

Electronic Journal of Graph Theory and Applications

On the construction of super edge-magic total graphs

Darmaji^a, S. Wahyudi^a, Rinurwati^a, S.W. Saputro^b

^aDepartment of Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia ^bDepartment of Mathematics, Institut Teknologi Bandung, Jl.Ganesa 10 Bandung, Indonesia

{darmaji, suhud, rinur}@matematika.its.ac.id; suhadi@math.itb.ac.id

Abstract

Suppose G = (V, E) be a simple graph with p vertices and q edges. An *edge-magic total labeling* of G is a bijection $f : V \cup E \rightarrow \{1, 2, \dots, p+q\}$ where there exists a constant r for every edge xy in G such that f(x) + f(y) + f(xy) = r. An edge-magic total labeling f is called a *super edge-magic total labeling* if for every vertex $v \in V(G)$, $f(v) \leq p$. The *super edge-magic total graph* is a graph which admits a super edge-magic total labeling. In this paper, we consider some families of super edge-magic total graph G. We construct several graphs from G by adding some vertices and edges such that the new graphs are also super edge-magic total graphs.

Keywords: edge-magic total labeling, super edge-magic total graph, super edge-magic total labeling Mathematics Subject Classification: 05C78 DOI: 10.5614/ejgta.2022.10.1.21

1. Introduction

We assume that all graphs in this paper are simple and finite. Let G = (V, E) be a graph with p vertices and q edges. Let f be a bijection function defined as $f : V \cup E \rightarrow \{1, 2, \dots, p+q\}$. Ringel and Llado [16] provided the definition that the function f is called an *edge-magic total labeling* if there exists a constant r for every edge xy in G such that the weight of the edge f(x) + f(y) + f(xy) = r. We can say the constant r as a *magic constant* of f. Wallis [18] then called a graph G admitting an edge-magic labeling as an *edge-magic total* graph.

Received: 2 June 2021, Revised: 23 January 2022, Accepted: 12 April 2022.

The edge-magic total concept was introduced by Kotzig and Rosa [10, 11]. They proved that complete bipartite graphs $K_{m,n}$ $(m, n \ge 1)$ and cycles C_n $(n \ge 3)$ are edge-magic total graphs. They also proved that a complete graph K_n is edge-magic total graph if and only if n = 1, 2, 3, 4, 5 or 6; and the disjoint union of n copies of P_2 has an edge-magic total labeling if and only if n is odd. Interested readers are referred to a number of relevant literature that are mentioned in the bibliography section, including [1, 8, 14, 16, 17].

In this paper, we consider an edge-magic total labeling of G where the p smallest labels are given to V(G). Enomoto et al. [3] defined this version of edge-magic total labeling as a *super* edge-magic total labeling. If there exists a super edge-magic total labeling in a graph G, then G is called as a super edge-magic total graph.

Enomoto et al. [3] proved that caterpillars are super edge-magic total. They also determined that a complete graph K_n is super edge-magic total if and only if n = 1, 2, or 3; and a complete bipartite graph $K_{m,n}$ is super edge-magic total if and only if m = 1 or n = 1. Enomoto et al. also proved that odd cycles are super edge-magic total. Some other results on super edge-magic total graph can be seen in [4, 5, 6, 7, 8, 9, 15].

The following properties are useful to show whether a graph G is super edge-magic total or not. A graph G = (V, E) is super edge-magic total graph if there exists a vertex labeling that causes a consecutive labeling.

Lemma 1.1. [2, 6] A graph G is super edge-magic total if and only if there is a vertex labeling f such that f(V(G)) and $\{f(u) + f(v) \mid uv \in E(G)\}$ are both consecutive.

In this case, in order to show that graph G is super edge-magic total graph, it is simply indicated by taking a bijection of vertex labeling $f: V \to \{1, 2, ..., p\}$ where $\{f(u) + f(v) \mid uv \in E(G)\}$ is consecutive. The vertex labeling f can be extended to be a total labeling by defining f(uv) = $p + q + \min\{f(u) + f(v) \mid uv \in E(G)\} - f(u) - f(v)$ for every edge $uv \in E(G)$. So that, the total labeling f is a super edge-magic total labeling of G.

