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Abstract

The crossing number cr(G) of a graph G is the minimum number of edge crossings over all draw-
ings of G in the plane, and the optimal drawing of G is any drawing at which the desired minimum
number of crossings is achieved. We conjecture that a complete graph Kn is CF-connected if and
only if it does not contain a subgraph of K8, where a connected graph G is CF-connected if there
is a path between every pair of vertices with no crossing on its edges for each optimal drawing of
G. We establish the validity of this Conjecture for the complete graphs Kn for any n ≤ 12, and
by assuming the Harary-Hill’s Conjecture that cr(Kn) = H(n) = 1
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is also

valid for all n > 12. The proofs of this paper are based on the idea of a new concept of a crossing
sequence.
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1. Introduction

Our initial intention was whether it is possible to describe a family of graphs for which it is
possible to find the optimal drawing so that after removing the crossed edges we get a disconnected
subgraph. It is obvious that for this reason we will only deal with the finite connected graphs. In
the search for the mentioned family of graphs, the importance of various structural properties of
the complete graph K8 gradually became apparent, that is, K8 is the first of all complete graphs for
which it is possible to achieve a disconnected subgraph induced on the uncrossed edges of some
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its optimal drawing. This fact allow us to establish a new Conjecture that a complete graph Kn is
CF-connected if and only if it does not contain a subgraph of K8. It is well known that the problem
of reducing the number of crossings on the edges in the drawings of graphs was studied in many
areas, and the most prominent area is VLSI technology. So, this new property CF-connectedness of
graphs is studied only for the drawings of graphs with the smallest number of crossings, that is, on
their optimal drawings. The main aim of the paper is to establish an unambiguous characterization
of CF-connected graphs in a manner similar to that of the well-known Kuratowski’s theorem giving
a necessary and sufficient condition for planarity of graphs.

We already know several hypotheses in the cross-graph theory. One of the oldest crossing
number open problem is Guy’s Conjecture [3] or Harary-Hill’s Conjecture [4] about the number of
crossings of the complete graphs Kn saying that the upper bound cr(Kn) ≤ 1
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holds with equality. Recently, this Conjecture was proved for n at most 12 by Pan and Richter [6],
and it is ”asymptotically at least 98, 5% true” by Balogh et al. [2]. The validity of this hypothesis
confirms the correctness of our hypothesis. In the future, it would certainly be worth mentioning
to show or refute whether these two hypotheses happen to be equivalent in some way. In Section 3,
Theorems 3.1 and 3.2 also offer quite surprising conclusions about the behavior of optimal draw-
ings of the complete graphs Kn. The idea of a new concept of a crossing sequence will be strongly
used in their proofs. These results could be used in some way in a confirming the mentioned
Harary-Hill’s Conjecture. The issue regarding CF-connectedness for complete bipartite graphs
Km,n has already been resolved by Staš and Valiska [8].

2. Definitions and Preliminary Results

The crossing number cr(G) of a simple graph G with the vertex set V (G) and the edge set
E(G) is the minimum possible number of edge crossings in a drawing of G in the plane. (For the
definition of a drawing see [5].) It is easy to see that a drawing with minimum number of crossings
(an optimal drawing) is always a good drawing, meaning that no edge crosses itself, no two edges
cross more than once, and no two edges incident with the same vertex cross.

Let D be an optimal drawing of the graph G = (V,E) with V (G) = {v1, v2, . . . , vn}. Let
crD(vi), 1 ≤ i ≤ n, denote the number of crossing on the edges which are incident with the fixed
vertex vi. Since every optimal drawing is a good drawing, each crossing in D is counted on two
edges with four vertices at their ends. This means that

n∑
i=1

crD(vi) = 4 crD(G), (1)

where crD(G) denotes the number of crossings in D. The crossing sequence dD(G) of the graph
G in the drawing D is the non-increasing sequence of its vertex crossings crD(vi). The crossing
sequence is a drawing of graph invariant so two isomorphic drawings of one graph have the same
crossing sequence. However, the crossing sequence does not, in general, uniquely identify a draw-
ing of graph; in some cases, non-isomorphic drawings of the same graph have the same crossing
sequence. For example, it is not such a big problem to find a few non-isomorphic optimal drawings
of the complete graph K8. In the proof of Theorem 3.2, it will be mentioned that just one crossing
sequence can be obtained for all optimal drawings of the graph K8.
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K4K2 K3K1

Figure 1. Planar drawings of the complete graphs K1, K2, K3, and K4.

