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Abstract

In a graph, a cycle whose length is a power of two (that is, 2k) is called a 2-power cycle. In this
paper, we show that the existence of an infinite family of cubic graphs which contain only one
cycle whose length is a power of 2. Such graphs are called as 2-power unicyclic cubic graphs.
Further we observe that the only 2-power cycle in a cubic graph cannot be removed implying that
there does not exist a counter example for Erdős-Gyárfás conjecture.
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1. Introduction

In a graph G, a 2-power cycle is a cycle whose length is a power of 2. A graph which contains
a unique 2-power cycle is called a 2-power unicyclic graph. In 1995, Erdős and Gyárfás [4] put
forward a conjecture which states that every graph with minimum degree 3 contains a simple cycle
whose length is a power of two. If the conjecture is false, a counter example would take the form of
a graph with minimum degree three having no cycles whose length is a power of two. It is known
through computer searches of Gordon Royle and Klas Markstrom that any counterexample must
have at least 17 vertices, and any cubic counter example must have at least 30 vertices. Markstrom’s
searches found four graphs on 24 vertices in which the only power-of-two cycles have 16 vertices,
one of these four graphs is planar. However, the Erdős-Gyárfás conjecture is now known to be true
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for the special case of 3-connected cubic planar graphs, see Heckman and Krakovski [6]. Weaker
results relating the degree of a graph to unavoidable sets of cycle lengths are known. Verstraete
[12] showed that there is a set S of lengths, with |S| = O(n0.99), such that every graph with average
degree ten or more contains a cycle with its length in S. Sudakov and Verstraete [11] proved that
every graph whose average degree is exponential in the iterated logarithm of n necessarily contains
a cycle whose length is a power of two. Daniel and Shauger [2] proved the conjecture to be true for
planar claw-free graphs and Shauger [10] showed the conjecture to be true for graphs that avoid
large induced stars and satisfy additional constraints on their degrees. In 2004, Klas Markstrom
[8] provided extremal graphs for some problems on cycles in graphs.

A graph is planar if it can be embedded in the plane without crossing edges. A plane graph is an
embedded planar graph. A graph G is 3-connected if it becomes disconnected by removing at least
3 vertices. A graph G is cubic if every vertex of G is of degree three. More on graphs and cycles
can be seen in [3, 7, 9].By computer searches, Markstrom [6] verified Erdős-Gyárfás conjecture
for cubic graphs of order at most 29, and found that the smallest cubic planar graph with no 4-
or 8-cycles has 24 vertices (see Figure 1). Note that this graph contains a 16-cycle. Shauger [8]
proved the conjecture for K1,m free graphs of minimum degree at least m+ 1 or maximum degree
at least 2m−1. Every 3-connected cubic planar graph contains a 2m− cycle, for some 2 ≤ m ≤ 7,
see [6].

Figure 1. cubic graph with 24 vertices with no 4- or 8-cycle.

Markstrom’s 24-vertex cubic planar graph with no 4 or 8 cycles, found in a computer search
for counter example to the Erdős-Gyárfás conjecture, has cycles with 16 vertices. A recent study
by Bensmail [1] showed that their exist arbitrarily large cubic graphs with no q-power cycle. Frank
[5] showed that every k-regular k-connected graph on n vertices has k-diameter at most n

2
and

this upper bound cannot be improved when n = 4k − 6 + I(2k − 4). In particular, the maximal
3-diameter of 3-regular graphs with 2n vertices is equal to n, that is, the maximal 3-diameter of
3-regular graphs with n vertices is equal to n

2
.

In a graph, the distance between the two vertices is the number of edges in a shortest path (also
called a graph geodesic) connecting them. This is also known as the geodesic distance. Notice
that there may be more than one shortest path between two vertices. If there is no path connecting
the two vertices, that is, if they belong to different connected components, then conventionally the
distance is defined as infinite.
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2. On two power unicyclic cubic graphs

In a graph G, if the distance between the vertices u and v is d(u, v) = r, the number of vertices
between u and v is r+1. If G is a cubic graph of order n and e is any edge of G, then G− e is the
graph in which n− 2 vertices are of degree 3 and 2 vertices are of degree 2, such a graph is called
an (n− 2)-cubic graph.

Figure 2. Cubic graph with eight vertices.

Figure 3. 6-cubic graph, that is, graph with eight vertices with six vertices of degree 3 and two vertices of degree 2.

The graph G, shown in Figure 2, has eight vertices and contains cycles of length 4, 5, 6, 7 and
8. Now remove the edge e = uv from G, we get the graph K = G − e, as shown in Figure 3.
Clearly K is (n − 2)−cubic and has no cycles of lengths 22, 23. Further the distance between the
vertices u and v in K is dK(u, v) = 3 < 4.

