be a simple graph with p vertices and q edges. An edge-magic total labeling of G is a bijection $f: V \cup E \rightarrow\{1,2, \ldots, p+q\}$ where there exists a constant r for every edge $x y$ in G such that $f(x)+f(y)+f(x y)=r$. An edge-magic total labeling f is called a super edge-magic total labeling if for every vertex $v \in V(G), f(v) \leq p$. The super edge-magic total graph is a graph which admits a super edge-magic total labeling. In this paper, we consider some families of super edge-magic total graph G. We construct several graphs from G by adding some vertices and edges such that the new graphs are also super edge-magic total graphs.

Keywords: edge-magic total labeling, super edge-magic total graph, super edge-magic total labeling Mathematics Subject Classification: 05C78
DOI: 10.5614/ejgta.2022.10.1.21

1. Introduction

We assume that all graphs in this paper are simple and finite. Let $G=(V, E)$ be a graph with p vertices and q edges. Let f be a bijection function defined as $f: V \cup E \rightarrow\{1,2, \ldots, p+q\}$. Ringel and Llado [16] provided the definition that the function f is called an edge-magic total labeling if there exists a constant r for every edge $x y$ in G such that the weight of the edge $f(x)+f(y)+$ $f(x y)=r$. We can say the constant r as a magic constant of f. Wallis [18] then called a graph G admitting an edge-magic labeling as an edge-magic total graph.

Received: 2 June 2021, Revised: 23 January 2022, Accepted: 12 April 2022.

The edge-magic total concept was introduced by Kotzig and Rosa [10, 11]. They proved that complete bipartite graphs $K_{m, n}(m, n \geq 1)$ and cycles $C_{n}(n \geq 3)$ are edge-magic total graphs. They also proved that a complete graph K_{n} is edge-magic total graph if and only if $n=1,2,3,4,5$ or 6 ; and the disjoint union of n copies of P_{2} has an edge-magic total labeling if and only if n is odd. Interested readers are referred to a number of relevant literature that are mentioned in the bibliography section, including [$1,8,14,16,17]$.

In this paper, we consider an edge-magic total labeling of G where the p smallest labels are given to $V(G)$. Enomoto et al. [3] defined this version of edge-magic total labeling as a super edge-magic total labeling. If there exists a super edge-magic total labeling in a graph G, then G is called as a super edge-magic total graph.

Enomoto et al. [3] proved that caterpillars are super edge-magic total. They also determined that a complete graph K_{n} is super edge-magic total if and only if $n=1,2$, or 3 ; and a complete bipartite graph $K_{m, n}$ is super edge-magic total if and only if $m=1$ or $n=1$. Enomoto et al. also proved that odd cycles are super edge-magic total. Some other results on super edge-magic total graph can be seen in $[4,5,6,7,8,9,15]$.

The following properties are useful to show whether a graph G is super edge-magic total or not. A graph $G=(V, E)$ is super edge-magic total graph if there exists a vertex labeling that causes a consecutive labeling.

Lemma 1.1. [2, 6] A graph G is super edge-magic total if and only if there is a vertex labeling f such that $f(V(G))$ and $\{f(u)+f(v) \mid u v \in E(G)\}$ are both consecutive.

In this case, in order to show that graph G is super edge-magic total graph, it is simply indicated by taking a bijection of vertex labeling $f: V \rightarrow\{1,2, \ldots, p\}$ where $\{f(u)+f(v) \mid u v \in E(G)\}$ is consecutive. The vertex labeling f can be extended to be a total labeling by defining $f(u v)=$ $p+q+\min \{f(u)+f(v) \mid u v \in E(G)\}-f(u)-f(v)$ for every edge $u v \in E(G)$. So that, the total labeling f is a super edge-magic total labeling of G.

In this paper, we will construct some families of super edge-magic total graph which obtained from a known super edge-magic total graph. We obtain four results. First theorem is related to a path P_{n}. Lee and Lee [12] have provided a construction on a path P_{2} such that a new graph is super edge-magic total. In this paper, we generalized such construction on a path $P_{2 n}(n \geq 1)$.

