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Abstract

An outer-independent Italian dominating function (OIIDF) on a graph G is a function f : V (G) −→
{0, 1, 2} such that every vertex v ∈ V (G) with f(v) = 0 has at least two neighbors assigned 1
under f or one neighbor w with f(w) = 2, and the set {u ∈ V (G)|f(u) = 0} is independent.
An outer-independent double Italian dominating function (OIDIDF) on a graph G is a function
f : V (G) −→ {0, 1, 2, 3} such that if f(v) ∈ {0, 1} for a vertex v ∈ V (G), then

∑
u∈N [v] f(u) ≥ 3

and the set {u ∈ V (G)|f(u) = 0} is independent. The weight of an OIIDF (respectively, OIDIDF)
f is the value w(f) =

∑
v∈V (G) f(v). The minimum weight of an OIIDF (respectively, OIDIDF)

on a graph G is called the outer-independent Italian (respectively, outer-independent double Italian)
domination number of G. We characterize all trees T with outer-independent double Italian dom-
ination number twice the outer-independent Italian domination number. We also present lower
bounds on the outer-independent double Italian domination number of a connected graph G in
terms of the order, minimum and maximum degrees.
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1. Introduction

We consider simple connected graphs G with vertex set V = V (G) and edge set E = E(G).
The order of G is n(G) = |V |. The open neighborhood of a vertex v is the set N(v) = {u ∈
V (G) | uv ∈ E} and its closed neighborhood is the set N [v] = N(v) ∪ {v}. The degree of vertex
v ∈ V is deg(v) = d(v) = |N(v)|. The maximum degree and minimum degree among the vertices
of G are denoted by ∆ = ∆(G) and δ = δ(G), respectively. A leaf is a vertex of degree one, and
its neighbor is called a support vertex. A strong support vertex is a support vertex adjacent to more
than one leaf. For a subset D of vertices of G, we denote by G[D] the subgraph of G induced by
D. A subset D of V (G) is a dominating set in G if

⋃
v∈D N [v] = V (G). A set I of vertices of G

is called independent if no pair of vertices of I are adjacent. If H is a subgraph of a graph G and
f is a function defined on V (G), then we denote by f |H the restriction of f on V (H). For other
notations and terminology not given here we refer to [14].

Cockayne et al. [12] introduced the concept of Roman domination in graphs, and since then
many generalizations and related variations have been considered by researchers, see [7, 8, 9, 10,
11, 16, 19]. A variation of Roman domination, namely, double Roman domination is introduced
by Beeler et al. [4]. A generalization of double Roman domination, namely Italian domination,
is introduced by Chellali et al. in [6] and further studied in [15] and [17]. An Italian dominating
function (IDF) on a graph G is a function f : V (G) −→ {0, 1, 2} such that every vertex v ∈ V (G)
with f(v) = 0 has at least two neighbors assigned 1 under f or one neighbor w with f(w) = 2.
The weight of an IDF is the value w(f) =

∑
u∈V (G) f(u). The minimum weight of an IDF on a

graph G is called the Italian domination number and denoted by γI(G). For an IDF f on G, let
V f
i = {v ∈ V (G) : f(v) = i}, for i = 0, 1, 2. We can equivalently write f = (V f

0 , V
f
1 , V

f
2 ) (or

simply f = (V0, V1, V2)).
Fan et al. [13] initiated the study of outer independent Italian domination in graphs. An outer

independent Italian dominating function (OIIDF) on a graph G is an IDF on G that V f
0 is an

independent set. Mojdeh and Volkmann [18] considered an extension of Italian domination as
follows. For a graph G, a double Italian dominating function (DIDF) is a function f : V −→
{0, 1, 2, 3} having the property for which every vertex u ∈ V , if f(u) ∈ {0, 1}, then f(N [u]) ≥ 3.
The weight of a DIDF f is the sum w(f) = f(V ) =

∑
v∈V f(v), and the minimum weight of

a DIDF in a graph G is the double Italian domination number, denoted by γ{R3}(G), or γdI(G)
for convenience. Abdollahzadeh Ahangar et al. [1] studied outer independent double Roman
domination. An outer independent double Roman dominating function (OIDRDF) on G is an
DRDF of G for which V f

0 is an independent set.
Azvin et al. [3] (see also Volkmann [20]) considered those double Italian dominating functions

f such that {v ∈ V (G) | f(v) = 0} is an independent set. An outer independent double Italian
dominating function (OIDIDF) of graph G is a DIDF f : V (G) −→ {0, 1, 2, 3} for which V f

0 is
independent. The outer independent double Italian domination number denoted by γoidI(G) is the
minimum weight of an OIDIDF on G. An OIDIDF on graph G with weight of γoidI(G) is denoted
by γoidI(G)-function. Benatallah [5] studied outer independent double Italian domination number
and presented the following bounds on the outer independent double Italian domination number.

