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Abstract

The edge-distinguishing chromatic number (EDCN) of a graph G is the minimum positive integer
k such that there exists a vertex coloring ¢ : V(G) — {1,2,...,k} whose induced edge labels
{c(u),c(v)} are distinct for all edges uv. Previous work has determined the EDCN of paths,
cycles, and spider graphs with three legs. In this paper, we determine the EDCN of petal graphs
with two petals and a loop, cycles with one chord, and spider graphs with four legs. These are
achieved by graph embedding into looped complete graphs.
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1. Introduction

Let the graph G be composed of a simple graph together with at most one loop at each vertex,
and let V' (G) and F(G) be the vertex set and the edge set of G respectively. Let [k] = {1,2,..., k}
[]

denote a set of £ colors, and let ( ) denote the set of i-subsets of [k]. For every vertex coloring

W) U (@), defined by

¢ : V(G) — [k], there is an induced edge coloring ¢ : E(G) — (1
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d(uv) = {c(u), c(v)} for each edge uv. A vertex coloring c is considered edge-distinguishing if
' is injective. The edge-distinguishing chromatic number (EDCN) of GG, denoted by A(G), is the
minimum integer & such that an edge-distinguishing vertex coloring with k colors exists for G.

The concept of coloring certain elements of a graph G to distinuguish another set of elements
associated with GG has many variations. For instance, the problem of vertex-distinguishing edge
coloring has been studied in the literature [2, 4, 5], and the problem of distinguishing graph auto-
morphisms through vertex coloring has also been studied [8, 15].

This notion of edge-distinguishing vertex coloring, also called a line-distinguishing vertex col-
oring, was first introduced by Frank et al. [12]. This problem was further studied by Al-Wahabi
et al. [3], Zagaglia Salvi [16], Fickes and Wong [11], etc. Brunton et al. [7] considered the case
when the edge coloring function ¢ is also surjective. It is worth mentioning that the more popular
notion of harmonious chromatic number typically refers to a slight variation of the EDCN [14].
More specifically, if GG is a simple graph, then the harmonious chromatic number of G, denoted
by h(G), is the minimum integer k such that an edge-distinguishing proper vertex coloring with k
colors exists for G. It is obvious that A\(G) < h(G).

Determining A(G) for a general graph G is NP-complete [13]. Consequently, most work in
the literature focuses on providing bounds on 2 (G) and thus A(G) [1] or studying the asymptotic
behavior of h(G) [6] for various families of graphs G. When trying to determine the exact formula
for A(G) or h(G), only very limited families have been tackled. For example, A\(G) is determined
for paths and cycles [3, 12], and h(G) is determined for complete r-ary trees [10].

We are interested in determining the exact formula for the EDCN of other families of graphs;
however, pushing the results from paths and cycles to other graphs seems formidable, and it has
not been done since the 1980’s until very recently. A path is a tree with maximum degree 2, so
a natural extension of a path is a spider graph, which has a unique vertex with degree at least 3,
often called the central vertex. Each path between the central vertex and a leaf (i.e., a degree 1
vertex) is called a leg. We denote a spider graph as Sy, ¢, . ¢, Where A > 3 is the number of legs,
and 1 < /7 < V5 < ... < U represent the number of edges in each leg. Here are some published
results on the EDCNSs of paths, cycles, and spider graphs in the literature.

Theorem 1.1 ([3, 12]). Let G = P, be a path with n vertices. Then
1 ifn <2; and
AlFn) = min {2 [ /252 | 2 [B45T ) 1) i > 8,

2

Theorem 1.2 ([3, 12]). Let G = C,, be a cycle with n vertices, where n > 3. Then

A(C) :min{Q [ gw 2 [;‘/‘-@w - 1}.

Theorem 1.3 ([11]). Let Sy, 4, ¢, be a spider graph with 3 legs, where {1 + {3 + {3 = L. Then

3 if3<L<6andl;=1;
4 ifL=6andl, =2;
)\(551,22,53) = ’7—1+\/1+8L-‘ if L > 7 and "—1+\/1+8L-‘ is odd- and
2 = 2 )
’— 2L — 4-‘ otherwise.
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Theorem 1.4 ([11]). Let Sy, 4,
1 <i <A Then

o be a spider graph with A legs, where 2 < {; < %for each

-----

)\<S£1,f2 ..... EA) =A + 1.

Although the edge-distinguishing chromatic number was introduced almost 40 years ago, the
above list seemingly exhausts all major progress on the EDCN of various families of graphs. In
this paper, we extend this list by studying spider graphs with four legs. The technique used to
obtain Theorem 1.3 was too cumbersome to apply, so we adopt a different approach here. We try
to “fold up” or embed a spider graph with four legs into petal graphs and cycles with one chord
to aid our discussions. Through this method, we determine the EDCN of three families of graphs:
some petal graphs, all cycles with one chord, and all spider graphs with four legs.

To determine the EDCN of various graphs, let us first introduce a simple tool to establish lower
bounds.

Proposition 1.1 ([11]). Let G be a simple graph with maximum degree A(G). Then \(G) > A(G).
Furthermore, if there exists a vertex u of G such that deg(u) = A(G) and every neighbor of u has
degree > 1, then A\(G) > A(G) + 1.

Next, we present the main tool to determine the EDCN of a graph, namely Theorem 1.5. Let
K, denote the complete graph on k vertices {vg, v1,vs,...,v5_1}, and let v;v; denote the edge
between vertices v; and v;. If we attach a loop v;v; at every vertex v; of K}, then we obtain a new
graph, which is denoted by K. In other words,

*
K; = Ki, U {vgvg, v101, U202, . . ., Ug_1Uk_1}-

A graph homomorphism is a function from the vertex set of one graph to the vertex set of another
that preserves edges. An embedding of a graph G in K refers to a graph homomorphism from G
to K that induces an injection from E(G) to E(K}).

Theorem 1.5 ([12]). Let G be a simple graph, and let k be a positive integer. Then \(G) < k if
and only if there is an embedding of G in K.

Another trivial but useful observation is the following.

Proposition 1.2. Let H be a subgraph of G. If G can be embedded in K}, then H can also be
embedded in K}, and hence, \(H) < \(G).

In Section 2, we begin by proving the necessary and sufficient conditions to embed a subfamily
of caterpillar trees in K when k is odd. Then, we proceed to prove the necessary and sufficient
conditions to embed “petal graphs” with two petals and one loop, cycles with one chord, and finally
spider graphs with four legs in K. For each of these families of graphs, the treatment for odd &
is different from even k, so we separate our discussion on odd and even k into Sections 2 and 3
respectively. Lastly, in Section 4, we determine the EDCN of these petal graphs, chorded cycles,
and spider graphs.
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2. kisodd

2.1. Caterpillars

In the study of graph labelings, caterpillar trees are often the first object studied after paths.
Naturally, this is where our discussion begins.

Definition 1. Let ¢ be a positive integer and m be a nonnegative integer. Let C' Pg Liesim denote a

caterpillar tree with the central path yoy1y2---y¢ and m extra edges Yii1Yi,,
YoroYiny - -+ s YormVi,,, where 0 < iy i < oo <iipy < L.