The second result is related to disjoint union graph and joint product graphs. For graphs G and H, a disjoint union graph $G \cup H$ is a graph with vertex set $V(G) \cup V(H)$ and an edge set $E(G) \cup E(H)$. A joint product graph of G and H, denoted by $G+H$, is a graph with $V(G+H)=$ $V(G) \cup V(H)$ and $E(G+H)=E(G) \cup E(H) \cup\{u v \mid u \in V(G), v \in V(H)\}$. For any super edge-magic total graphs G, we construct a new graph from G by using disjoint union and joint product with some graphs, such that a new graph is also super edge-magic total.

For the third result, we define graph $G(+) P_{m}(+) H$ where $m \geq 2$ as a graph obtained by taking one copy of the graphs G and H and a path P_{m}, then connect an end point of P_{m} to all vertices of G and the other end point of P_{m} to all vertices of H. For any super edge-magic total graphs G, we provide some graphs H such that $G(+) P_{m}(+) H$ is also super edge-magic total. The last result is a construction of a super edge-magic total graph from a super edge-magic total graph by considering a super edge-magic labeling of the origin graph.

2. Main Results

In this section, we provide some constructions to obtain a new super edge-magic total graph which obtained from a super edge-magic total graph.

First, we consider a path $P_{n}(n \geq 2)$. López et al. [13] have proved that paths are super edgemagic total. Now, we define a graph $\left(P_{n} \cup h K_{1}\right)(+) 2 K_{1}(h \geq 1)$, which is a graph obtained by taking one copy of a path P_{n}, h copies of K_{1}, and two isolated vertices ($2 K_{1}$), then connect all end points of P_{n} and all vertices of h copies of K_{1} to both two vertices of $2 K_{1}$. We can say that $V\left(\left(P_{n} \cup h K_{1}\right)(+) 2 K_{1}\right)=V\left(P_{n}\right) \cup V\left(h K_{1}\right) \cup V\left(2 K_{1}\right)$ and $E\left(\left(P_{n} \cup h K_{1}\right)(+) 2 K_{1}\right)=E\left(P_{n}\right) \cup\{u v \mid$ $u \in V\left(h K_{1}\right)$ or u is an end point of $\left.P_{n} ; v \in V\left(2 K_{1}\right)\right\}$. In [12], Lee and Lee have proved that $\left(P_{2} \cup h K_{1}\right)(+) 2 K_{1}(h \geq 1)$ are super edge-magic total. In the following theorem, we generalize Lee and Lee construction on a path $P_{2 n}(n \geq 1)$.

Theorem 2.1. For integers $h, n \geq 1$, graphs $\left(P_{2 n} \cup h K_{1}\right)(+) 2 K_{1}$ are super edge-magic total.

Figure 1. Graph $\left(P_{2 n} \cup h K_{1}\right)(+) 2 K_{1}$.

Proof of Theorem 2.1. Let $V\left(h K_{1}\right)=\left\{x_{i} \mid 1 \leq i \leq h\right\}, V\left(2 K_{1}\right)=\left\{y_{1}, y_{2}\right\}, V\left(P_{2 n}\right)=\left\{z_{i} \mid 1 \leq\right.$ $i \leq 2 n\}$, and $E\left(P_{2 n}\right)=\left\{z_{i} z_{i+1} \mid 1 \leq i \leq 2 n-1\right\}$. It is easy to verify that $\left(P_{2 n} \cup h K_{1}\right)(+) 2 K_{1}$ has $2 n+h+2$ vertices and $2 n+2 h+3$ edges.