Theorem 1.1 ([5]). For every graph G, γoiI(G) ≤ γoidI(G) ≤ 2γoiI(G) and these bounds are
sharp.
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In this paper we continue the study of the outer independent double Italian domination number
of a graph. We characterize all trees T achieving equality in both bounds given in Theorem 1.1.
We also prove two lower bounds on the outer independent double Italian domination number of a
graph.

2. Trees T with γoidI(T ) = 2γoiI(T ) or γoidI(T ) = γoiI(T ) + 1

We aim to characterize trees achieving the equality in each of the lower or upper bounds given
in Theorem 1.1. We begin with the following result.

Observation 2.1. If γoiI(G) = γoidI(G) for a graph G, then δ(G) ≥ 2.

Proof. Suppose that γoiI(T ) = γoidI(T ). Let f = (V0, V1, V2, V3) be a γoidI(T )-function. If |V3| ≠
0 then re-assigning 2 to any vertex of V3 and 1 to any vertex of V2 produces an OIIDF of T of
weight less than γoiI(T ), a contradiction. Thus |V3| = 0. Similarly, |V2| = 0. Thus each vertex
of V0 is adjacent to at least three vertices of V1 and each vertex of V1 is adjacent to at least two
vertices of V1. Consequently, δ(T ) ≥ 2.

As the above observation shows, no tree achieves equality for the lower bound of Theorem 1.1.
We will improve the lower bound of Theorem 1.1 for trees.

Proposition 2.1. For any tree T of order n ≥ 2, γoidI(T ) ≥ γoiI(T )+1, with equality holds if and
only if T is a star.

Proof. Let f = (V0, V1, V2, V3) be a γoidI(T )-function. If |V3| ≠ 0 and |V2| ≠ 0 then re-assigning
2 to any vertex of V3 and 1 to any vertex of V2 produces an OIIDF of T of weight γoidI(T ) − 2,
implying that γoidI(T ) ≥ γoiI(T ) + 2. Similarly, γoidI(T ) ≥ γoiI(T ) + 2 if |V3| ≥ 2 or |V2| ≥ 2.
Thus we may assume that (|V3|, |V2|) ∈ {(0, 1), (1, 0)}. If (|V3|, |V2|) = (0, 1), then re-assigning
1 to the vertex of V2 produces an OIIDF of G of weight γoidI(T ) − 1, implying that γoidI(T ) ≥
γoiI(T ) + 1, and if (|V3|, |V2|) = (1, 0), then re-assigning 2 to the vertex of V3 produces an OIIDF
of G of weight γoidI(T )− 1, implying that γoidI(T ) ≥ γoiI(T ) + 1.

Now assume that γoidI(T ) = γoiI(T ) + 1. Let f = (V0, V1, V2, V3) be a γoidI(T )-function. Fol-
lowing the above argument, we obtain that (|V3|, |V2|) ∈ {(0, 1), (1, 0)}. Suppose that (|V3|, |V2|) =
(0, 1). Let V2 = {y}. Since f is a γoidI(T )-function and T has at least two leaves, for any leaf
x ̸= y we have f(x) = 1 and x ∈ N(y). Since any vertex x ̸= y lies on a path from y to a
leaf of T , we deduce that any vertex x ̸= y is a leaf. Consequently, T is a star centered at y. If
deg(y) ≥ 2, then re-assigning 3 to y and 0 to any leaf produces an OIDIDF of T of weight less than
γoidI(T ), a contradiction. Thus T is star of order 2. Next assume that |V3| = 1 and |V2| = 0. Let
V3 = {y}. Clearly, for any leaf x, f(x) = 0, and x is adjacent to y, since f is a γoidI(T )-function.
Consequently, T is a star centered at y. The converse is obvious.