If 41,49, ..., 14, are distinct and m < k, then we would like to embed such caterpillar trees
in K; with all the extra edges yo+1Yi, , Yr+oViy, - - - » Ye+mYi,, €mbedded as loops. Hence, the main
question is whether we can embed the central path yoy,ys - - - y, in K, such that v;,, vi,, ..., Yi,.
are mapped to distinct vertices. The following theorem by Dvordk et. al. answers our question
positively with only a few exceptions.

Theorem 2.1 ([9]). Let k > 3 be odd, let C = zyz129 - - - z(k)_lzo be a cycle of length (’;) such
2

that exactly k vertices, namely z;,, zi,, . . . , 2, are black, where 0 < 1,19, ... ,1; < (g) — 1. Then
there exists an embedding of C in K, that is injective on the black vertices if and only if either
k #5o0rk =>5and{iy,is,i3,14,i5} Z{0+¢,34+¢c,44+¢,6+c¢,T+ctor{0+c,1+¢,34+¢, 7+
¢, 94 ¢} (mod 10) for every ¢ € Zqy.

This result is paramount to the proof of the following theorem.

Theorem 2.2. Let k be odd, and let m < k. Consider caterpillar trees C’Pgl’iQ""’im such that
0<iy <ig<-++ <ipy<land CP"™> "™ CP41’3. Such caterpillar trees can be embedded in
K ifand only if { +m < (kgl)

Proof. The number of edges in CPZ Li2ntm and K . are { +m and (kgl) respectively, so £ +m <

(k—i—l

+1) is a necessary condition for C P/ '™ to be embedded in K.

k+1)

11,225--5tm

To prove that the condition is sufficient, if ¢/ +m < ( , we can first consider C' P, as

2
a subgraph of C’PZ Lietm Cwhere £ 4+ m = (k;rl) Due to Proposition 1.2, it suffices to show that
CP;»">"™ can be embedded in K} if £ +m = (*') and C P}V ' £ C P>,

Ifk=1,then ¢ +m = (k;rl) = 1, implying that / = 1 and m = 0. It is obvious that C'P,
which is a path with two vertices, can be embedded in K7, which is a loop at one vertex. If k = 3 or
5, we exhaust all possible caterpillar trees that satisfy the given conditions, and the only caterpillar
tree that cannot be embedded in K is CP41’3. If £ > 7, we need the following claim so that we
can apply Theorem 2.1 in our proof.

Claim: If kK > 7 and m < k, then there exists a set

B = {yj17yj1+17 Yjos Yjot1s -+ 5 Yjr_s yjk_m+1}

of 2(k — m) distinct vertices, where j; < jo < -+ < Jx_m < {, suchthat {y;,, vi,, ..., 4, N B =
0.

396



The EDCN of Petal, Chorded Cycles, and Spider Graphs | Grant Fickes and Tony W. H. Wong

Proof of Claim: Let
J={jeN:j<( jisodd, and {j,j+ 1} N {i1,d2,...,in} = 0}.

Note that LgJ > %(f—l) = % ((kgl) —-—m — 1) > % ((kgl) — k:) = %(g) > k when k > 7. Hence,
|J| > |£] —=m > k—m. As aresult, our claim follows by picking distinct integers ji, ja, . - - , je—m
from J.

Assume k > 7. Let C’PZ Li2etm be g caterpillar tree that satisfies the conditions given by the
statement of the theorem. Let jo = —1 and j;_,,.1 = ¢, and if m < k, then let B be the set of

vertices as provided by the claim. Let
¢ : {yOa Y, Y2y - - 7yf+m} — {ZO = Z(’;>7 Z1y 22y v - 72(’29),1}

be defined such that

dya) =4 P if js < a < jg41 forsome 0 < § < k —m; and
Yo) = P(yi,) if o =L+ forsomel <~y < m.

This function defines an embedding from CP;”A2 """ "o a graph C* that consists of a cycle
202172+ (5 1 3(%) of length (%) together with the set of & loops

{6y, ) (Wery) : 1 < v <mPU{(Y)or )0 Yjsya+1) = 2jgsr 5245060 < B <k —m—1}

Note that these £ loops are at distinct vertices due to the constructions in our claim and our function

o.

Define the cycle C by removing all the loops from C* and coloring the vertices

¢(yi1)7 (b(yiz)? R ¢<yim)7 (b(yj1)7 (b(yjé)a s 7¢(yjkfm>

black. Note that these are all the vertices that have loops in C*. By Theorem 2.1, there exists an
embedding of C in K, that is injective on the black vertices. As a result, there is an embedding of
C* in K, with the loops embedded as loops, which completes our proof. 0

2.2. Petal graphs

A petal graph can be considered as a resultant graph by connecting the legs of a spider graph.
It can also be considered as a resultant graph by identifying vertices of a chorded cycle. Hence, it
is logical to study the embedding of petal graphs in K prior to the subsections on cycles with one
chord and spider graphs.

Definition 2. Let m € N such thatm > 2, and let ¢q,co, . .., ¢y € Nsuchthatcy < ¢y < --- < ¢pp.
Let Py, be the vpetal graph that has vertices g, uj,uj, ... ul _,
uf g, .ty uyt L ult _y, and for each i = 1,2,...,m, the edges form a cycle

upuiul . . . g, qUo of length ¢;, which is called the i-th petal of the petal graph. If ¢; = 1, then the
t-th petal of P, ., ..., is simply a loop.

.....
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We are going to show that petal graphs P, ., ., can be embedded in K when k is odd as long
as some trivial necessary conditions are satisfied.

Theorem 2.3. Ifk is odd, then P, ., ., can be embedded in K, if and only if co > 3 and 1+cy+c3 <
("5)-
Proof. The only if direction is trivial. For the if direction, let n = ¢y + c3. If £ < 3, then
n < (3'2“) — 1 = 5, contradicting that ¢, > 3. Hence, it is only meaningful to consider k£ > 5. In
all of the following cases, we embed the first petal ugug of P ., ., as the loop vovy in K.
Without loss of generality, we can assume that n > (kgl) — 1. Otherwise, if n < (kgl) -1,
we can consider embedding P ., ., in K} _,, which can be further embedded in K trivially. Let
h = kgl) — 1 — n be the gap between n and (k;rl) — 1. Based on our assumption, 0 < h <
(f5) —1-() =2k-2
To embed P, ., ., in K, after embedding the petal uyug as the loop vpvy in K, it suffices to
partition the edges of K, — vyvy into three subgraphs Hy, H;, and H, that satisfy all the following
conditions.

1. The number of edges in H,, Hy, and H, are h, co, and c3 respectively.
2. After removing isolated vertices, /{; and H, are connected.

3. The degree of vy in each of H; and H, is positive.

4. All degrees in H, Hy, and H, are even.

g 2,2 2 3,3 3
This is because the petals ugujus - - - uz, ug and ugujusy - - - u.,_;ug can then be embedded as H;

and H, respectively, since H, and H, are Eulerian by conditions 2 and 4, and u( can be embedded
as vy by condition 3.

Construction of H;

Let ¢ be the unique odd integer such that (551) —1 < < (Z;Fl) — 1. Note that £ > 3. Let

g = (Z”;l) —1—c9 be the gap between ¢, and (@1) —1, which satisfies 0 < g < (Z”;l) —1- (651) =
2¢ — 2. Let S be the set of g edges in K defined as

g {v1v1, V209, ..., V0, } if0<g</{¢—1; and
{vov1vg - - - Vp_1Vg, V101, VoV, . . ., Vg Uy} L < g <20—2.
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Let Vi = {wo,v1,v9,...,v,1} and Vo = {vg,vp11,...,05_1}. Let Ly and Lo be the induced
subgraphs of K on V) and V; respectively, and let L; be the complete bipartite graph between V;
and V5.