For any optimal drawing D of G = (V,E), let us denote by CFD(G) the subgraph of G with
the vertex set V (G) and the edge set {e ∈ E(G) : crD(G) = crD(G \ e)}. A connected graph G
is said to be CF-connected if its subgraph CFD(G) is connected for each optimal drawing D of G.
Equivalently, we can also say that a connected graph G is CF-connected if there is a path between
every pair of vertices with no crossing on its edges for each optimal drawing D of G. Since there
are planar drawings of the complete graphs Ki, i = 1, 2, 3, 4, as shown in Figure 1, the graphs K1,
K2, K3, and K4 are CF-connected.

3. The complete graphs Kn, for 5 ≤ n ≤ 8

Theorem 3.1. If D is any optimal drawing of the complete graph Kn, for 2 ≤ n ≤ 8, then there is
at least one vertex v of Kn such that the subdrawing of the subgraph Kn \ v obtained by removing
the vertex v from Kn induced by D is also optimal drawing of Kn−1.

Proof of Theorem 3.1. As cr(Kn) = 0 for any n = 1, 2, 3, 4, the result is obviously valid for
each n = 2, 3, 4. Suppose now that, for n = 8, there is an optimal drawing D of the graph K8

with no possibility to remove one vertex v from K8 for an obtaining optimal drawing of the graph
K7 induced by D. The uniqueness of the crossing sequence dD(K8) enforces that all its members
have values of at most eight provided by cr(K8) − cr(K7) − 1 = 18 − 9 − 1 = 8. If dD(K8) =
(8, 8, 8, 8, 8, 8, 8, 8), then crD(K8) = 16 < 18 = cr(K8) by (1) in the form 64 = 4 crD(K8).
Clearly, the same contradiction with the optimality of the drawing D of K8 is also obtained if
crD(vi) < 8 in the sequence dD(K8) for some i ∈ {1, . . . , 8}. The proof proceeds in the similar
way also for n = 5, 6, 7. 2

Theorem 3.1 does not apply to n = 9 and n = 11 because of the optimal drawings of the graphs
K9 and K11 in Figure 2, and by cr(K9) − cr(K8) = 18 and cr(K11) − cr(K10) = 40. Currently,
the crossing numbers cr(Kn) for n at most 12 are known. If we used the same idea as in the proof
of Theorem 3.1, we could extend this result for n = 10 and n = 12. However, the natural question
remains still open whether Theorem 3.1 can be generalized for the remaining even natural numbers
n greater than 8.

493



www.ejgta.org

On the problems of CF-connected graphs | M. Staš and J. Valiska

(a) (b)

Figure 2. Optimal drawing D of K9 with dD(K9) = (16, 16, 16, 16, 16, 16, 16, 16, 16) and optimal drawing D of K11

with dD(K11) = (39, 39, 39, 39, 39, 35, 35, 35, 35, 35, 30).

Corollary 3.1. There is only one optimal drawing of K5 and of K6.

Proof. By Theorem 3.1, all optimal drawings of K5 can be obtained from the planar drawing of
K4 in Figure 1 by adding one vertex with four corresponding edges. Because all regions of this
planar drawing of K4 are same related to the graph K4, there is only one optimal drawing of K5 as
shown in Figure 3. Similarly, every optimal drawing of K6 can only be achieved by adding a new
vertex with five corresponding edges in the region of the optimal drawing of K5 with three vertices
of the graph K5 on its boundary. From the point of view of adding a new vertex with just two new
crossings, all four triangular regions are identical, which yields that there is also only one optimal
drawing of K6 presented in Figure 3. 2

K5 K6

Figure 3. Optimal drawings of the complete graphs K5 and K6.
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For easier and more accurate labeling in the proof of the following Corollary 3.2, let us de-
fine notation of regions in the optimal drawing of the graph K6 as shown in Figure 4 with the
corresponding vertex notation and also with the numbering of three forced crossings. This unique
drawing of K6 (with respect to possible isomorphisms) contains fourteen different regions. Let us
denote these regions by ω1,2,3, ω4,5,6, ω1
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Figure 4. Optimal drawing of K6 with the vertex notation and the numbering of three forced crossings.

Corollary 3.2. There are five non-isomorphic optimal drawings of K7.

Proof. We will discuss the existence of all possible crossing sequences in an effort to find a
description of all non-isomorphic optimal drawings of the complete graph K7. Let us suppose some
optimal drawing D of K7, which yields that

∑7
i=1 crD(vi) = 36 by (1) using crD(K7) = 9. All

members of the crossing sequence dD(K7) are at most six provided by cr(K7)−cr(K6) = 9−3 = 6,
and this value of six is also included therein at least once due to Theorem 3.1. Further, also by
Theorem 3.1, let D′ be the optimal drawing of the subgraph K6 obtained by removing the vertex
v7 from K7 induced by D. In the rest of the proof, based on their symmetry, let us assume this
drawing D

′ with the vertex notation of K6 as shown in Figure 4, and let also crD(v1) be one of the
smallest values in the sequence dD(K7).