We next aim to characterize trees achieving the equality in the upper bound of Theorem 1.1.
The following lemma has an important role in the rest of this section.
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Lemma 2.1. If T is a tree for which γoidI(T ) = 2γoiI(T ) and f = (V0, V1, V2) is a γoiI(T )-
function, then:
(1) V2 = ∅ and V1 is an independent set.
(2) T does not have any strong support vertex.
(3) All leaves of T belong to the same partite set of T , namely XL(T ).
(4) The distance between any pair of vertices in XL(T ) is even.
(5) There exists a γoidI(T )-function g for which V g

1 ∪ V g
3 = ∅.

Proof. Assume that γoidI(T ) = 2γoiI(T ). Let f = (V0, V1, V2) be a γoiI(T )-function.
(1) As it is shown in the proof of Theorem 1.1, re-assigning 2 to every vertex of V1 and 3 to

every vertex of V2 produces an OIDIDF for T implying that γoidI(T ) ≤ 2|V1| + 3|V2| ≤ 2|V1| +
4|V2| = 2γoiI(T ) = γoidI(T ) which implies that V2 = ∅. If there are two adjacent vertices u and v
in V1, then the function g defined by g(u) = 1 and g(x) = 2f(x) for every x ∈ V (T )− {u} is an
OIDIDF, and so γoidI(T ) ⩽ w(g) < 2w(f) = 2γoiI(T ), a contradiction. Thus V1 is an independent
set.

(2) By (1), V2 = ∅ and both V0 and V1 are independent sets. Assume that T has a strong support
vertex u. Then f(u) = 0 and f(x) = 1 for every leaf neighbor of u. Then the function g defined
by g(u) = 3, g(t) = 0 for every leaf-neighbor of u, and g(x) = 2f(x) for any other vertex is an
OIDIDF. Let A be the set of all leaf-neighbors of u. Then |A| ⩾ 2, since u is a strong support
vertex. Thus

γoidI(T ) ⩽ w(g) = 3 + 2(|V1 − A|) ⩽ 3 + 2|V1| − 4 ⩽ 2|V1| − 1 < 2|V1| = 2γoiI(T ),

a contradiction. Consequently, T does not have any strong support vertex.
(3) Since V2 = ∅ and both V0 and V1 are independent sets, it follows that V0 and V1 are partite

sets of T . Since f(x) = 1 for every leaf x, we find that all leaves belong to V1.
(4) Let XL(T ) be the partite set of T containing all leaves. Let x, y be two vertices in XL(T ),

and let P : x0x1....xky be the shortest path between x and y, where x0 = x. Then clearly f(x) =
f(y) = f(x2i) = 1 for i ≤ ⌊k

2
⌋, and f(u) = 0 for any other vertex of P . Since V0 is an independent

set, we conclude that k is odd. Consequently, d(x, y) is even.
(5) In view of the proof of (1), we have γoidI(T ) = 2γoiI(T ) = 2|V1|. It is now easy to see that
g = (V g

0 , V
g
1 , V

g
2 , V

g
3 ) = (V0, ∅, V1, ∅) is a γoidI(T )-function for which V g

1 ∪ V g
3 = ∅.

According to Lemma 2.1, for every tree T with γoidI(T ) = 2γoiI(T ), we denote by XL(T ) the
partite set containing all leaves of T . Now we define the family T of trees as follows. Let T be
the family of trees T that can be obtained from a sequence T1, . . . , Ti (i ≥ 1) of trees such that T1

is a path P5 and if i ≥ 2, then Ti+1 can be obtained, recursively, from Ti by the following operation.

Operation O: Let u ∈ XL(Ti). Then Ti+1 is obtained from Ti by joining u to a leaf of a path P2.

Lemma 2.2. If γoidI(Ti) = 2γoiI(Ti) and Ti+1 is obtained from Ti by Operation O, then γoidI(Ti+1) =
2γoiI(Ti+1).