Define the subgraph H; as L; — vgug — S. It is clear from the construction that the following
conditions hold.

1. The number of edges in H; is cs.
2. After removing V5, H; is connected since

e if { = 3,then g = (@;1) —1—c=5—c <5—3 = 2,s0 H; contains the cycle
VoU1V200, and

e if ¢ > 3, then H; contains the cycle vgvovy - - - Vy_1V1V3 - - - Vy_a0yp.

3. The degree of v, is positive since H; is connected after 5 is removed.
4. All degrees in H, are even.

Construction of H,

Let ¢’ be the number of loops in S. If h < ¢, then let H, be the subgraph that contains / loops
in S. Otherwise, we have the following claim.
Claim 1: If h > ¢, then k > /.

Proof of Claim 1: If k = ¢, then ("’;1) < ey < 3, thus 0 < h = (k’;rl) —1-n< (k;—l) _

1 — 2¢ < (k;ﬂ) —1- 2(k;1) = w, which implies £ = 5 and ~ < 2. Note that
(5;1) << L 5 ((5“) — 1) socy =6 or 7. Hence, g = (5;1) — 1 — ¢y = 8 or 7, meaning that S
has 8 or 7 edges. As a result, the number of loops in .S, denoted by ¢, is 3 or 2. However, h < 2,
contradicting the condition that A > ¢'.

Under the assumption that & > ¢/, we have k — ¢ > 2. Index the vertices in V; — {v,} in pairs
as vg,_1 and vy, where 1 < s < %, and index the vertices in V5 in pairs as vy, o2 and vy o1,
where 1<t < % Since ¢ > 3, the number of edges in the complete bipartite graph between

—{v}and Vais (¢ — 1)(k —¢) > 2(k — 3) = 2k — 6. Let b’ = h — ¢’. We are going to define

Ho based on the following cases.

Case 1: k — ¢ > 4. Let I be the smallest positive integer such that b’ = h (mod 4). Note that
h' — h < h' < h < 2k — 2. Together with the fact that b’ — h=2k—-2=0 (mod 4), we have
W —h < 2k — 6.

Define the subgraph H as the disjoint union of

o =h copies of 4-cycl
1 p1€s Of 2-CYCICS Vo5_1Vp42t—2V25Ve42t—1V25—1,

* ¢’ loops in S, and
e h loops in Ls.

The number of edges in H| is %’7‘ A4+ 4g + h=H+ g’ = h, and it is clear that all degrees in Hy
are even.

Case 2: k — ¢ = 2,1.e., { = k — 2. The number of edges in K}, — vovg — H) is at least 2cs, so
W<h< (M) —1-20 < (") —1-2(5" = (*I") —1-2("}") = 3(—k> + 15k — 26), in
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addition to the usual bound &’ < h < 2k — 2. In order for 1(—k* + 15k — 26) to be nonnegative,
we must have £ < 13. Here is a list of values of £ < 13 and the corresponding upper bounds on h.

kK |5 719 ]11]13
h<]18|12 14|19 | 0

Claim 2: If k < 13, then i/ < 2k — 4.
Proof of Claim 2: Since h' < h, the only possible cases for ' > 2k — 4 are when (k,h) =

(5,7), (5,8), (7,11), and (7, 12). Note that max {3, (*;?)} = max {3, (;)} <o < L ((*}")-

2
1—h). When k = 5 and h = 7 or 8, we have co = 3, so H; is the cycle vovv5v9, and ¢’ = 2.

Hence, W’ = h — ¢’ = 5 or 6. When k = 7, we have

6, 7, or8 ifh=11; and
Co =
6or7 if h = 12.

As aresult, [ is the union of the cycle vyvyv4v1v3v9 and co — 5 loops in Ly — vgvy. Hence,

, )3,2,0orl ifh=11; and
7 30r2  ifh=12

This implies
h,:h—g,: 8, 97 or 10 1fh:117 and
9or 10 if h = 12.

In all cases, b’ < 2k — 4. This completes the proof of Claim 2. B

Next, let i be the smallest nonnegative integer such that A’ = h (mod 4), which is slightly
different from Case 1. Note that Claim 2, together with the fact that 2’ — h = 2k — 2 = 0 (mod 4),
implies b’ — h < 2k — 6. If h < 2, define the subgraph H as the union of

' —h
4 b

e 4d-cycles Vo5 1V _2V2sVk_1V2s_1, Where 1 < 5 <
* ¢’ loops in S, and
e h loops in L.

If h = 3, define the subgraph Hj as the union of
e 4-cycles Vo5 1V _2V2sVk_1V25_1, Where 1 < 5 < %’ﬁ,
* ¢’ loops in S, and

* the triangle vy_3v5_oUk_1Vk_3.

The number of edges in Hy is 4 - %_E +¢ +h=h+¢ = h,and it is clear that all degrees in H,
are even.

Construction of H,
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Define the subgraph Hjy as K} — vovy — Hy — H;. From the construction, the following
conditions hold.

1. The number of edges in H is (kgl) —1—h—c=n—c =cs.

2. After removing isolated vertices in V;, H5 is connected due to the following analysis.
o If h < ¢’ and k = /, then as provided in the proof of Claim 1, £ = 5 and S contains
the cycle vov;v9v3v4v9, Which is completely contained in H, since H does not contain
any edges in this cycle.

e If h < ¢’ and k > ¢, then H, contains both L, and L.

o If h > ¢/, then by Claim 1, & > /. Hence, in H,, vy is connected with all vertices
in V5, and vertices vy, v9, . . ., Uy_1 are either isolated vertices and thus removed, or are
connected to v, through the cycle vov,vs - - - vy_10p.

3. The degree of vy in Hs 1s positive due to item 2.
4. All degrees in H are even since all degrees in K, vovy, Hy, and H; are even.

2.3. Cycles with one chord

Caterpillar trees are natural extensions of paths, while chorded cycles are natural extensions of
cycles. In this section, we are going to study cycles with one extra chord.

Definition 3. Let C’éo’j Y be a cycle on n vertices wgy, wy, W, ..., w,_1 with a chord between w
and w;. Without loss of generality, let 2 < j < %, which also implies n > 4. Note that j # 1, as
wow is already in the cycle C,,.

Note that CTEO’Q} contains a triangle wyw,wowy. When it is embedded in K, this triangle
creates an obstruction if n is very close to (k;rl) This is reflected by the extra complication in the
statement of the following theorem.

Theorem 2.4. Let k be odd. Then C\** can be embedded in K wif and only if n < (k'gl) - 3.
When j > 3, then C,{Lo’j} can be embedded in K, if and only if n < (k'gl) — L

Proof. If k < 3, then it is obvious that C’T{Lo’j } cannot be embedded in K - Also, £ < 3 is ruled out
implicitly by 4 < n < (*}") —3aswellas 6 < 2j < n < (*}') — 1. Hence, it is only meaningful
to consider £ > 5.