Now, we define a vertex labeling $f: V\left(\left(P_{2 n} \cup h K_{1}\right)(+) 2 K_{1}\right) \rightarrow\{1,2, \ldots, 2 n+h+2\}$ where for $v \in V\left(\left(P_{2 n} \cup h K_{1}\right)(+) 2 K_{1}\right)$,

$$
f(v)= \begin{cases}1, & \text { if } v=y_{1} \\ 2 n+h+2, & \text { if } v=y_{2} \\ 1+i, & \text { if } v=z_{2 i} \text { with } 1 \leq i \leq n \\ n+1+h+i, & \text { if } v=z_{2 i-1} \text { with } 1 \leq i \leq n \\ n+1+i, & \text { if } v=x_{i} \text { with } 1 \leq i \leq h\end{cases}
$$

By the labeling above, we obtain that for $u v \in E\left(\left(P_{2 n} \cup h K_{1}\right)(+) 2 K_{1}\right)$:

- If $u=y_{1}$, since v is an end point of $P_{2 n}$ or an element of $V\left(h K_{1}\right)$ then $\{f(u)+f(v)\}=$ $\{1+f(v)\}=\{n+2, n+3, \ldots, n+h+3\}$.
- If $u, v \in V\left(P_{2 n}\right)$, then $\{f(u)+f(v)\}=\left\{f\left(z_{2 i-1}\right)+f\left(z_{2 i}\right) \mid 1 \leq i \leq n\right\} \cup\left\{f\left(z_{2 i}\right)+f\left(z_{2 i+1}\right) \mid\right.$ $1 \leq i \leq n-1\}=\{n+h+4, n+h+6, \ldots, 3 n+h+2\} \cup\{n+h+5, n+h+7, \ldots, 3 n+h+1\}=$ $\{n+h+4, n+h+5, \ldots, 3 n+h+2\}$.
- If $u=y_{2}$, since v is an end point of $P_{2 n}$ or an element of $V\left(h K_{1}\right)$ then $\{f(u)+f(v)\}=$ $\{2 n+h+2+f(v)\}=\{3 n+h+3,3 n+h+4, \ldots, 3 n+2 h+4\}$.

Therefore, $\left\{f(u)+f(v) \mid u v \in E\left(\left(P_{2 n} \cup h K_{1}\right)(+) 2 K_{1}\right)\right\}$ is a consecutive sequence. By Lemma 1.1, the graph $\left(P_{2 n} \cup h K_{1}\right)(+) 2 K_{1}$ is a super edge-magic total graph.

Before we continue to the next constructions, we need to show the following property of a super edge-magic total labeling.

Lemma 2.1. Let G be a connected graph with $m \geq 2$ vertices. Let f be a super edge-magic total labeling of G. Then $\max \{f(u)+f(v) \mid u v \in E(G)\} \geq m+1$.

Proof. Suppose that $\max \{f(u)+f(v) \mid u v \in E(G)\} \leq m$. Since G is connected, a vertex u with $f(u)=m$ will be adjacent to another vertex v. So, $f(u)+f(v)=m+f(v) \geq m+1$, a contradiction.

In the following theorem, we give a construction of a super edge-magic total graph obtained from any super edge-magic total graphs by applying disjoint union and joint product to an origin graph.

Theorem 2.2. Let G_{m} be a connected graph with $m \geq 3$ vertices. Let f be a super edge-magic total labeling of G_{m}. If $k=\max \left\{f(u)+f(v) \mid u v \in E\left(G_{m}\right)\right\}$, then $\left(G_{m} \cup(k-m-1) K_{1}\right)+K_{1}$ is a super edge-magic total graph.

Figure 2. Graph $\left(G_{m} \cup(k-m-1) K_{1}\right)+K_{1}$ where: (a) $k=m+1$; (b) $k \geq m+2$.