Proof. Let v ∈ XL(Ti) and suppose Ti+1 is obtained from Ti by joining v to the leaf y of a P2-path
P2 : yz according to Operation O. We first show that γoiI(Ti+1) = γoiI(Ti)+1. Let f = (V0, V1, V2)
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be a γoiI(Ti)-function. According to Lemma 2.1 (1), V2 = ∅ and V1 is an independent set. If u is a
leaf in XL(Ti), then f(u) = 1. Since d(u, v) is even, we find that f(v) = 1. Then assigning 0 to y
and 1 to z produces an OIIDF for Ti+1 implying that γoiI(Ti+1) ≤ w(f)+1 = γoiI(Ti)+1. On the
other hand, let g be a γoiI(Ti+1)-function. Clearly, g(v) + g(z) + g(y) ⩾ 2. We may assume that
g(z) = 1, g(y) = 0 and g(v) ⩾ 1. Therefore γoiI(Ti) ≤ w(g |Ti

) ⩽ w(g) − 1 = γoiI(Ti+1) − 1.
Consequently, γoiI(Ti+1) = γoiI(Ti) + 1.

We next prove that γoidI(Ti+1) = 2γoiI(Ti+1). First we note that according to Proposition 1.1,
γoidI(Ti+1) ⩽ 2γoiI(Ti+1). Conversely let f ∗ be a γoidI(Ti+1)-function. Clearly f ∗(y) + f ∗(z) ∈
{2, 3}. If f ∗(y) + f ∗(z) = 2, then f ∗(y) = 0 and f ∗(z) = 2, and so f ∗|Ti

is an OIDIDF on Ti and
so γoidI(Ti) ⩽ w(f ∗)− 2 = γoidI(Ti+1)− 2. This implies that

γoidI(Ti+1) ⩾ γoidI(Ti) + 2 = 2γoiI(Ti) + 2 = 2(γoiI(Ti) + 1) = 2γoiI(Ti+1)

as desired. Thus we assume that f ∗(y)+f ∗(z) = 3. Without loss of generality, we may assume that
f ∗(y) = 3 and f ∗(z) = 0. Then f ∗(v) < 2, since otherwise we can replace f ∗(y) by 0 and f ∗(z) by
2 to obtain an OIDIDF on Ti+1 with weight less than w(f ∗) which is a contradiction. If f ∗(v) = 1,
then we define a function g∗ by g∗(v) = g∗(z) = 2, g∗(y) = 0 and g∗(t) = f ∗(t) otherwise. Then
w(g∗) = w(f ∗) and g∗ |Ti

is an OIDIDF on Ti. Then γoidI(Ti) ⩽ w(g∗ |Ti
) = w(g∗) − 2 and so

γoidI(Ti+1) ⩾ γoidI(Ti) + 2 = 2γoiI(Ti) + 2 = 2(γoiI(Ti) + 1) = 2γoiI(Ti+1). Thus assume that
f ∗(v) = 0. Note that f ∗(t) ⩾ 1 for t ∈ N(v). If |N(v) − {y}| ⩾ 3, then f ∗ |Ti

is an OIDIDF on
Ti and so γoidI(Ti) ⩽ w(f ∗ |Ti

) = w(f ∗)− 3 < w(f ∗)− 2 = γoidI(Ti+1) and we obtain the result
as before. If |N(v)− {y}| = 2, then we may assume that f ∗(y) = 1 and f ∗(z) = 2 and define the
function f ′ by f ′(v) = 1, f ′(z) = 2 and f ′(y) = 0. Then f ′ |Ti

is an OIDIDF on Ti and, as before,
we find that γoidI(Ti+1) ⩾ 2γoiI(Ti+1). Therefore assume that |N(v)−{y}| = 1. Let N(v)−{y} =
{w}. If f ∗(w) ⩾ 2, then f ′ |Ti

, where f ′ is described above, is an OIDIDF on Ti, and as before
the result follows. Thus assume that f ∗(w) = 1. Then h |Ti

, where h is defined by h(v) = 2 and
h(t) = f ∗(t) otherwise, is an OIDIDF on Ti. Let N(w) = {v, w1, w2 . . . wk}, where k ≥ 1. Let
g1 be a γoidI(T )-function on Ti satsfying Lemma 2.1 (5). Then w(g1) = 2γoiI(Ti), g1(w) = 0 and
g1(v) = g1(wi) = 2 for i = 1, 2 . . . , k. Assume that there is an integer j ∈ {1, 2 . . . , k} such
that w(h |Twj