If CTEOQ} can be embedded in K, then note that the vertices in the triangle wyw;wyw, must
be embedded as distinct vertices in K. Otherwise, we will create double edges or multiple loops
at the same vertex, which do not exist in K. Without loss of generality, assume that wy, wy, ws
are embedded as vy, v, vy respectively. The degrees of wy and ws in the path wows - - - w,_1wq
are odd, while the degrees of vy and v, in K} — vov 020y are even. To create odd degree vertices
at vy and vy in K} — vov10v20p, if we were to forgo only one edge from K — vyv;v20, that edge
must be vyve. However, vgv, does not exist in K} — vpv1v20, so at least two edges are forgone
from K — vyv1v2v9 when the path wows - - - w,_jwy 1s embedded in K; — vyvv2vy. Therefore,
n+1< (") —2,0orn < (*3") - 3.
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Iftn < (k;rl) — 3, without loss of generality, we can assume that n > (k ;1) — 3. Otherwise, if

n < (k ;1) — 3, we can consider embedding ci%in K »_g> Which can be further embedded in K7
trivially. Let h = (k'gl) — 3 — n be the gap between n and (kgl) — 3. Based on our assumption,

0<h< (" —=3—((*,") —2) =2k — 2. Let H be defined such that

{wovsva, vovo, V1V, Va2, . ., V1 U1 } if0 < h <k
I {vov4v1V3V4V4V2, VLY, V1VY, . . ., Vp_sVp—5} ifk=5and6 < h <8; and
{7101137}27 Vp—1V1V30V40s5 -+ * U1,

Voo, V1V1, U2V, . . . ,vh_k+1vh_k+1} if k > Tand k + 1 < h < 2k — 2.

Note that the number of edges in H is h + 2 in all cases. Now, the chorded cycle CiO’Q} can be
embedded in K such that wy, w;, we are embedded as vy, v;, and vy respectively, and the path
waws - - - wy_1Wo 1s embedded as the Eulerian path in K — vyv;v9v9 — H. This is because the only
odd degree vertices in the graph K} — vyv,vv9 — H are vy and v9, and this graph is connected
after isolated vertices are removed.

When j > 3, the only if direction is trivial. For the if direction, the chorded cycle % can
be embedded in the petal graph P ;,; as follows: the chord wow; is embedded as the first petal
g, the path wowyw, - - - w; is embedded as the second petal uguiuj - - - u5_ uo, and the path
Wjwji -+ Wy_1wo is embedded as the third petal uouius - --u)_; ug. Theorem 2.3 completes
the proof. [

2.4. Spider graphs with three or four legs

We have provided the definition of spider graphs in Section 1, but it is more convenient for our
future discussions if we formalize notation.

Definition 4. Let A € N such that A > 3, and let (1,05, ... . lxn € N such that (1 < {5 <

. < Ua. Let Sy, 4. 0. be the spider graph with vertices o, x1, 23, . .. ,x%ll,x%,xg, . ..,xi,
- ,xlA, xQA, - ,@AA, and for each i = 1,2,...,/, the edges form a path xox},x}, . .. , Ty, be-

tween the central vertex xq and the leaf :1:} which is called the i-th leg of the spider graph.

Although the necessary and sufficient conditions for embedding spider graphs with three legs
in K were proved [11], we are going to provide a much simplified proof when £ is odd, utilizing
Theorem 2.3.

Theorem 2.5. Let n = {1 + {3 + s, and let k be odd. If n > 7, then Sy, 4, ¢, can be embedded in
Kj ifand only if n < (k'QH)
Proof. If £ < 3, then n < (3;1) = 6, violating the condition that n > 7. Hence, it is only
meaningful to consider k£ > 5. Furthermore, n > 7 implies {3 > [sn]| > 3.

The only if direction is trivial. For the if direction, we consider the following cases.

Case 1: ¢; = 1. Hence, the spider graph 5} 4, », can be embedded in the petal graph P; 3,,_4 as

follows: the vertices x and x1 of the first leg are both embedded as wy; the vertices 22, 23, . . ., xé
of the second leg are embedded as u?,u3, ..., uj ; and the vertices z7, x5, . .., zj, of the third leg
are embedded as u?, u3, uo, ul_5, up g, ..., uj,. Theorem 2.3 completes the proof.
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Case 2: {1 > 2. Let (i,j) = (2,3) if {1 + {5 — 1 < {5, and let (¢, j) = (3,2) otherwise. The
spider graph Sy, 4, ¢, can be embedded in the petal graph P, ., .,, where ¢; = {1 +/{s—1 and ¢; = {3,

as follows: the vertices ¢, 1, x5, . .., 2, of the first leg are embedded as ug, uo, uf, ub, . .., uj ;3
- 2 2 2 i i i

the vertices x7, x3, . . ., 77, of the second leg are embedde;d as U, 1, Ug, -, Up o> and the ver-

: 3 .3 3 - i g J :

tices @y, x5, ..., xy, of the third leg are embedded as uy, us, ..., u;, _y, uo. Again, Theorem 2.3

completes the proof. 0

The last theorem of this section provides the necessary and sufficient conditions for embedding
spider graphs with four legs, the family of graphs that originally drew our interest, in K; when k
is odd.

Theorem 2.6. Let n = {1+ s+ {344, and let k be odd. If n > 7, then Sy, 4, ¢, ¢, can be embedded
in K; if and only if

(a) 3 =1andn < (kgl) —1, 0r
(b) £3>2andn < (*1).

Proof. If k < 3, then n < (3;1) = 6, violating that n > 7. Hence, it is only meaningful to
consider k > 5.

Assume Sy, ¢, 050, can be embedded in K. It is trivial that n < (kgl) Ifn = (k;rl), then
since x; , x7,, =j,, and x;, are of odd degree in Sy, 4, ¢, ¢, and all vertices in K are of even degree,
at least two of x; , z7 , and x}, must be embedded as the same vertex. If /3 = 1, then this is

impossible since there are no double edges in K, and hence n < (k'gl) —1.

For the if direction, due to Proposition 1.2, it suffices to show that Sy, ¢, /, ¢, can be embedded
in K; ifn = (*}') — 1 when ¢; = 1and n = (*}") when ¢; > 2.

Case 1: (3 = 1. The spider graph S 1 1 ¢, can be embedded in K as follows: the vertices xo, ],
x%, and xif are embedded as vy, vy, v1, and v, respectively; the remaining graph K; —vyvg—vpv1 020
is an Eulerian graph, so the fourth leg can be embedded as an Eulerian cycle.

Case 2: (3 > 2. Let (i,j) = (2,3) if {1 + 03 < ly + £, — 1, and let (i,7) = (3,2)
otherwise. Define ¢; = ¢; + ¢35 and ¢; = ¢, + ¢4 — 1. Note that ¢; > 1+ 2 = 3 and
¢;j > max{n — ¥, —¥l3 — 1,¢; + {3 — 1} > 3 since n > 7. The spider graph S, 4, ¢, s, can be
embedded in the petal graph P, ., ,, where ¢; = ¢, +/3 and ¢; = {2+ {4 — 1 as follows: the vertices
To, Ty, Ty, ...,y of the first leg are embedded as ug, uj, uj, . .., uj ; the vertices x7, 23, ..., x7,
of the second leg are embedded as g, u,u}, . . . a“Zz—ﬁ the vertices x7, 23, ..., x} of the third

leg are embedded as v, _,,ul _,,...,u. _, : and the vertices z{, 3, ..., xy, of the fourth leg are

J

J
Cj-l’ u

embedded as u Cjm27 u), _,,. Theorem 2.3 completes the proof. ]

Cj

3. kiseven

In Section 2, we restrict our consideration to & being odd. In this section, except for caterpillar
trees, we prove the results parallel to the theorems in the previous section for even k.