In this paper, we will construct some families of super edge-magic total graph which obtained from a known super edge-magic total graph. We obtain four results. First theorem is related to a path P_n . Lee and Lee [12] have provided a construction on a path P_2 such that a new graph is super edge-magic total. In this paper, we generalized such construction on a path P_{2n} $(n \ge 1)$.

The second result is related to disjoint union graph and joint product graphs. For graphs G and H, a *disjoint union* graph $G \cup H$ is a graph with vertex set $V(G) \cup V(H)$ and an edge set $E(G) \cup E(H)$. A *joint product* graph of G and H, denoted by G + H, is a graph with $V(G + H) = V(G) \cup V(H)$ and $E(G + H) = E(G) \cup E(H) \cup \{uv \mid u \in V(G), v \in V(H)\}$. For any super edge-magic total graphs G, we construct a new graph from G by using disjoint union and joint product with some graphs, such that a new graph is also super edge-magic total.

For the third result, we define graph $G(+)P_m(+)H$ where $m \ge 2$ as a graph obtained by taking one copy of the graphs G and H and a path P_m , then connect an end point of P_m to all vertices of G and the other end point of P_m to all vertices of H. For any super edge-magic total graphs G, we provide some graphs H such that $G(+)P_m(+)H$ is also super edge-magic total. The last result is a construction of a super edge-magic total graph from a super edge-magic total graph by considering a super edge-magic labeling of the origin graph.

2. Main Results

In this section, we provide some constructions to obtain a new super edge-magic total graph which obtained from a super edge-magic total graph.

First, we consider a path P_n $(n \ge 2)$. López et al. [13] have proved that paths are super edgemagic total. Now, we define a graph $(P_n \cup hK_1)(+)2K_1$ $(h \ge 1)$, which is a graph obtained by taking one copy of a path P_n , h copies of K_1 , and two isolated vertices $(2K_1)$, then connect all end points of P_n and all vertices of h copies of K_1 to both two vertices of $2K_1$. We can say that $V((P_n \cup hK_1)(+)2K_1) = V(P_n) \cup V(hK_1) \cup V(2K_1)$ and $E((P_n \cup hK_1)(+)2K_1) = E(P_n) \cup \{uv \mid u \in V(hK_1) \text{ or } u \text{ is an end point of } P_n; v \in V(2K_1)\}$. In [12], Lee and Lee have proved that $(P_2 \cup hK_1)(+)2K_1$ $(h \ge 1)$ are super edge-magic total. In the following theorem, we generalize Lee and Lee construction on a path P_{2n} $(n \ge 1)$.

Theorem 2.1. For integers $h, n \ge 1$, graphs $(P_{2n} \cup hK_1)(+)2K_1$ are super edge-magic total.

Figure 1. Graph $(P_{2n} \cup hK_1)(+)2K_1$.

Proof of Theorem 2.1. Let $V(hK_1) = \{x_i \mid 1 \le i \le h\}$, $V(2K_1) = \{y_1, y_2\}$, $V(P_{2n}) = \{z_i \mid 1 \le i \le 2n\}$, and $E(P_{2n}) = \{z_i z_{i+1} \mid 1 \le i \le 2n-1\}$. It is easy to verify that $(P_{2n} \cup hK_1)(+)2K_1$ has 2n + h + 2 vertices and 2n + 2h + 3 edges.

Now, we define a vertex labeling $f : V((P_{2n} \cup hK_1)(+)2K_1) \to \{1, 2, ..., 2n + h + 2\}$ where for $v \in V((P_{2n} \cup hK_1)(+)2K_1)$,

$$f(v) = \begin{cases} 1, & \text{if } v = y_1, \\ 2n+h+2, & \text{if } v = y_2, \\ 1+i, & \text{if } v = z_{2i} \text{ with } 1 \le i \le n, \\ n+1+h+i, & \text{if } v = z_{2i-1} \text{ with } 1 \le i \le n, \\ n+1+i, & \text{if } v = x_i \text{ with } 1 \le i \le h. \end{cases}$$

By the labeling above, we obtain that for $uv \in E((P_{2n} \cup hK_1)(+)2K_1)$:

• If $u = y_1$, since v is an end point of P_{2n} or an element of $V(hK_1)$ then $\{f(u) + f(v)\} = \{1 + f(v)\} = \{n + 2, n + 3, \dots, n + h + 3\}.$