) ≥ w(g1 |Twj
). Then we change h(x) by g1(x) for each x ∈ V (Twj

) and define
the function h∗ by h∗(w) = 2, h∗(wj) = h∗(v) = 1, h∗(x) = g1(x) for x ∈ V (Twj

) − {wj}
and h∗(t) = h(t) otherwise. Since d(v, wj) = 2 and v ∈ XL(Ti), h

∗ is an OIDIDF on Ti and so
γoidI(Ti) ⩽ w(h∗) ⩽ w(h) − 1 = w(f ∗) − 2. Therefore γoidI(Ti+1) ⩾ γoidI(Ti) + 2, as desired.
Then we assume that w(h |Twi

) ⩽ w(g1 |Twi
)−1, for every i = 1, ..., k. We now have the following.

γoidI(Ti) ⩽ h(v) + h(w) +
k∑

i=1

h(Twi
) ⩽ 2 + 1 +

k∑
i=1

g1(Twi
)− k = 2γoiI(Ti) + 1− k.

If k ⩾ 2, then γoidI(Ti) < 2γoiI(Ti), a contradiction. Thus k = 1. Then deg(w) = 2. Observe that
f ∗(w1) = 2, since f ∗ is an OIDIDF on Ti+1. Let f1 be a function defined by f1(w) = f1(y) = 0,
f1(v) = f1(z) = 2 and f1(t) = f ∗(t) otherwise. Then w(f1) = w(f ∗) and f1 |Ti

is an OIDIDF on
Ti. Then γoidI(Ti) ⩽ w(f1 |Ti

) = γoidI(Ti+1)− 2 and so

γoidI(Ti+1) ⩾ γoidI(Ti) + 2 = 2γoiI(Ti) + 2 = 2(γoiI(Ti) + 1) = 2γoiI(Ti+1)
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as desired.

We are now ready to characterize trees with outer independent double Italian domination num-
ber twice the outer independent Italian domination number.

Theorem 2.1. For a tree T of order n ≥ 5, γoidI(T ) = 2γoiI(T ) if and only if T ∈ T .

Proof. First we show that for every tree T of the family T , γoidI(T ) = 2γoiI(T ). We proceed by
induction on the order n ⩾ 5 of a tree T ∈ T . Clearly 6 = γoidI(P5) = 2γoiI(P5) = 2(3). This
establishes the base step. For the inductive hypothesis, assume that for every tree T ′ of order n′,
(5 ⩽ n′ < n) that belongs to the family T , we have γoidI(T ′) = 2γoiI(T

′). Let T be a tree of order
n that belongs to the family T . Then T is obtained from a sequence T1, . . . , Ti (i ≥ 1) of trees
such that T1 is a path P5 and if i ≥ 2, then Ti+1 can be obtained, recursively, from Ti by Operation
O. Then by the inductive hypothesis and Lemma 2.2 we obtain that γoidI(T ) = 2γoiI(T ).

Conversely, assume that T is a tree of order n ⩾ 5 with γoidI(T ) = 2γoiI(T ). We show that
T ∈ T . We proceed by induction on the order n ⩾ 5. We first note that if diam(T ) = 2, then T
is a star and clearly γoidI(T ) = 3, γoiI(T ) = 2 and γoidI(T ) ̸= 2γoiI(T ). If diam(T ) = 3, then T
is a double star in which γoidI(T ) ∈ {5, 6}, γoiI(T ) ∈ {3, 4} and γoidI(T ) ̸= 2γoiI(T ). Therefore
we assume that diam(T ) ⩾ 4 and so n ⩾ 5. If n = 5, then T ∼= P5 ∈ T . This establishes
the base step of the induction. For the induction hypothesis assume that every tree T ′ of order n′

(5 ⩽ n′ < n) with γoidI(T
′) = 2γoiI(T

′) belongs to the family T . Let T be a tree of order n
with γoidI(T ) = 2γoiI(T ). We show T ∈ T . We consider a diametrical path x1x2 . . . xdxd+1 in
T and root T at x1. Let f = (V0, V1, V2) be a γoiI(T )-function. By Lemma 2.1 (parts (1) and
(2)), deg(xd) = 2, V2 = ∅, V1 and V0 are independent sets. Clearly, f(xd+1) = f(xd−1) = 1 and
f(xd) = 0. Thus XL(T ) = {x : f(x) = 1}. Note that xd−1 does not have any leaf neighbor, since
V1 is an independent set.