To aid our discussions in this section, here are some notations related to an edge decomposition
of K. Foreachj =0,1,2,..., %, let D; be the subgraph of K7 such that the edge set of D is

{vpv, :p<gq, eitherq—p=jorq—p=~k—j}
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Note that each D; is a regular degree 2 graph and has exactly & edges. Furthermore, let / be the
perfect matching subgraph of K such that the edge set of I is

. k—2
{vivngi.z:O,l,Q,...,T}.

Figure 2 illustrates how K¢ is decomposed into Dy, Dy, D, and 1.

Us Uy
(2 /OU:s
U1 V2

Figure 2. K¢ contains Dy, D1, and Do as shown below

.DO ‘D1 ’DQ o ]
Q@ O
o O X
/
d O

3.1. Petal graphs

Similar to the case when £ is odd, we are going to show that petal graphs P, ., ., can be
embedded in K when k is even as long as some trivial necessary conditions are satisfied.

Theorem 3.1. If k is even, then P, ., ., can be embedded in K], if and only if k > 6, co > 3, and
1+ Co + C3 S %

Proof. For the only if direction, the condition ¢, > 3 is trivial. If k£ < 4, then the maximum degree
in K — I is at most 4, which is less than the maximum degree in P, ., .,. Hence, we must have
k > 6. Also, the petal graph P, ., ., has only even degrees, so when it is embedded in K7, the
image must also have only even degrees. Since all the £ vertices in K, have odd degrees, at least

one edge will be missing from each vertex after embedding. In other words, there are at least %

edges missing, implying that the number of edges in P, , ., is at most (*}!) — £ = £,

For the if direction, let n = ¢y 4 c3. We are going to show thatif £ > 6, ¢, > 3,and 1+n < "32—2,
then P ., ., can be embedded in K} — I. In all of the following cases, we embed the petal ugug as
the loop vpvy in K.

Without loss of generality, we can assume that n > (];) — 1. Otherwise, if n < (g) — 1, we
can embed P ., ., in K;_; by Theorem 2.3, which can be further embedded in K7 trivially. Let
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k2
?_
—1

Case 1: 3 < ¢o < k. Let Hy, Hy, and H, be subgraphs of K} — I such that H, =
{712112, V3V3, . - - aUththJrl}’

1 —n be the gap between n and % — 1. Based on our assumption, 0 < i < % —-1- (g) =

ol S

. k
o Vg1 VU3 + * * Ugy—1 U ifco # 5 +1; and
1= .
VpV1U V03 - - - Vk Vg 1f cg = % +1,
2

and Hy = K; — I —vovg — Hy — H,. Note that H, is well-defined since /1 < % —1<k—2. With

a simple count, we see that H, has h edges, H; has ¢, edges, and H> has (k'gl) - g —1—h—c =

n — co = c3 edges. It is clear that all vertices in /{; and H, are of even degree. Furthermore, H5 is
connected since H; contains Dy U {vy_1v9} — {ve, 100 }. Therefore, H; and Hs are both Eulerian,

so we can embed the petals uouiuj - - - u2, _ ug as Hy and uouiuj - - - ul, _ ug as Hs.

Case 2: ¢co > k and &k = 6. Note that ¢y < %(1 +n) < % . % =9,1e.,c = 6,7, 0r8 We
can embed the petal uou%ug e u§2_1u0 as voU1U3V50420g along with co — 6 additional loops, and
embed the petal uguius - - - ud, _ ug as vousv1vav3v4v, along with ¢ — 6 additional loops. Since
co —6+c3—6 =n—12 <5, we can ensure that the two petals are embedded using different
loops in K; — I — vgvp.

Case 3: ¢; > kand k > 8. Let z be the odd integer in {#52, %%} Note that gcd(k, z) = 1.
Since k£ > 8, z # 1. In other words, D; and D, are two distinct Hamiltonian cycles in K. Let ¢},
and ¢} be the smallest nonnegative integers such that ¢y = ¢, (mod k) and ¢3 = ¢ (mod k).

Case 3.1: ¢, + ¢4 < k. We can embed the petal uouiuj---u2 _ uo as the subgraph com-

posed of Dy, 02;C§ — 1 elements of {Dy, D, ..., Di2} \ {D.}, and ¢ loops in Dy. Next, we

c3—ch

k

can embed the petal wouiuj - - - u?,_ ug as the subgraph composed of D.,

{Ds, Ds, ..., D%} \ {D.}, and ¢ loops in Dj.

Case 3.2: ¢, + ¢ > k. Since % —g <n< % —land n = ¢, + ¢ (mod k), we have

% < )+ —k < k— 1, which implies 3 < ¢, + ¢4 < 2k — 1. Hence, min{c), c;} >

2
% —max{d, ¢4} > % — (k—1) > % Let H{ be the subgraph that contains ¢, — & loops in Dy

2
together with the cycle vovavy - - - vk_ovp in Dy, and let H) be the subgraph that contains ¢; — %
loops in D, together with the cycle vyv3vs5 - - - v_1v1 In Dy. Let Hy be the subgraph that contains

Dy, % — 1 elements of {Ds, .. ., Dk%Q} \ {D.}, and Hj; let H, be the subgraph that contains

D., =% — 1 elements of {Ds, ..., D%} \ {D.}, and HY. It is easy to see that we can embed the

k
2,2 2
petals uoujus---u

— 1 elements of

3,3 3
1o @8 Hy and uouius - - -z, jug as Ho. ]

3.2. Cycles with one chord

Unlike the case when k is odd, the obstruction of the triangle in (J,EO’Z} when embedded in
K only occurs when k = 4. This is because when £ is even, the chord wow; in %7} can be
embedded as a diagonal vyv ks instead of as a loop in K, when k is odd. Hence, with the exception

of (k,n,j) = (4,8,2), the trivial necessary conditions are also sufficient for embedding % in
K.
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Theorem 3.2. Let k be even. Then C’,ZEO’j Y can be embedded in K wifand only if k > 4, n < '“2—2
and (k,n, j) # (4,8,2).

Proof. For the only if direction, if £ < 2, then n < % = 2, which is impossible according to

Definition 3. Hence, k£ > 4. Since the chorded cycle %7 has only two vertices with odd degrees,
when it is embedded in K, the image will have at most two vertices with odd degrees. Since
all the k vertices in K have odd degrees, after embedding, at least one edge will be missing per
vertex from at least k — 2 vertices. In other words, there are at least % edges missing, implying

7} is at most ("t - 552 = @ Since C;*7) has n + 1 edges,

that the number of edges in o 5 5

we have n < %

If (k,n,7) = (4,8,2), when C’é{o’Q} is embedded in K, at least one edge that connects two
vertices will be missing as discussed. Without loss of generality, let this edge be vyv3. Note that
the subgraph given by the cycle wqw;wswy in C§0’2} must be embedded as a triangle in ] — vy vs.
Without loss of generality, let wyw;wowy be embedded as vyv1v2v9. The remaining edges of K7,
namely K] —v1v3 — 191020, form a disconnected graph. As a result, it is impossible to embed the
subgraph wyws - - - wrwg of 08{0’2}. Therefore, if C}"?} can be embedded in K ¥, then (k,n,j) #

4,8,2).