Now, let us turn to the possibilities of a placing the vertex v7 in any of the fourteen regions
of the drawing D

′ of K6. If v7 ∈ ω3
2,3, then the edges v2v3, v3v6, and v2v4 must be crossed

by the edges v7v1, v7v4, and v7v6, respectively, and there is no crossing on the edges v7v2 and
v7v3 in D. This enforces that the edge v7v5 of the graph K7 contributes just three crossings to
achieve the optimal drawing D with crD(K7) = 9. Moreover, the edges v1v2 and v1v6 cannot be
crossed by v7v5 at the same time, otherwise, we get a contradiction with the supposed minimum
of crD(v1) = 5 according to crD(v4) = 4. From the symmetry of D′ , crD(v6) = 4 contradicts the
supposed minimum of crD(v1) = 5 if the edges v1v3 and v1v4 are crossed by v7v5. If the edge v7v5
crosses the edges v2v4, v2v6, and v1v6, then we obtain one of the desired optimal drawings of K7

denoted as type A1 and its isomorphic drawing is given in Figure 5. This type A1 is represented
by dD(K7) = (6, 6, 6, 5, 5, 4, 4) and by exactly nine edges that are not crossed in D. It is not
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difficult to verify that we could obtain an isomorphic optimal drawing of K7 with the previous
case if the edge v7v5 crosses the edges v3v6, v3v4, and v1v4. The type A4 in Figure 5 represented
by dD(K7) = (6, 6, 6, 5, 5, 5, 3) can be obtained if the edge v7v5 crosses the edges v2v4, v3v6, and
v4v6. Based on the symmetry of D′ , it is not necessary to analyze all remaining regions in this
way. By applying the similar arguments as in the first region, we receive both types A2 and A5

if v7 ∈ ω1,2,3 ∪ ω4,5,6. Types A1 and A3 are achieved if v7 ∈ ω3
2,6. Types A1 A2, and A3, if the

vertex v7 is placed in the regions ω1
1,2, ω1

2,6, and ω1
5,6, respectively. Let us note that the type A2 is

represented by dD(K7) = (6, 6, 6, 5, 5, 4, 4) and by exactly ten edges that are not crossed in D. 2

A1: A2:(6,6,6,5,5,4,4) (6,6,6,5,5,4,4) (6,6,5,5,5,5,4)

(6,6,6,5,5,5,3) (6,5,5,5,5,5,5)

A3:

A4: A5:

Figure 5. Five non-isomorphic optimal drawings of the complete graph K7.

For all optimal drawings of the graphs Ki, i = 5, 6, 7, presented in Figure 3 and Figure 5, it is
not difficult to verify that their corresponding subgraph CFD(Ki) is connected. So, the complete
graphs K5, K6, and K7 are also CF-connected.

Theorem 3.2. Let D be any optimal drawing of the complete graph K8. The subdrawing of the
subgraph K8 \v obtained by removing any vertex v from K8 induced by D is also optimal drawing
of K7.
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Proof of Theorem 3.2. Let D be any optimal drawing of the graph K8, that is, crD(K8) = 18. As
cr(K7) = 9, the crossing sequence dD(K8) consists of values at most nine, otherwise, by deleting
the vertex vi of K8 with crD(vi) > 9, a drawing of the graph homeomorphic to K7 with fewer than
nine crossings is obtained. Further, by (1) in the form

∑8
i=1 crD(vi) = 72, none of the values in the

sequence dD(K8) can be fewer than nine. So, dD(K8) = (9, 9, 9, 9, 9, 9, 9, 9) and this also enforces
that there are exactly nine crossings on the edges incident with any vertex vi of the graph K8 in the
considered drawing D. 2

The same idea of an identical crossing sequence as in the proof of Theorem 3.2 can be also
applied for the complete graphs K10 and K12. Of course, assuming the validity of the Harary-
Hill’s Conjecture, the same results hold for the remaining even natural numbers n greater than
12, and all members of the crossing subsequence dD(Kn) are going equal to (m−1)2(m−2)

2
, where

n = 2m. However, it is not difficult to verify in possible regions of all drawings in Figure 5 that
only for the optimal drawing of K7 of type A1, there is a possibility to achieve an optimal drawing
D of the graph K8 by adding one new vertex requesting a disconnected subgraph CFD(K8). This
contemplated drawing D of K8 can be isomorphically redrawn as shown in Figure 6(a). Thus, the
next result is obvious.

Corollary 3.3. The complete graph K8 is not CF-connected.