We will show that the above example leads to the existence of a family of 2-power unicyclic
cubic graphs, that is, a family of cubic graphs which contain only the cycle of length 2k (2k < n)
but does not contain any cycle of length 2t, t ̸= k. We show the existence of this graph G by
construction, the graph G constructed will have even number of vertices, say n = 2s, and further
in G there is always a bridge which partitions V (G) into two parts with each part having s vertices.
So if G contains a cycle of length 2k, then 2k < s, since the presence of bridge does not allow the
cycle to have edges from both the parts, that is, contains edges from one of the two parts.
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Theorem 2.1. There exists a family of 2-power unicyclic cubic graphs, that is a family of cubic
graphs with order say n = 2s, which contain a cycle of length 2k (2k < s) but does not contain
any cycle of length 2t, t ̸= k.

Proof. We show the existence of such a family by construction. We start with the construction of
the smallest such graph.

Consider the graph G of order 8 as shown in Figure 2. We remove the edge e = uv to get the
graph K = G − e as shown in Figure 3. We note that dK(u) = 2 and dK(v) = 2 so that K is
(6)-cubic. Further dH(u, v) = 3 < 4. Take 5 copies of K and name them as H1, H2, J1, J2 and H .
Also we represent the vertices of degree 2 by u1, v1 ∈ H1; u2, v2 ∈ H2; x1, y1 ∈ J1; x2, y2 ∈ J2
and u, v ∈ H . Further, let P1 = H1 ∪H2 and Q1 = J1 ∪ J2.

Now, let X1 be the graph consisting of P1, Q1, H , K3 (vertices labeled as w1, w2, w3) and
K1,3 + x (vertices labeled as z1, z2, z3, z4 with z1 as the pendant vertex) together with the edges
v1u2, y1x2, v2w1, y2w2, w3v, uz1, u1z3, x1z4. Clearly degree of each vertex of X1 is three except
the vertex z1 whose degree is two.

We now take two copies of X1, one named as X1 and another as X ′
1. Label the vertices of X ′

1

as u′
1, v

′
1 and so on. Consider the graph G1 = X1 ∪X ′

1 ∪ {z1z′1}. Clearly the graph G1 is cubic.
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Figure 4. Cubic graph G1 with 94 vertices, having no cycles of length 4, 8, 16 but has a cycle of length 32.

We observe that the edge z1z
′
1 is a bridge in G1 (joining X1 and X ′

1). Also the number of
vertices in each of X1 and X ′

1 is 47. So the maximum length of the cycle in G1 has to be less
or equal to 47 and thus G1 can have only 22, 23, 24, 25 cycles of the form 2k. But as we see that
G1 does not contain the cycles of the lengths 22, 23, 24. Evidently G1 contains the cycle of length
25. Note that G1 cannot have a cycle of length 26 = 64, because of the presence of bridge z1z

′
1
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between X1 and X ′
1. Hence we have constructed a cubic graph G1 of order 84 in which there are

no cycles of lengths 22, 23, 24 but it contains a cycle of length of 25. See Figure 4.
The above construction can be extended to obtain a family of cubic graphs in the following

way. Let Pi contain
∑i

j=1 2
j copies of K and name these copies as H1, H2, H3 . . . . Let Pi =

H1 ∪ H2 ∪ H3 ∪ . . . . Similarly let Qi contain
∑i

j=1 2
j copies of K and name these copies as

J1, J2, J3 . . . . Let Qi = J1 ∪ J2 ∪ J3 ∪ . . . . Label the vertices of degree 2 in H1, H2, H3 . . . ,
J1, J2, J3 . . . respectively by u1, v1 ∈ H1 ; u2, v2 ∈ H2 ; u3, v3 ∈ H3 ; . . . ; x1, y1 ∈ J1 ;
x2, y2 ∈ J2 ; x3, y3 ∈ J3 . . . .

Let Xi be the graph containing Pi, Qi, H (a copy of K), K3 (vertices labeled as w1, w2, w3)
and K1,3+x (vertices labeled as z1, z2, z3, z4 with z1 as the pendant vertex) together with the edges
v1u2, v2u3, . . . ; y1x2, y2x3, . . . ; w3v, uz1, u1z3, x1z4 ; the edge between the vertex w1 and the
second vertex of the last copy K ∈ Pi ; the edge between w2 and the second vertex of the last copy
K ∈ Qi. Clearly degree of each vertex of Xi is three except the vertex z1 whose degree is two.
Now, take two copies of Xi, represented as Xi and X ′

i.
Consider the graph Gi = Xi ∪ X ′

i ∪ {z1z′1}, which is cubic. We observe that the edge z1z
′
1

is a bridge in Gi (joining Xi and X ′
i). Also the number of vertices in each of Xi and X ′

i is
|Xi| = |Pi| + |Qi| + |H| + |K3| + |K1,3 + x| = 2|Pi| + 8 + 3 + 4 = 2(8

∑i
j=1 2

j) + 15,
since each copy of K contains eight vertices. Thus the length of the largest cycle has to be less
or equal to 2(8

∑i
j=1 2

i) + 15 = 24(2 + 22 + 23 + · · · + 2i−1 + 2i) + 15. Further, we note that
|Xi| = |Xi−1|+ 2i+1. If |Gi| is the order of Gi, it can be easily seen that |Gi| = |Gi−1|+ 25.