| For)the if direction, we are going to show that if £ > 4, n < %, and (k,n,7) # (4,8,2), then
CA7F can be embedded in (K} —I)U{vgvs }, which contains % + 1 edges. In all of the following
cases, we embed the chord wow; as vov k in2K o

Without loss of generality, we can assume that n > (g) — 3. Otherwise, if 4 < n < (’2“) -3,

we can embed C{*7 in K »_1 by Theorem 2.4, which can be further embedded in K] trivially. Let

h = %—n be the gap between n and % Based on our assumption, 0 < h < %—((S) — 2) = %—1—2.
Case 1: 5 < % Let Hy, Hy, and H; be subgraphs of K} — I such that Hy = {v,vy, vovs, ...,

vpp }s Hy = vov109 - - "Uj-1Uk, and Hy = K|, — I — Hy — H,. Note that H is well-defined since
h < % +2< % + % = k, and v vy represents the loop vyvy. With a simple count, we see that H|
has h edges, H, has j edges, and Hy has (*}') =% —h—j =& —h— j = n— j edges. Itis clear
that the only two odd degree vertices in H; and H are vy and v ks Furthermore, we claim that Hs

is connected: if k£ = 4, then (k,n,j) # (4,8,2) implies that h # % — 8 = 0, so H, contains the
path vyv3v, but not the loop vyvq; if & > 6, then Hy contains (Dy U {v_qvg}) — {vj_lvg}, so Hy
is connected. Therefore, H; and H, both contain an Eulerian trail, and we can embed the paths
wow Wz - - - wj and wow,_1wWy—2 - - - w; as Hy and H, respectively.

Case 2: j > g Let j' and j7” be the smallest positive integers such that j — £ = j’ (mod k) and
j' = 7" (mod g). Let

. k.
{Uj”—i-lvj”-i-la V42U 42, .« . . ,Uj//+hvj//+h} if h < 95

HO = {Q}j//+11}j//+1’ V42050 42, - .y vj,,+h_§vj,,+h_g}
U{UOU2U4 s Uk_gl)g} if h > %,
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k
H, contain the path vyv,vs - Uk along with i i =7 elements of { D3, Dy, ..., D ¥} and the edges
{viv1, V209, ..., V505 } if j/ <% and
{vlvl, VU9, . .. ,Uj//l}j//} U {’U1U3U5 s vk_lvl} lfj > 5

and Hy, = K|, — I — Hy — H,;. Note that v,v,, represents the loop vovy. With a simple count, we
see that H, has h edges, H; has j edges, and H> has (kﬂ) —h h—j=E h—j=n—]
edges. It is clear that the only two odd degree vertices in H; and H; are vy and v ks It is also clear
that H; is connected. We will now show that H5 is connected.

o If k = 4, then H; is connected since it contains the path vyv3v, and does not contain the loop
V101,

* If k = 6, then H, contains the path vyvsv4v3. Hence, the only possible disconnected edges in
H, are v1v1, v9v9, and v1v5. However, v;v;1 and vyv, are always contained in /. Moreover,
H, contains vyvs if and only if (5/, h) € {(1,0), (4,0)}, and in both cases, H; also contains
the cycle vyvov4v9, SO Hy is connected.

» If £ = 8, then H, contains the path vyv;vgv5v4. Hence, the only possible disconnected edges
in Hy are vyv1, U909, U303, U109, U2V, and vivs. However, vvy, v1v9, and vyvs are always
contained in H;. The loop vyuy is contained in Hy if and only if (j',h) € {(1 0) (5,0)},
and in both cases, H, also contains the cycle v0v2v4v6v0 Finally, note that if §/ § , then H,

7‘7/

_k
contains the cycle vivsvsvruy; if j' > 5 =4, then 2 = < 162424 <1, 50 H, contains Dj.
Hence, vertex v3 is always connected to vy in H,, thus the edges v,v3 and v3vs will never be
isolated edges in H,. Therefore, H, is always connected.

o If £ > 10, then H, contains {vovg_1vg_o - ’Uk} U D; for some i € {3,4,...,%2}. To

» 9

demonstrate this, let us first assume the contrary, i.e., every D;, i € {3,4,. % , 1s In
_E_ .7

H,. Hence, ? - I = T —2 which implies j — 5’ 5k . Since j < § < % . % = ’“4—2

and j' > 0, we have 2=5% < £ which occurs if and only 1f 0 < k < 10, contradlctlng that
k > 10. Therefore, H, i 1s connected.

Therefore, H; and H, both contain an Eulerian trail, and we can embed the paths
Wowiws - - - w; and wow,_1wp—2 - - - w; as Hy and H, respectively. O

3.3. Spider graphs with four legs
Theorem 3.3. Let k be even, and let n = {1 + {5 + U3 + {y. Then Sy, 4, 45,0, can be embedded in
K} ifand only if k > 4, n < ¥4 and (k,0,) # (4,2).

Proof. For the only if direction, if & < 2, then the number of edges in K is at most (*}') = 3,
which is less than the number of edges in Sy, ¢, ¢4 ¢,, S0 k > 4 is a necessary condition.

Since the spider graph Sy, ¢, ¢, ¢, has only four vertices with odd degrees, when it is embedded
in K, the image will have at most four vertices with odd degrees. Since all the & vertices in K
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have odd degrees, after embedding, at least one edge will be missing per vertex from at least k — 4
vertices. In other words, there are at least k—;‘* edges missing, implying that the number of edges in
Sty 05,050, 1 at MOSt (k;l) — % = %, ire.,n < LQH.

Finally, embedding S, ¢, ¢, ¢, in K when (k, 1) = (4, 2) is impossible due to Proposition 1.1,
since A(Sy, 1,.0.0,) = 4. Therefore, (k, (1) # (4,2).

For the if direction, by Proposition 1.2, we only need to consider n = %. We are going to
define the embedding ¢ : V' (Sy, ¢,.05,0,) — V(K) explicitly.

When k = 4, since n = 10 and ¢; # 2,

(01, 05,03, 04) € {(1,1,1,7),(1,1,2,6),(1,1,3,5),(1,1,4,4),(1,2,2,5),(1,2,3,4),(1,3,3,3) }.

For all these instances, we embed the first leg xox% of S, 65,050, In K as the loop vyvy, i.e.,
é(xp) = vy and ¢(x1) = vy. The embedding of other legs are given by the following table.

(0, b, U3, 0a) | (0(21), .., 0(a7)) | (6(a}), ..., o)) | (o(a}), ..., o(xf,)
(1,1,1,7) (v1) (v2) (vs, v3, Vg, Vo, V1, V1, V3)
(1,1,2,6) (v1) (v2, v9) (v3, v3, Vg, V1, V1, V3)
(1,1,3,5) (v1) (v2, Vg, v3) (v3, v3, V1, V1, V2)
(1,1,4,4) (111) (Ug,’Ug,Ug,Ug) (U3,U1,’U1,U2)
(1,2,2,5) (v1,v1) (vg, 1) (v3,v3, V1, Vg, U3)
(1,2,3,4) (v1,v1) (v, Vg, v3) (v3, v3, V1, Vo)
(1,3,3,3) (v1,v1,v2) (v, Vg, v3) (v3,v3, 1)

When k£ > 6, we proceed by considering the following cases.