- If $u, v \in V(P_{2n})$, then $\{f(u)+f(v)\} = \{f(z_{2i-1})+f(z_{2i}) \mid 1 \le i \le n\} \cup \{f(z_{2i})+f(z_{2i+1}) \mid 1 \le i \le n-1\} = \{n+h+4, n+h+6, \dots, 3n+h+2\} \cup \{n+h+5, n+h+7, \dots, 3n+h+1\} = \{n+h+4, n+h+5, \dots, 3n+h+2\}.$
- If $u = y_2$, since v is an end point of P_{2n} or an element of $V(hK_1)$ then $\{f(u) + f(v)\} = \{2n + h + 2 + f(v)\} = \{3n + h + 3, 3n + h + 4, \dots, 3n + 2h + 4\}.$

Therefore, $\{f(u) + f(v) \mid uv \in E((P_{2n} \cup hK_1)(+)2K_1)\}$ is a consecutive sequence. By Lemma 1.1, the graph $(P_{2n} \cup hK_1)(+)2K_1$ is a super edge-magic total graph.

Before we continue to the next constructions, we need to show the following property of a super edge-magic total labeling.

Lemma 2.1. Let G be a connected graph with $m \ge 2$ vertices. Let f be a super edge-magic total labeling of G. Then $\max\{f(u) + f(v) \mid uv \in E(G)\} \ge m + 1$.

Proof. Suppose that $\max\{f(u) + f(v) \mid uv \in E(G)\} \leq m$. Since G is connected, a vertex u with f(u) = m will be adjacent to another vertex v. So, $f(u) + f(v) = m + f(v) \geq m + 1$, a contradiction.

In the following theorem, we give a construction of a super edge-magic total graph obtained from any super edge-magic total graphs by applying disjoint union and joint product to an origin graph.

Theorem 2.2. Let G_m be a connected graph with $m \ge 3$ vertices. Let f be a super edge-magic total labeling of G_m . If $k = \max\{f(u) + f(v) \mid uv \in E(G_m)\}$, then $(G_m \cup (k - m - 1)K_1) + K_1$ is a super edge-magic total graph.

Figure 2. Graph $(G_m \cup (k - m - 1)K_1) + K_1$ where: (a) k = m + 1; (b) $k \ge m + 2$.

Proof. Let $H = (G_m \cup (k-m-1)K_1) + K_1$. By considering Lemma 2.1, we obtain $k-m-1 \ge 0$. In case k - m - 1 = 0, we have $H = (G_m \cup (k - m - 1)K_1) + K_1 = G_m + K_1$. We define $V((k - m - 1)K_1) = \{x_i \mid 1 \le i \le k - m - 1\}$. Note that $(k - m - 1)K_1$ is a graph

www.ejgta.org

without edges. Thus, we can say that $V(H) = V(G_m) \cup V((k - m - 1)K_1) \cup \{y\}$. Meanwhile, $E(H) = E(G_m) \cup \{uy \mid u \in V(G_m \cup (k - m - 1)K_1)\}$. It is easy to see that |V(H)| = k and $|E(H)| = |E(G_m)| + k - 1$.

Let f be a super edge-magic labeling of G_m where $k = \max\{f(u) + f(v) \mid uv \in E(G_m)\}$. Note that for $v \in V(G_m)$, $f(v) \in \{1, 2, ..., m\}$. Now, we define a vertex labeling $g : V(H) \rightarrow \{1, 2, ..., k\}$ where for $v \in V(H)$,

$$g(v) = \begin{cases} f(v), & \text{if } v \in V(G_m), \\ k, & \text{if } v = y, \\ m+i, & \text{if } v = x_i \text{ with } 1 \le i \le k-m-1. \end{cases}$$

By the labeling above, we obtain that for $uv \in E(H)$:

- If $u, v \in V(G_m)$, since f is a super edge-magic labeling of G_m , then $\{g(u) + g(v)\} = \{f(u) + f(v)\}$ is a consecutive sequence, whose greatest element is k.
- if $u \in V(G_m)$ and v = y, then $\{g(u) + g(v)\} = \{g(u) + k\} = \{k + 1, k + 2, \dots, k + m\}.$
- if $u \in V((k m 1)K_1)$ and v = y, then $\{g(u) + g(v)\} = \{g(u) + k\} = \{k + m + 1, k + m + 2, \dots, 2k 1\}.$

Therefore, $\{g(u) + g(v) \mid uv \in E(H)\}$ is a consecutive sequence. By Lemma 1.1, the graph H is a super edge-magic total graph.