4. The Harary-Hill’s Conjecture

Guy [3] estimated the upper bound 1
4
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which is conjectured to be equal

to the crossing number of the complete graph Kn. The same conjecture was also proposed by
Harary and Hill [4] at around the same time, that is, the minimum number of crossings among all
drawings of the complete graph Kn is equal to the Hill’s number H(n) = 1
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Several exact values for the crossing number of the graphs Kn are based on the following theorem
presented in [3].

Theorem 4.1. If the Guy’s Conjecture holds for the graphs Kn−1, such that n is even, then it holds
also for the graphs Kn.

For n even, the idea of the crossing sequence dD(Kn) in the proof of Theorem 3.2 can also be
used to determine the proof of Theorem 4.1 provided that
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Pan and Richter [6] confirmed the validity of this Conjecture for the graph K11, which yields
that also for the graph K12 by Theorem 4.1. Consequently, Balogh et al. [2] obtained the best
known asymptotic lower bound for the crossing number of Kn in the form

lim
n→∞

cr(Kn)
1
4
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2
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2

⌋⌊
n−3
2

⌋ > 0.985,

which implies that it is ”asymptotically at least 98, 5% true”. So, for n ≥ 13, the following claims
will be so far verified under the assumption of the Guy’s Conjecture.

497



www.ejgta.org

On the problems of CF-connected graphs | M. Staš and J. Valiska
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Figure 6. Harary-Hill drawings of K8 and of K10.

v
1

v
3

u
1

v
2

v
4

v
5

v
6

u
4

u
5

u
6

u
2

w

u
3

Figure 7. Harary-Hill drawing of K12.
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Based on the idea of constructing a Hill drawing Hn of Kn, Ábrego et al. [1] have been de-
scribed the cylindrical drawing H2m of K2m with exactly H(2m) crossings, for m ≥ 3. In this good
drawing H2m, all vertices are contained in two regular convex polygons U = {u1, u2, . . . , um} and
V = {v1, v2, . . . , vm} (labeled clockwise), and both are centered around the middle of w. Polygon
U is greater than V , and they are positioned in such a way that u1, w, and v1 are collinear if m is
odd, and u1, w, and the midpoint of v1vm are collinear if m is even, see Figure 6 and 7.

The edges joining two vertices of V are placed inside (or on the boundary of) V , the edges
joining two vertices of U are placed outside (or on the boundary of) U , and the edges joining
vertices of U with vertices of V are outside V and inside U in such a way, that for every 1 ≤ i ≤ m
edge uivj goes along the polygon V in counterclockwise direction for j ∈ {i, i+ 1, i+ 2, . . . , i+
⌈m−1

2
⌉}, values taken modulo m, and in clockwise direction otherwise. However, the number of

crossings in the drawing H2m presented in [1] is not proved in any way, and so the following
statement is necessary for our research.

Theorem 4.2. The cylindrical drawing H2m of the complete graph K2m enforces exactly H(2m)
crossings, for m ≥ 3.

Proof of Theorem 4.2. Richter and Thomassen [7] estimated the number of crossings in a cylin-

drical drawing of Km,m by the lover bound m
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= H(2m).

2

Because in such a drawing of K2m only the edges of u1, u2, . . . , um, u1 and v1, v2, . . . , vm, v1
are not crossed, we get the following result.

Corollary 4.1. The complete graphs K10 and K12 are not CF-connected. If cr(Kn) = H(n), then
Kn is not CF-connected, for any n > 12 even.

For n ≥ 9 odd, it is possible to use the construction a drawing Nm,m,1 of the complete graph
K2m+1 with H(2m + 1) crossings. Its description together with the proof of the number of cross-
ings can be found in Ábrego et al. [1]. We have already presented the drawing N5,5,1 of K11 in
Figure 2(b). As in such a drawing of K2m+1 all edges are crossed at least once, the next result is
obvious.

Corollary 4.2. The complete graphs K9 and K11 are not CF-connected. If cr(Kn) = H(n), then
Kn is not CF-connected, for any n > 12 odd.
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5. Conclusions

We suppose that the application of the crossing sequences of considered optimal drawings
can be used to estimate another families of CF-connected graphs, mainly for the graphs with the
already well-known crossing numbers. Theorems 3.1 and 3.2 offer partial answers to remove some
vertex from any optimal drawing of the complete graph Kn in order to obtain an optimal drawing
of Kn−1. Moreover, assuming the validity of Harary-Hill’s Conjecture, Theorem 3.1 does not
apply to any n odd at least 13 using the aforementioned drawing Nm,m,1. The same idea as in the
proof of Theorem 3.2 can also be used to n = 10, 12, and for n even greater than 12 provided that
cr(Kn) = H(n). In this case, all members of the crossing sequence of each optimal drawing of
Kn are going equal to (m−1)2(m−2)

2
, where n = 2m.
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