Case 1: 0y + 03 > 4. Let (4,j) = (2,3) if bo + 03 — 1 < {1 + {4 — 2, and let (3,7) = (3,2)
otherwise. Furthermore, let ¢; = {5 + ¢35 — 1 and ¢; = ¢4 + {4 — 2. We claim that the petal graph
P ., , can be embedded in K — I. Since {5 + (3 > 4, we have {5 + 5 — 1 > 3. Also, since
ly > % and k& > 6, we have {4 > 5,0 {1 + {4, —2 >4 > 3. Finally, {1 + (5 + (5 + {4, = ’“2;4,
which implies 1 + ¢, +c3 =1+ (bo + 3 — 1) + (U3 + ly — 2) = % Therefore, there exists an
embedding ¢ : V(P ¢, ;) = V (K} — I) by the argument provided in the proof of Theorem 3.1.

Now, we start embedding Sy, s, 4,0, in K as follows. We embed the second leg
.I'ox%l'g e x%g of 551,52,43,54 as the path Qﬂ(uo)w(ui)w(ué) e 7/’(“22) in Kl: Let v, = ¢(u22) be
a vertex in K. Then we embed the third leg zox$23 - - - 23, as the path ¢ (ug )i (ul, 1) (ul, ) -
Y (up, )v k4 q0 Where % + a is performed under modulo k. Note that the edge ¥ (uj, )vs_, is in the
perfect matching /.

Let vy, = ¢(uz472) and vy, = @Z)(“zrﬁ be vertices in K. Here, if {4 —1 = ¢;, then uirl = .

Case 1.1: vy, ¢ {v4,v,}. In this case, we embed the fourth leg ToxiTy - - - xy, as the path

VEk
5+

¥ (ug )1 (uo) Y (W) )i (ud) - - -w(u§4_2)vg+b2, where % + b, is performed under modulo k. Note that
the edge 1 (uy, _,)v 5 1y, 18 in the perfect matching I and is distinct from the edge Y (uj, v kg Fi-
nally, we embed the first leg xoxjzy---x; as the path w(uo)w(ugrl)l/}(uj )

; cj—2
1/’(“%4—2)-

Case 1.2: v, € {va,vgﬂ} and vy, ¢ {va,vgﬂ}. In this case, we embed the fourth leg
4

zoriry - af as the path ©(ug)y(uo)(ul)y(ud) - ¥(uj,_,), and we embed the first leg
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zoxizl .-zl as the path ¥(ug)(u’ w ) ee-(ud vk, , where & + by is performed
112 0 P cj—1 ;=2 04—1)VE 1py 2 P

under modulo &. Note that the edge ¢ (u) v s, 18 in the perfect matching I and is distinct from
' 4 5101
the edge ¢(U%2)Ug+a~
Case 1.3: vp,, vy, € {Va,vr,,}. In this case, we claim that /; > 1. To demonstrate this,
2

let us first assume the contrary, i.e., {; = 1. As aresult, ¢; = {4, — 1 and v,, = w(ugj)
¥(ug), which is the vertex v, due to the proof of Theorem 3.1. Therefore, we have v;,, vy,
{wo, vg}. However, v, = 9(u;,_;) cannot be the vertex v, or else ¥ (ug)y(uz,_;) = vovo

m 1l

¥ (uo)¥(ug), contradicting that v is an embedding. The vertex v, cannot be the vertex v » either,

or else w(uo)w(uirl) = wous is an edge in the perfect matching /, contradicting that ¢ is an

embedding of Py, ., in Kj — I. Hence, ¢; > 1.
Note that vy, = vy, or else ¥(uy, ;)¢ (uj,_,) = vp,vp, is an edge in the perfect matching

I. Let vy, = z/1(u§4). Here, if {4 = c¢;, then'uﬂj4 = up. Since vy, vy, = ¢(UZ4_1)¢(Uz4) #
Y(up, o) (up, 1) = Ub,ve, and vy, vy, = h(uy,_;)1p(uy,) is not in I, we conclude that vy, ¢
{va, v +a} As a result, we can embed the fourth leg woxizj---xj, as the path

Y(ug)p(u)w(ud) - -(ul ), and we embed the first leg xozlzl---z! as the path
1 2 0y 142 I3
U(ue)p(ug)(wl )l ) - b(ul vk, , where £ + by is performed under modulo k. Note
c;j—1 c;j—2 4 2+b0 2

that the edge w(ug4)v 5 1y, 18 in the perfect matching [ and is distinct from the edge Y (up, Jv Eiq
Case 2: (o+/(3 < 4. This means that (¢5, (3) € {(1,1), (1,2)}, and consequently ({1, {5, (3, 04) €
{(1,1,1,n —3),(1,1,2,n — 4) }. In both cases, we are going to embed Sy, ¢, ¢, ¢, in K} such that
the image of the embedding is (K} — ) U {vovg,vlvgﬂ}: the first leg zox{ is embedded as the
loop vyvy, and the second leg zox? is embedded as the diagonal vyv ks If /3 = 1, then the third leg
zox} is embedded as the edge vovy; if 3 = 2, then the third leg xoziz3 is embedded as the path
vov1v1. Note that vg, vy, ve, and vx ., are all the odd degree vertices in (K;—1)U {'U()'Uk vlka}
while v; and vk are all the odd degree vertices in the image graph of the first three legs Hence if
we remove the i image graph of the first three legs from (K; — I) U {vyv E, U1VE +1)» we have an Eu-
lerian graph with /4 edges and exactly two odd degree vertices, namely vy and v kL Therefore, we
can embed the fourth leg zozj25 - - - 27, as the remaining graph of (K} —I)U {vovs, vive 1} O

4. Edge-distinguishing chromatic numbers

4.1. Petal graphs

Theorem 4.1. Let co, c3 € N such that 3 < ¢y < c3. Let e = 1 4 ¢ + c3 be the number of edges of
P ¢, .cs- The edge-distinguishing chromatic number of P, ., ., is given by

b} ife <10,
AMPreyes) = [_H— 58%1-‘ ife > 11 and [_H— 5&41-‘ is odd; and

(\/%] otherwise.
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Proof. Since the maximum degree of P, ., ., is 6, we must have k£ > 5 in order to embed P ., .,
in K;. On the other hand, by Theorem 2.3, P, ., ., can be embedded in K} if e < 10. Hence,
APy eyey) = D if e < 10.

If ¢ > 11, note that

5 < {_1%@} < |Vae| < [—1%\/@%1_

Also note that the minimum positive integer k that satisfies (k;rl) > e is {—H— v286”r1 W , and the

minimum positive integer k that satisfies % > eis ’—\/ 2e]|.
If {_H— égcﬂ-‘ 1s odd, then [‘H— stﬁl-‘ —11is even but strictly less than [\/ 26—‘ , SO {_H— égeﬂ-‘ —

1 does not satisfy %2 > e. Hence, by Theorems 2.3 and 3.1, k = {_H— VZSCH-‘ is the minimum pos-
itive in_teger such that P, ., ., can be embedded in K.

If —_H\Q/m_ and [v/2e] are both even, then [/2¢| = {_H— 58%1-‘, so [v/2e] — 1 does not

satisfy (k'QH) > e. Hence, by Theorems 2.3 and 3.1, k = [v/2¢] is the minimum positive integer
such that P, ., ., can be embedded in K.