Let T ′ = T − {xd, xd+1}. We first show that γoiI(T ) = γoiI(T
′) + 1. Observe that f |T ′ is an

OIIDF on T ′. Thus γoiI(T ′) ⩽ γoiI(T )−1. Assume that f ′ = (V ′
0 , V

′
1 , V

′
2) is a γoiI(T ′)-function. If

f ′(xd−1) ⩾ 1, then the function g defined by g(xd) = 0, g(xd+1) = 1 and g(t) = f ′(t) otherwise,
is an OIIDF on T and so γoiI(T ) ⩽ γoiI(T

′) + 1. Thus we assume that f ′(xd−1) = 0. We consider
the following cases.

Case 1. deg(xd−1) ⩾ 3. Since xd−1 does not have any leaf neighbor, we may assume that xd−1

has a child u ̸= xd which is a support vertex. By Lemma 2.1 deg(u) = 2. Let w be the child of
u. Then f ′(u) + f ′(w) = 2. Then we replace f ′(xd−1) and f ′(w) by 1 and f ′(u) by 0 to obtain
a γoiI(T

′)-function f ′′ with f ′′(xd−1) ≥ 1. Then, as before, the function g defined by g(xd) =
0, g(xd+1) = 1 and g(t) = f ′′(t) otherwise, is an OIIDF on T and so γoiI(T ) ⩽ γoiI(T

′) + 1, as
desired.

Case 2. deg(xd−1) = 2. Observe that f ′(xd−2) = 2. Suppose that xd−2 has a leaf neighbor v.
Then f(xd−2) = 0 and f(v) = 1. Also xd−3 doesn’t have a leaf neighbor, since d(xd−3, xd+1) is
even. Now we define the function f1 by f1(xd−2) = 3, f1(v) = 0, f1(xd−1) = f1(xd−3) = 1 and
f1(t) = 2f(t) otherwise. Then f1 is an OIDIDF on T and so γoidI(T ) ⩽ w(f1) = 2w(f) − 1 <
2γoiI(T ), a contradiction. Thus xd−2 does not have a leaf neighbor, and so every child of xd−2

with value 0 (if any), is adjacent to at least one other vertex with value at least 1. Then we change
f ′(xd−2) and f ′(xd−1) to 1 to obtain a γoiI(T

′)-function f ′′ with f ′′(xd−1) ≥ 1. Then the function
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g defined by g(xd) = 0, g(xd+1) = 1 and g(t) = f ′′(t) otherwise, is an OIIDF on T and so
γoiI(T ) ⩽ γoiI(T

′) + 1, as desired.
We conclude that γoiI(T ) = γoiI(T

′) + 1. Thus γoidI(T ) = 2γoiI(T ) = 2(γoiI(T
′) + 1). Then

γoidI(T )− 2 = 2γoiI(T
′).

We next show that γoidI(T ′) = γoidI(T )−2. Assume that g is a γoidI(T ′)-function. If g(xd−1) ⩾
1, then we set g(xd) = 0 and g(xd+1) = 2 to extend g to an OIDIDF on T . Therefore γoidI(T ) ⩽
γoidI(T

′) + 2. Assume that g(xd−1) = 0. If degT (xd−1) = 2, then g(xd−2) = 3 and g(xd−3) +
g(xd−4) ⩾ 1. Note that diam(T ′) ⩾ 4, since γoidI(T

′) = 2γoiI(T
′). Since deg(xd−2) = 2, we

may change g(xd−2) to 2, and set g(xd−1) = 1, g(xd) = 0 and g(xd+1) = 2 to extend g to an
OIDIDF on T and as before find that γoidI(T ) ⩽ γoidI(T

′) + 2. Thus assume that degT (xd−1) ⩾ 3.
Since xd−1 does not have a leaf neighbor, it has a child y of degree 2. Let z be the child of y.
Then g(y) + g(z) = 3. Now we change g(xd−1) to 1, g(y) to 0 and g(z) to 2, and as before
obtain that γoidI(T ) ⩽ γoidI(T