Now, let us consider the graph $G(+)P_m(+)H$ where $m \ge 2$. Let u and v be two end points of the path P_m . Then we can write $V(G(+)P_m(+)H) = V(G) \cup V(P_m) \cup V(H)$ and $E(G(+)P_m(+)H) = E(G) \cup E(P_m) \cup E(H) \cup \{ux, vy \mid x \in V(G); y \in V(H)\}$. Thus, $|V(G(+)P_m(+)H)| = |V(G)| + |V(P_m)| + |V(H)|$ and $|E(G(+)P_m(+)H)| = |E(G)| + |E(P_m)| + |E(H)| + |V(G)| + |V(H)|$.

Theorem 2.3. Let G_m be a connected graph with $m \ge 3$ vertices. Let f be a super edge-magic total labeling of G_m and $m + k = \max\{f(u) + f(v) \mid uv \in E(G_m)\}$. Then for $k \ge 2$ and $n \ge 1$, the graph $G_m(+)P_{2k-2}(+)nK_1$ is a super edge-magic total graph.

Figure 3. Graph $G_m(+)P_{2k-2}(+)nK_1$.

Proof of Theorem 2.3. Let $H = G_m(+)P_{2k-2}(+)nK_1$ where $n \ge 1$. It is easy to see that |V(H)| = m+n+2k-2 and $|E(H)| = |E(G_m)|+m+n+2k-3$. We define $V(nK_1) = \{x_i \mid 1 \le i \le n\}$. Note that nK_1 is a graph without edges. Let $V(P_{2k-2}) = \{z_i \mid 1 \le i \le 2k-2\}$ and $E(P_{2k-2}) = \{z_iz_{i+1} \mid 1 \le i \le 2k-3\}$. We assume that z_1 and z_{2k-2} is adjacent to all vertices of G_m and nK_1 , respectively.

Let f be a super edge-magic labeling of G_m . By considering Lemma 2.1, we have $\max\{f(u) + f(v) \mid uv \in E(G_m)\} \ge m + 1$. Now, we assume that $\max\{f(u) + f(v) \mid uv \in E(G_m)\} = m + k \ge m + 2$. Note that for $v \in V(G_m)$, $f(v) \in \{1, 2, ..., m\}$. Define a vertex labeling $g: V(H) \to \{1, 2, ..., m + n + 2k - 2\}$ where for $v \in V(H)$,

$$g(v) = \begin{cases} f(v), & \text{if } v \in V(G_m), \\ m+i, & \text{if } v = z_{2i} \text{ where } 1 \le i \le k-1, \\ m+k+i, & \text{if } v = z_{2i+1} \text{ where } 0 \le i \le k-2, \\ m+2k-2+i, & \text{if } v = x_i \text{ with } 1 \le i \le n. \end{cases}$$

By the labeling above, we obtain that for $uv \in E(H)$:

- If $u, v \in V(G_m)$, since f is a super edge-magic labeling of G_m , then $\{g(u) + g(v)\} = \{f(u) + f(v)\}$ is a consecutive sequence, whose greatest element is m + k.
- if $u \in V(G_m)$ and $v = z_1$, then $\{g(u) + g(v)\} = \{g(u) + (m+k)\} = \{m+k+1, m+k+2, \dots, 2m+k\}.$
- if $u, v \in P_{2k-2}$, then $\{g(u) + g(v)\} = \{2m + k + 1, 2m + k + 2, \dots, 2m + 3k 3\}$.
- if $u \in V(nK_1)$ and $v = z_{2k-2}$, then $\{g(u) + g(v)\} = \{g(u) + (m+k-1)\} = \{2m+3k-2, 2m+2k-1, \dots, 2m+3k-3+n\}.$

Therefore, $\{g(u) + g(v) \mid uv \in E(H)\}$ is a consecutive sequence. By Lemma 1.1, the graph H is a super edge-magic total graph.