Proof. Let $H=\left(G_{m} \cup(k-m-1) K_{1}\right)+K_{1}$. By considering Lemma 2.1, we obtain $k-m-1 \geq 0$. In case $k-m-1=0$, we have $H=\left(G_{m} \cup(k-m-1) K_{1}\right)+K_{1}=G_{m}+K_{1}$. We define $V\left((k-m-1) K_{1}\right)=\left\{x_{i} \mid 1 \leq i \leq k-m-1\right\}$. Note that $(k-m-1) K_{1}$ is a graph
without edges. Thus, we can say that $V(H)=V\left(G_{m}\right) \cup V\left((k-m-1) K_{1}\right) \cup\{y\}$. Meanwhile, $E(H)=E\left(G_{m}\right) \cup\left\{u y \mid u \in V\left(G_{m} \cup(k-m-1) K_{1}\right)\right\}$. It is easy to see that $|V(H)|=k$ and $|E(H)|=\left|E\left(G_{m}\right)\right|+k-1$.

Let f be a super edge-magic labeling of G_{m} where $k=\max \left\{f(u)+f(v) \mid u v \in E\left(G_{m}\right)\right\}$. Note that for $v \in V\left(G_{m}\right), f(v) \in\{1,2, \ldots, m\}$. Now, we define a vertex labeling $g: V(H) \rightarrow$ $\{1,2, \ldots, k\}$ where for $v \in V(H)$,

$$
g(v)= \begin{cases}f(v), & \text { if } v \in V\left(G_{m}\right) \\ k, & \text { if } v=y, \\ m+i, & \text { if } v=x_{i} \text { with } 1 \leq i \leq k-m-1\end{cases}
$$

By the labeling above, we obtain that for $u v \in E(H)$:

- If $u, v \in V\left(G_{m}\right)$, since f is a super edge-magic labeling of G_{m}, then $\{g(u)+g(v)\}=$ $\{f(u)+f(v)\}$ is a consecutive sequence, whose greatest element is k.
- if $u \in V\left(G_{m}\right)$ and $v=y$, then $\{g(u)+g(v)\}=\{g(u)+k\}=\{k+1, k+2, \ldots, k+m\}$.
- if $u \in V\left((k-m-1) K_{1}\right)$ and $v=y$, then $\{g(u)+g(v)\}=\{g(u)+k\}=\{k+m+1, k+$ $m+2, \ldots, 2 k-1\}$.
Therefore, $\{g(u)+g(v) \mid u v \in E(H)\}$ is a consecutive sequence. By Lemma 1.1, the graph H is a super edge-magic total graph.

Now, let us consider the graph $G(+) P_{m}(+) H$ where $m \geq 2$. Let u and v be two end points of the path P_{m}. Then we can write $V\left(G(+) P_{m}(+) H\right)=V(G) \cup V\left(P_{m}\right) \cup V(H)$ and $E\left(G(+) P_{m}(+) H\right)=E(G) \cup E\left(P_{m}\right) \cup E(H) \cup\{u x, v y \mid x \in V(G) ; y \in V(H)\}$. Thus, $\left|V\left(G(+) P_{m}(+) H\right)\right|=|V(G)|+\left|V\left(P_{m}\right)\right|+|V(H)|$ and $\left|E\left(G(+) P_{m}(+) H\right)\right|=|E(G)|+\left|E\left(P_{m}\right)\right|+$ $|E(H)|+|V(G)|+|V(H)|$.

Theorem 2.3. Let G_{m} be a connected graph with $m \geq 3$ vertices. Let f be a super edge-magic total labeling of G_{m} and $m+k=\max \left\{f(u)+f(v) \mid u v \in E\left(G_{m}\right)\right\}$. Then for $k \geq 2$ and $n \geq 1$, the graph $G_{m}(+) P_{2 k-2}(+) n K_{1}$ is a super edge-magic total graph.

Figure 3. Graph $G_{m}(+) P_{2 k-2}(+) n K_{1}$.