′) + 2. We conclude that γoidI(T ) ⩽ γoidI(T
′) + 2. Next we

show that γoidI(T ) ⩾ γoidI(T
′) + 2. Assume that h is a γoidI(T )-function. If h(xd−1) ⩾ 2, then

h(xd+1) + h(xd) = 2 and h |V (T ′) is an OIDIDF on T ′, implying that γoidI(T ′) ⩽ γoidI(T ) − 2.
Assume that h(xd−1) = 1. If

∑
(v∈N [xd−1]−xd)

h(v) ⩾ 3, then we may assume that h(xd) = 0 and
h(xd+1) = 2, in which the result follows as before. Thus assume that

∑
(v∈N [xd−1]−xd)

h(v) < 3.
Then h(xd) + h(xd+1) = 3 and we may assume that h(xd+1) = h(xd−1) = 2 and g(xd) = 0 in
which the result follows as before. We now assume that h(xd−1) = 0. If deg(xd−1) ⩾ 3, then
xd−1 has a child y of degree two. Assume that z is the child of y. Since h(xd−1) = 0, we have
h(t) ⩾ 1 for every vertex t ∈ N(xd−1). Furthermore, h(xd+1) + h(xd) = h(y) + h(z) = 3. Let h′

be a function defined by h′(xd−1) = h′(y) = 1, h′(xd) = 0, h′(z) = h′(xd) = 2 and h′(t) = h(t)
otherwise. Then h′ |T ′ is an OIDIDF on T ′ and so γoidI(T

′) ⩽ w(h′)− 2 = w(h)− 2 as required.
Thus assume that deg(xd−1) = 2. If h(xd−2) ⩾ 2, then we change h(xd−1) to 1, h(xd) to 0 and
h(xd+1) to 2, and as before we find that γoidI(T ′) ⩽ γoidI(T ) − 2. It remains to assume that
h(xd−2) = 1. Then h(xd−3) ⩾ 2, since deg(xd−2) = 2. Now we change h(xd+1) and h(xd−1) to 2
and h(xd) and h(xd−2) to 0 to obtain h′. Then h′ |T ′ is an OIDIDF on T ′ and the result is obtained
as before. Hence, γoidI(T ′) = γoidI(T ) − 2 = 2γoiI(T

′). We deduce T ′ ∈ T by the induction
hypothesis. Since f(xd−1) = 1, we have xd−1 ∈ XL(T ) and so T is formed by Operation O on
T ′.

3. New lower bounds

In this section we prove two new lower bounds on the outer independent double Italian domi-
nation number.

Theorem 3.1. For every graph G of order n with minimum degree δ = δ(G) > 0 and maximum
degree ∆ = ∆(G), γoidI(G) ⩾ ⌊ nδ

δ+∆
⌋+ 1 and this bound is sharp.

Proof. Let G be a graph of order n with minimum degree δ > 0, and f = (V0, V1, V2, V3) be a
γoidI(G)−function. Let m be the number of edges having one end point in V0 and the other end
point in V1 ∪ V2 ∪ V3. We then have m ≥ δ|V0|, since V0 is independent and f(N(u)) ≥ 3 for each
vertex u ∈ V0. On the other hand each vertex in V1 ∪ V2 ∪ V3 has at most ∆ neighbors in V0. Thus,
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m ≤ ∆(|V1|+ |V2|+ |V3|), and so δ(n− |V1| − |V2| − |V3|) ⩽ ∆(|V1|+ |V2|+ |V3|) which implies
that δn ⩽ (∆ + δ)(|V1|+ |V2|+ |V3|). Therefore,

δn

∆+ δ
⩽ |V1|+ |V2|+ |V3| = γoidI(G)− |V2| − 2|V3|.