In the last theorem below, we will construct a super edge-magic total graph from a super edgemagic total graph by considering a super edge-magic labeling of the origin graph.

Theorem 2.4. Let G_m be a connected graph with $m \ge 3$ vertices. Let f be a super edge-magic total labeling of G_m . Let $F = \{f(u) + f(v) \mid uv \in E(G_m)\}$. For $ab \in E(G_m)$, let $f(a) + f(b) = \min(F)$ where f(a) < f(b), $\max(F) = m + k$, and for $c \in V(G_m)$, f(c) = k.

- 1. For f(a) = 1, let G_m^* be a graph obtained by taking one copies of G_m and nK_1 where $n \ge 1$, then connect all vertices of nK_1 to b. Then G_m^* is a super edge-magic total graph.
- 2. Let G_m^{**} be a graph obtained by taking one copies of G_m and nK_1 where $n \ge 1$, then connect all vertices of nK_1 to c. Then G_m^{**} is a super edge-magic total graph.

Proof. Let f be a super edge-magic labeling of G_m . Let $F = \{f(u) + f(v) \mid uv \in E(G_m)\}$. For $ab \in E(G_m)$, let $f(a) + f(b) = \min(F)$ where f(a) < f(b). By considering Lemma 2.1, let $\max(F) = m + k$ and for $c \in V(G_m)$, f(c) = k. We define $V(nK_1) = \{x_i \mid 1 \leq i \leq n\}$. Note that nK_1 is a graph without edges. Let $H \in \{G_m^*, G_m^{**}\}$. So, $V(H) = V(G_m) \cup V(nK_1)$. It is easy to see that |V(H)| = m + n. In the other hand, $E(G_m^*) = E(G_m) \cup \{bu \mid u \in V(nK_1)\}$ and $E(G_m^{**}) = E(G_m) \cup \{cu \mid u \in V(nK_1)\}$. Thus, we can verify that $|E(H)| = |E(G_m)| + n$. We distinguish two cases. Case 1. $H = G_m^*$

So, f(a) = 1. Now, we define a vertex labeling $g : V(H) \rightarrow \{1, 2, \dots, m + n\}$ where for $v \in V(H)$,

$$g(v) = \begin{cases} i, & \text{if } v = x_i, \\ f(v) + n, & \text{if } v \in V(G_m). \end{cases}$$

By the labeling above, we obtain that for $uv \in E(H)$:

- If $u \in V(nK_1)$ and v = b, then $\{g(u) + g(v)\} = \{g(u) + (f(b) + n)\} = \{f(b) + n + 1, f(b) + n + 2, \dots, f(b) + 2n\}.$
- If $u, v \in V(G_m)$, since f is a super edge-magic labeling of G_m , then $\{g(u) + g(v)\} = \{(f(u) + n) + (f(v) + n)\} = \{f(u) + f(v) + 2n\}$ is a consecutive sequence, whose least element is f(b) + 2n + 1.

Therefore, $\{g(u) + g(v) \mid uv \in E(H)\}$ is a consecutive sequence. By Lemma 1.1, the graph *H* is a super edge-magic total graph.

Case 2.
$$H = G_m^{**}$$

Now, we define a vertex labeling $h: V(H) \to \{1, 2, \dots, m+n\}$ where for $v \in V(H)$,

$$h(v) = \begin{cases} f(v), & \text{if } v \in V(G_m), \\ m+i, & \text{if } v = x_i. \end{cases}$$

By the labeling above, we obtain that for $uv \in E(H)$:

- If $u, v \in V(G_m)$, since f is a super edge-magic labeling of G_m , then $\{g(u) + g(v)\} = \{f(u) + f(v)\}$ is a consecutive sequence, whose greatest element is m + k.
- If $u \in V(nK_1)$ and v = c, then $\{g(u) + g(v)\} = \{g(u) + k\} = \{m + k + 1, m + k + 2, \dots, m + k + n\}.$

Therefore, $\{g(u) + g(v) \mid uv \in E(H)\}$ is a consecutive sequence. By Lemma 1.1, the graph H is a super edge-magic total graph.