Proof of Theorem 2.3. Let $H=G_{m}(+) P_{2 k-2}(+) n K_{1}$ where $n \geq 1$. It is easy to see that $|V(H)|=$ $m+n+2 k-2$ and $|E(H)|=\left|E\left(G_{m}\right)\right|+m+n+2 k-3$. We define $V\left(n K_{1}\right)=\left\{x_{i} \mid 1 \leq i \leq n\right\}$. Note that $n K_{1}$ is a graph without edges. Let $V\left(P_{2 k-2}\right)=\left\{z_{i} \mid 1 \leq i \leq 2 k-2\right\}$ and $E\left(P_{2 k-2}\right)=$ $\left\{z_{i} z_{i+1} \mid 1 \leq i \leq 2 k-3\right\}$. We assume that z_{1} and $z_{2 k-2}$ is adjacent to all vertices of G_{m} and $n K_{1}$, respectively.

Let f be a super edge-magic labeling of G_{m}. By considering Lemma 2.1, we have $\max \{f(u)+$ $\left.f(v) \mid u v \in E\left(G_{m}\right)\right\} \geq m+1$. Now, we assume that $\max \left\{f(u)+f(v) \mid u v \in E\left(G_{m}\right)\right\}=$ $m+k \geq m+2$. Note that for $v \in V\left(G_{m}\right), f(v) \in\{1,2, \ldots, m\}$. Define a vertex labeling $g: V(H) \rightarrow\{1,2, \ldots, m+n+2 k-2\}$ where for $v \in V(H)$,

$$
g(v)= \begin{cases}f(v), & \text { if } v \in V\left(G_{m}\right), \\ m+i, & \text { if } v=z_{2 i} \text { where } 1 \leq i \leq k-1, \\ m+k+i, & \text { if } v=z_{2 i+1} \text { where } 0 \leq i \leq k-2, \\ m+2 k-2+i, & \text { if } v=x_{i} \text { with } 1 \leq i \leq n\end{cases}
$$

By the labeling above, we obtain that for $u v \in E(H)$:

- If $u, v \in V\left(G_{m}\right)$, since f is a super edge-magic labeling of G_{m}, then $\{g(u)+g(v)\}=$ $\{f(u)+f(v)\}$ is a consecutive sequence, whose greatest element is $m+k$.
- if $u \in V\left(G_{m}\right)$ and $v=z_{1}$, then $\{g(u)+g(v)\}=\{g(u)+(m+k)\}=\{m+k+1, m+k+$ $2, \ldots, 2 m+k\}$.
- if $u, v \in P_{2 k-2}$, then $\{g(u)+g(v)\}=\{2 m+k+1,2 m+k+2, \ldots, 2 m+3 k-3\}$.
- if $u \in V\left(n K_{1}\right)$ and $v=z_{2 k-2}$, then $\{g(u)+g(v)\}=\{g(u)+(m+k-1)\}=\{2 m+3 k-$ $2,2 m+2 k-1, \ldots, 2 m+3 k-3+n\}$.

Therefore, $\{g(u)+g(v) \mid u v \in E(H)\}$ is a consecutive sequence. By Lemma 1.1, the graph H is a super edge-magic total graph.

In the last theorem below, we will construct a super edge-magic total graph from a super edgemagic total graph by considering a super edge-magic labeling of the origin graph.

Theorem 2.4. Let G_{m} be a connected graph with $m \geq 3$ vertices. Let f be a super edge-magic total labeling of G_{m}. Let $F=\left\{f(u)+f(v) \mid u v \in E\left(G_{m}\right)\right\}$. For $a b \in E\left(G_{m}\right)$, let $f(a)+f(b)=$ $\min (F)$ where $f(a)<f(b), \max (F)=m+k$, and for $c \in V\left(G_{m}\right), f(c)=k$.

1. For $f(a)=1$, let G_{m}^{*} be a graph obtained by taking one copies of G_{m} and $n K_{1}$ where $n \geq 1$, then connect all vertices of $n K_{1}$ to b. Then G_{m}^{*} is a super edge-magic total graph.
2. Let $G_{m}^{* *}$ be a graph obtained by taking one copies of G_{m} and $n K_{1}$ where $n \geq 1$, then connect all vertices of $n K_{1}$ to c. Then $G_{m}^{* *}$ is a super edge-magic total graph.