If [ =ltyEert stcﬂ_ is even but [v/2¢] is odd, then [v/2e]| = [%@—‘ + 1 1s odd and satisfies

(k;rl) > e, but [_H— stcdrl-‘ does not satisfy % > e. Hence, by Theorems 2.3 and 3.1, k = [\/%w

is the minimum positive integer such that P; ., ., can be embedded in K.
Finally, we finish by applying Theorem 1.5. [

4.2. Cycles with one chord

Theorem 4.2. Let j,n € N such that2 < j < 5. Let e = n + 1 be the number of edges of i,
The edge-distinguishing chromatic number of %Y s given by

4 ife <8;
A(C102h D ife=29;
n )= —14/8ef17 . —14/8ef17 | .
[gw ife > 10 and {%W is odd; and

\2e — 2 otherwise,

and if 7 > 3, then

4 ife < 6;
MO = [%W ife > 7and {%@W is odd; and

(\/26 -2 otherwise.

Proof. Itis obvious that no chorded cycle can be embedded in K3, so )\(C’io’j }) > 4forallj,n € N
such that 2 < j < 2.
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When j = 2, by Theorem 3.2, C"* can be embedded in K 4 if and only if e < 8. Hence,
)\(C{EO’Q}) = 4 if e < 8. Also, by Theorem 2.4, CT{LO’Z} can be embedded in K¥ when e = 9. Hence,
AC = 5ife = 9.

If e > 10, note that

1B TT 14 VEeTTT
< < 2e — 2| < 1.
s |y s e s [

Also note that the minimum positive integer k that satisfies (kgl) —2>eis {—H— \/28€+17 W . and the

minimum positive integer k that satisfies % +1>eis [\/26 — 2-‘.
If {_H— erm-‘ is odd, then [_H— V286+17-‘ — 1 is even but strictly less than (\/26 — 2}, o)

[_H— erm-‘ — 1 does not satisfy %2 + 1 > e. Hence, by Theorems 2.4 and 3.2, k = {_H— V28e+17-‘

is the minimum positive integer such that CA** can be embedded in K o

If {%m—‘ and ’—\/m are both even, then Nﬁ} = {%m—‘ , SO
(\/m — 1 does not satisfy (k’;l) — 2 > e. Hence, by Theorems 2.4 and 3.2, k = (W}
is the minimum positive integer such that C"* can be embedded in K 8

If [—_1“286“7-‘ is even but [v/2e — 2] is 0dd, then [v/2e — 2] = {%m-‘ + 1is odd and

satisfies (k'gl) —2 > e, but [_H— VZSQW-‘ does not satisfy %2 +1 > e. Hence, by Theorems 2.4 and

32,k = [\/ 2e — 2| 1s the minimum positive integer such that C’{gog} can be embedded in K.
Our proof of the formula for )\(C’,EO’Q}) is finished by applying Theorem 1.5.

When j > 3, by Theorem 3.2, C;EOJ} can be embedded in K7 if e < 6. Hence, )\(CT{LO’j}) =4
if e < 6. If e > 6, note that

4< [%w < [v2e-2] < rl%mbl.

Also note that the minimum positive integer k that satisfies (k;ﬂ) > e is (7““— 38%1-‘, and the

minimum positive integer & that satisfies %2 +1 > eis (\/ 2e — 2|. The rest of the proof is
analogous to the case when j = 2. [

4.3. Spider graphs with four legs

Theorem 4.3. Let él, €27 ég, 0y € N such that 01 < 05 < 53 < by Lete =10, + 0y + 63 + ¢4 be the
number of edges of Sy, 1, 5.0, The edge-distinguishing chromatic number of Sy, ¢, ¢, ¢, IS given by

1 ife < 10;
A(Siine) =9 | ZEEE]ife > 11 and [ =555 is odd; and

(\/26 —4 otherwise,
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and if (3 > 2, then

4 ife <10and t, = 1;
A(S ) 5 ife <10and l; = 2;
Clatats) = N [o1evsert] . _ c . ,
M [MW ife > 11 and [%W is odd; and

2
2e — 4} otherwise.

Proof. Since the maximum degree of Sy, 4, ¢, ¢, 18 4, we must have A(Sy, ¢, 4,.¢,) > 4 by Proposition
1.1. In other words, k£ > 4 is necessary to embed Sy, ¢, ¢, ¢, In K.

When /3 = 1, by Theorem 3.3, S} 1,14, can be embedded in K7 if and only if e < 10. Hence,
)\(317171734) =4ife S 10.

If e > 11, note that

5 < [%mw < [v2e—4] < rl%mhl.

Also note that the minimum positive integer & that satisfies (k;rl) —1>eis {_H— 58“9-‘ , and the

minimum positive integer k that satisfies % +2>eis [v2e —4].
If FH— VQBQH’W is odd, then FH— Vzgeﬂﬂ — 1 is even but strictly less than [v/2e — 4], so

FH— 38‘*9} — 1 does not satisfy % + 2 > e. Hence, by Theorems 2.6 and 3.3, k = {*H— 38”9}
is the minimum positive integer such that S; ; 1 ¢, can be embedded in K. i

If [‘H— Vz&“ﬂ and [v/2e —4| are both even, then [2e—4] = |=0fE V286+9W, SO
(\/26 — 4| — 1 does not satisfy (kH) — 1 > e. Hence, by Theorems 2.6 and 3.3, k = "\/26 — 4}

2
is the minimum positive integer such that S ; 1 ¢, can be embedded in K.

If [—’1“286*9} is even but [v/2e — 4] is odd, then [/2e — 4| = [%@_ + 1 is odd and

satisfies (1) — 1 > e, but [*H— VQ&H’W does not satisfy & 42 > e. Hence, by Theorems 2.6 and

33,k = (\/26 — 4/ is the minimum positive integer such that S ; 1 4, can be embedded in K.

Our proof of the formula for A\(S; 1,1 ,) is finished by applying Theorem 1.5.

When /3 > 2, by Theorem 3.3, Sy, ¢, ¢, can be embedded in K if and if e < 10 and ¢; = 1.
Hence, \(S¢, 15.050,) = 4if e < 10and ¢, = 1. If {; = 2, then e > 8 > 7, and by Theorem 2.6,
Sty 05,050, can be embedded in K7 if e < 10. Hence, A(Sy, ¢,.050,) = Dif e < 10 and ¢; = 2.

If e > 11, note that

5< rl%mw < [V2e—4] < rl%mhl.

Also note that the minimum positive integer k that satisfies (k;rl) > e is {—H— v28°”r1 1 , and the

minimum positive integer & that satisfies %2 +2 > eis ’—\/26 — 4. The rest of the proof is
analogous to the case when /3 = 1. 0
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5. Concluding remarks and future work

When the authors determined the EDCN of spider graphs with three legs [11], the focus was
only on one graph, making the approach restrictive. In this paper, we consider a variety of graphs;
in particular, petal graphs serve as an intermediate step when chorded cycles and spider graphs
are embedded in K, which makes the proof easier to navigate. Moreover, this new approach
allows us to solve all suggested problems listed in the aforementioned paper except the conjecture
concerning caterpillar trees.

Although the embedding of caterpillar trees in /] still eludes us when £ is even, we are able
to show that the trivial necessary conditions for embedding certain caterpillar trees in K are also
sufficient when £ is odd. Hence, one major future work direction is to continue our study of
caterpillar trees.

Here is a list of other potential future projects on EDCN.

1. General petal graphs with three or four petals;
2. Spider graphs with more than 4 legs;
3. Ladder graphs.
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