If V2 ∪ V3 ̸= ∅, then γoidI(G) ⩾ nδ
∆+δ

+ |V2| + 2|V3| ⩾ nδ
∆+δ

+ 1, as desired. Thus assume that
V2∪V3 = ∅. Then each vertex in V1 is adjacent to at least two vertices in V1 and each vertex in V0 is
adjacent to at least three vertices in V1. Then if |V0| > 0, then ∆ ≥ 3 while if |V0| = 0 then ∆ ≥ 2.
Furthermore, counting the number of edges having one end point in V0 and the other end point in
V1 implies that δ|V0| ⩽ (∆− 2)|V1|. Since n = |V0|+ |V1|, we find that δ(n−|V1|) ⩽ (∆− 2)|V1|.
This implies that γoidI(G) = |V1| ≥ δn

∆+δ−2
> δn

∆+δ
. Since γoidI(G) is an integer we deduce that

γoidI(G) ⩾ ⌊ nδ
δ+∆

⌋ + 1. To see the sharpness, for each integer n ≥ 3, let Gn be a graph obtained
from a cycle Cn by adding 2n new vertices and joining each new vertex to all vertices of Cn. Note
that |V (Gn)| = 3n, δ(Gn) = n, ∆(Gn) = 2n+ 2 and γoidI(Gn) = n = ⌊ 3n2

3n+2
⌋+ 1.

We now introduce a family of graphs as follows. Let G be the class of all graphs G such that
G ∈ G if and only if G is obtained from a graph H of order at least three and minimum degree at
least two by adding at least |V (H)|−δ(H) new vertices and joining each new vertex to all vertices
of H .

Proposition 3.1. If G is a graph of order n ≥ 1 with minimum degree δ, γoidI(G) ≥ δ, with
equality holds if and only if G ∈ G.

Proof. The result is obvious if δ ≤ 2. Thus assume that δ ≥ 3. Let f = (V0, V1, V2, V3) be a
γoidI(G)-function. If V0 = ∅, then γoidI(G) ≥ n ≥ δ + 1, since δ ≤ n − 1. Thus assume that
V0 ̸= ∅. Let x ∈ V0. Therefore N(x) ⊆ V1 ∪ V2 ∪ V3, since V0 is an independent set. Also
|N(x)| ≥ δ. Note that

γoidI(G) = |V1|+ 2|V2|+ 3|V3| = (
3∑

i=1

|Vi|) + |V2|+ 2|V3|.

If (V2 ∪ V3) ̸= ∅, then γoidI(G) ≥
(∑3

i=1 |Vi|
)
+ 1 ≥ deg(x) + 1 ≥ δ + 1. Thus assume that

V2 ∪ V3 = ∅. Then γoidI(G) = |V1|. Since V0 is an independent set, we find that γoidI(G) = |V1| ≥
δ.

We next prove the equality part. Assume that γoidI(G) = δ. Clearly γoidI(G) ≥ 2. It is
easy to see that γoidI(G) = 2 if and only if G = K1. Since K1 has minimum degree 0, from
γoidI(G) = δ we obtain that δ ≥ 3. Let f = (V0, V1, V2, V3) be a γoidI(G)-function. Following the
above argument for the first part of the proof, we obtain that V2 ∪ V3 = ∅ and γoidI(G) = |V1| = δ.
Let H = G[V1]. Since V0 is independent and |V1| = δ, every vertex of V0 is adjacent to all vertices
of H . Since any vertex of V1 is adjacent to at least two other vertices of V1, we obtain that H has
minimum degree at least 2. Suppose that |V0| < |V (H)| − δ(H). Let v ∈ V1 be a vertex with
degH(v) = δ(H). Then

degG(v) = degH(v) + |V0| < |V (H)| = δ(G).
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This is a contradiction. Thus |V0| ≥ |V (H)| − δ(H). We conclude that G ∈ G.
Conversely assume that G ∈ G. Thus G is obtained from a graph H of order m ≥ 3 with

V (H) = {y1, ..., ym} and δ(H) ≥ 2 by adding t ≥ m − δ(H) new vertices x1, ..., xt, and adding
edges xiyj , for i = 1, ..., t and j = 1, ....,m. Note that degG(xi) = m for i = 1, ..., t, and
degG(yj) = degH(yj)+ t ≥ δ(H)+ t ≥ m for j = 1, ....,m. Thus δ(G) = m. Then γoidI(G) ≥ m
by the first part of the proposition. Now let g be a function on G defined by g(yj) = 1 for each
j = 1, ...,m and g(xi) = 0 for each xi, i = 1, ..., t. Then g is an OIDIDF for G, implying that
γoidI(G) ≤ m. Consequently, γoidI(G) = m = δ(G).
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