An illustration of graphs G_m^* and G_m^{**} of a super edge-magic total graph G_m with $m \ge 3$ vertices can seen in Figure 4 below. Let G_m be a super edge-magic total graph with $m \ge 3$ vertices where $V(G_m) = \{z_i \mid 1 \le i \le m\}$ and f be a super edge-magic labeling of G_m . Let $F = \{f(u) + f(v) \mid uv \in E(G_m)\}$. In figure below, we assume that $f(z_p) + f(z_q) = \min(F)$ where $f(z_p) < f(z_q)$. Thus, it is clear that $a = z_p$ and $b = z_q$. Let $\max(F) = m + k$ and $f(z_r) = k$. Therefore, we have $c = z_r$. Note that it is possible to have either vertex c = a or c = b, where k = 1 or $k = f(z_q)$, respectively.

Figure 4. Graphs G_m^* (left) and G_m^{**} (right).

Acknowledgement

This paper was partially supported by the Department of Mathematics, Faculty of Science and Data Analysis, Institut Teknologi Sepuluh Nopember, Ministry of Education, Culture, Research and Technology, No: 1586/PKS/ITS/2020 and by "Riset P2MI FMIPA ITB". The authors are thankful to the anonymous referees for some comments that helped to improve the presentation of the manuscript.

References

- J.B. Babujee and N. Rao, Edge-magic trees, *Indian J. Pure Appl. Math.*, **33** (2002), 1837– 1840.
- [2] Z. Chen, On super edge-magic graphs, J. Combin. Math. Combin. Comput., 38 (2001), 53-64.
- [3] H. Enomoto, A.S. Llado, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, *SUT J. Math.*, **34** (1998), 105–109.
- [4] R. Figueroa-Centeno, R. Ichishima, and F. Muntaner-Batle, Magical coronations of graphs, *Australas. J. Combin.*, **26** (2002), 199–208.
- [5] R. Figueroa-Centeno, R. Ichisima, and F. Muntaner-Batle, On edge-magic labelings of certain disjoint unions of graphs, *Australas. J. Combin.*, **32** (2005), 225–242.
- [6] R. Figueroa-Centeno, R. Ichishima, and F. Muntaner-Batle, On super edge-magic graphs, Ars Combin., 64 (2002), 81–95.

- [7] R. Figueroa-Centeno, R. Ichisima, F. Muntaner-Batle, and A. Oshima, A magical approach to some labeling conjectures, *Discussiones Math. Graph Theory*, **31** (2011), 79–113.
- [8] J.A. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.*, (2021) #DS6.
- [9] R. Ichishima, F.A. Muntaner-Batle, and A. Oshima, The consecutively super edge-magic deficiency of graphs and related concepts, *Electron. J. Graph Theory Appl.*, 8 (1) (2020), 71–92.
- [10] A. Kotzig and A. Rosa, Magic valuations of complete graphs, *Publications du Centre de Recherches Mathematiques Universite de Montreal*, **175** (1972).
- [11] A. Kotzig and A. Rosa, Magic valuations of finite graphs, *Canad. Math. Bull.*, **13** (1970), 451–461.
- [12] S.M. Lee and N.T. Lee, A., on super edge-magic graphs with many odd cycles, *Congress. Numer.*, 163 (2003), 65–80.
- [13] S.C. López, F.A. Muntaner-Batle, and M. Rius-Font, Enumerating super edge-magic labelings for some types of path-like trees, *Util. Math.*, 96 (2015), 285–299.
- [14] A.A.G. Ngurah and E. T. Baskoro, On magic and antimagic total labelings of generalized Petersen graph, *Util. Math.*, **63** (2003), 97–107.
- [15] A.A.G. Ngurah and R. Simanjuntak, On the super edge-magic deficiency of join product and chain graphs, *Electron. J. Graph Theory Appl.*, 7 (1) (2019), 157–167.
- [16] G. Ringel and A. Llado, Another tree conjecture, Bull. ICA, 18 (1996), 83-85.
- [17] Slamin, M. Bača, Y. Lin, M. Miller, and R. Simanjuntak, Edge-magic total labeling of wheels, fans, and friendship graphs, *Bull. ICA*, **35** (2002), 89–98.
- [18] W.D. Wallis, *Magic Graphs*, Birkhäuser, Boston (2001).