Evidently, Gi does not contain the cycles of lengths 22, 23, 24, . . . , 2i+3 but contains the cycle
of length 2i+4. Also Gi does not contain the cycles of length 2t, t ≥ i + 5, since the length of the
largest cycle is less or equal to 24(2+ 22 +23 + · · ·+2i−1 +2i) + 15. Hence Gi contains only one
cycle whose length is a power of 2.

For instance, G2 is a cubic graph of order 222 having no cycles of lengths 22, 23, 24, 25 but it
contains a cycle of length 26, see Figure 5. This is because the graph has a bridge and each part has
111 vertices. The minimum length of the cycle is 33 and total vertices in each part is 111. Thus,
the only cycle whose length is of the form 2k with 33 ≤ 2k ≤ 111 is 64.

Similarly, G3 is a cubic graph of order 478 having no cycles of lengths 22, 23, 24, 25, 26 but
it contains a cycle of length 27. This is illustrated in Figure 6. This graph has a bridge, so each
part has 239 vertices and minimum length of a cycle is 65 and total vertices in each part is 239.
Therefore, the only cycle of the form 2k with 65 ≤ 2k ≤ 239 is 128.

From the above discussion and examples, we get a recurrence relation of these cubic graphs as
follows.

Let us assume that there exists a cubic graph G which contains a cycle of length 2k only but
does not contain cycles of length 2t, t ̸= k. In particular, G will have no cycles of length 2t,
2 ≤ t ≤ k − 1. Thus the number of vertices in this graph is at least 2k, that is, n ≥ 2k, where n is
the total number of vertices in the graph. Since it has no cycle of length 2k−1, this implies that an
edge was removed in the graph between vertices u and v (say) which has removed all the cycles of
length 2t, 2 ≤ t ≤ k − 1. Thus d(u, v) = 2k−1 − 1. As 2k−1 < 2k, implies that 2(2k−1) = 2k, or
2(2k−1 − 1) < 2k, or 2k−1 − 1 < 2k

2
or 2k−1 − 1 < n

2
, where n ≥ 2k. Thus, d(u, v) < n

2
, which

negates the above observation that each cubic graph with degree greater or equal to 3 has one cycle
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Figure 5. Cubic graph G2 with 222 vertices, having no cycles of length 4,8,16,32 but has a cycle of length 64.

Table 1. Recurrence relation for the cubic graphs
Graph Cycles of the form 2t removed Cycle of the form 2k present.

G1 with |G1| = 94 22, 23, 24 24+1 = 25

G2 with |G2| = |G1|+ 26 22, 23, 24, 25 24+2 = 26

G3 with |G3| = |G2|+ 27 22, 23, 24, 25, 26 24+3 = 27

G4 with |G4| = |G3|+ 28 22, 23, 24, 25, 26, 27 24+4 = 28

G5 with |G5| = |G4|+ 29 22, 23, 24, 25, 26, 27, 28 24+5 = 29

G6 with |G6| = |G5|+ 210 22, 23, 24, 25, 26, 27, 28, 29 24+5 = 210

Gi with |Gi| = |Gi−1|+ 2i+4 22, 23, 24, 25, · · · , 2i+2, 2i+3 2i+4

of length 2k. Accordingly, there is no cubic graph in which we can develop a counter case with
no cycle of power 2k. This way we conclude that every graph with minimum degree 3 contains a
cycle whose length is a power of two.
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Figure 6. Cubic graph G3 with 478 vertices, having no cycles of length 4, 8, 16, 32, 64 but has a cycle of length 128.

3. Conclusion

The Erdős-Gyárfás conjecture is one of the important problems in graph theory. The problem
has been partially proved to be true. Daniel and Shauger proved the conjecture to be true for planar
claw-free graphs and Shauger showed the conjecture to be true for graphs that avoid large induced
stars and satisfy additional constraints on their degrees.

The main aim of this paper is to show that counter example for the conjecture is not possible.
For this, we first prove the existence of an infinite family of cubic graphs which contain only one
cycle whose length is a power of 2. We show the existence of a family of cubic graphs in which all
the cycles of the form 2t, where 2 ≤ t ≤ k − 1, can be removed and does contain only a cycle of
order 2k, 2k < n. Such graphs are called as 2-power unicyclic cubic graphs. Further, we observe
that the only 2-power cycle in a cubic graph cannot be removed implying that there does not exist
a counter example for Erdős-Gyárfás conjecture.
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