Proof. Let f be a super edge-magic labeling of G_{m}. Let $F=\left\{f(u)+f(v) \mid u v \in E\left(G_{m}\right)\right\}$. For $a b \in E\left(G_{m}\right)$, let $f(a)+f(b)=\min (F)$ where $f(a)<f(b)$. By considering Lemma 2.1, let $\max (F)=m+k$ and for $c \in V\left(G_{m}\right), f(c)=k$.

We define $V\left(n K_{1}\right)=\left\{x_{i} \mid 1 \leq i \leq n\right\}$. Note that $n K_{1}$ is a graph without edges. Let $H \in\left\{G_{m}^{*}, G_{m}^{* *}\right\}$. So, $V(H)=V\left(G_{m}\right) \cup V\left(n K_{1}\right)$. It is easy to see that $|V(H)|=m+n$. In the other hand, $E\left(G_{m}^{*}\right)=E\left(G_{m}\right) \cup\left\{b u \mid u \in V\left(n K_{1}\right)\right\}$ and $E\left(G_{m}^{* *}\right)=E\left(G_{m}\right) \cup\left\{c u \mid u \in V\left(n K_{1}\right)\right\}$. Thus, we can verify that $|E(H)|=\left|E\left(G_{m}\right)\right|+n$. We distinguish two cases.
Case 1. $H=G_{m}^{*}$
So, $f(a)=1$. Now, we define a vertex labeling $g: V(H) \rightarrow\{1,2, \ldots, m+n\}$ where for $v \in V(H)$,

$$
g(v)= \begin{cases}i, & \text { if } v=x_{i} \\ f(v)+n, & \text { if } v \in V\left(G_{m}\right)\end{cases}
$$

By the labeling above, we obtain that for $u v \in E(H)$:

- If $u \in V\left(n K_{1}\right)$ and $v=b$, then $\{g(u)+g(v)\}=\{g(u)+(f(b)+n)\}=\{f(b)+n+$ $1, f(b)+n+2, \ldots, f(b)+2 n\}$.
- If $u, v \in V\left(G_{m}\right)$, since f is a super edge-magic labeling of G_{m}, then $\{g(u)+g(v)\}=$ $\{(f(u)+n)+(f(v)+n)\}=\{f(u)+f(v)+2 n\}$ is a consecutive sequence, whose least element is $f(b)+2 n+1$.

Therefore, $\{g(u)+g(v) \mid u v \in E(H)\}$ is a consecutive sequence. By Lemma 1.1, the graph H is a super edge-magic total graph.
Case 2. $H=G_{m}^{* *}$
Now, we define a vertex labeling $h: V(H) \rightarrow\{1,2, \ldots, m+n\}$ where for $v \in V(H)$,

$$
h(v)= \begin{cases}f(v), & \text { if } v \in V\left(G_{m}\right), \\ m+i, & \text { if } v=x_{i}\end{cases}
$$

By the labeling above, we obtain that for $u v \in E(H)$:

- If $u, v \in V\left(G_{m}\right)$, since f is a super edge-magic labeling of G_{m}, then $\{g(u)+g(v)\}=$ $\{f(u)+f(v)\}$ is a consecutive sequence, whose greatest element is $m+k$.
- If $u \in V\left(n K_{1}\right)$ and $v=c$, then $\{g(u)+g(v)\}=\{g(u)+k\}=\{m+k+1, m+k+$ $2, \ldots, m+k+n\}$.

Therefore, $\{g(u)+g(v) \mid u v \in E(H)\}$ is a consecutive sequence. By Lemma 1.1, the graph H is a super edge-magic total graph.

An illustration of graphs G_{m}^{*} and $G_{m}^{* *}$ of a super edge-magic total graph G_{m} with $m \geq 3$ vertices can seen in Figure 4 below. Let G_{m} be a super edge-magic total graph with $m \geq 3$ vertices where $V\left(G_{m}\right)=\left\{z_{i} \mid 1 \leq i \leq m\right\}$ and f be a super edge-magic labeling of G_{m}. Let $F=\left\{f(u)+f(v) \mid u v \in E\left(G_{m}\right)\right\}$. In figure below, we assume that $f\left(z_{p}\right)+f\left(z_{q}\right)=\min (F)$ where $f\left(z_{p}\right)<f\left(z_{q}\right)$. Thus, it is clear that $a=z_{p}$ and $b=z_{q}$. Let $\max (F)=m+k$ and $f\left(z_{r}\right)=k$. Therefore, we have $c=z_{r}$. Note that it is possible to have either vertex $c=a$ or $c=b$, where $k=1$ or $k=f\left(z_{q}\right)$, respectively.

Figure 4. Graphs G_{m}^{*} (left) and $G_{m}^{* *}$ (right).

Acknowledgement

This paper was partially supported by the Department of Mathematics, Faculty of Science and Data Analysis, Institut Teknologi Sepuluh Nopember, Ministry of Education, Culture, Research and Technology, No: 1586/PKS/ITS/2020 and by "Riset P2MI FMIPA ITB".
The authors are thankful to the anonymous referees for some comments that helped to improve the presentation of the manuscript.

References

[1] J.B. Babujee and N. Rao, Edge-magic trees, Indian J. Pure Appl. Math., 33 (2002), 18371840.
[2] Z. Chen, On super edge-magic graphs, J. Combin. Math. Combin. Comput., 38 (2001), 53-64.
[3] H. Enomoto, A.S. Llado, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math., 34 (1998), 105-109.
[4] R. Figueroa-Centeno, R. Ichishima, and F. Muntaner-Batle, Magical coronations of graphs, Australas. J. Combin., 26 (2002), 199-208.
[5] R. Figueroa-Centeno, R. Ichisima, and F. Muntaner-Batle, On edge-magic labelings of certain disjoint unions of graphs, Australas. J. Combin., 32 (2005), 225-242.
[6] R. Figueroa-Centeno, R. Ichishima, and F. Muntaner-Batle, On super edge-magic graphs, Ars Combin., 64 (2002), 81-95.
[7] R. Figueroa-Centeno, R. Ichisima, F. Muntaner-Batle, and A. Oshima, A magical approach to some labeling conjectures, Discussiones Math. Graph Theory, 31 (2011), 79-113.
[8] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., (2021) \#DS6.
[9] R. Ichishima, F.A. Muntaner-Batle, and A. Oshima, The consecutively super edge-magic deficiency of graphs and related concepts, Electron. J. Graph Theory Appl., 8 (1) (2020), 71-92.
[10] A. Kotzig and A. Rosa, Magic valuations of complete graphs, Publications du Centre de Recherches Mathematiques Universite de Montreal, 175 (1972).
[11] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13 (1970), 451-461.
[12] S.M. Lee and N.T. Lee, A., on super edge-magic graphs with many odd cycles, Congress. Numer., 163 (2003), 65-80.
[13] S.C. López, F.A. Muntaner-Batle, and M. Rius-Font, Enumerating super edge-magic labelings for some types of path-like trees, Util. Math., 96 (2015), 285-299.
[14] A.A.G. Ngurah and E. T. Baskoro, On magic and antimagic total labelings of generalized Petersen graph, Util. Math., 63 (2003), 97-107.
[15] A.A.G. Ngurah and R. Simanjuntak, On the super edge-magic deficiency of join product and chain graphs, Electron. J. Graph Theory Appl., 7 (1) (2019), 157-167.
[16] G. Ringel and A. Llado, Another tree conjecture, Bull. ICA, 18 (1996), 83-85.
[17] Slamin, M. Bača, Y. Lin, M. Miller, and R. Simanjuntak, Edge-magic total labeling of wheels, fans, and friendship graphs, Bull. ICA, 35 (2002), 89-98.
[18] W.D. Wallis, Magic Graphs, Birkhäuser, Boston (2001).

