Electronic Journal of Graph Theory and Applications

Rainbow connection number of comb product of graphs

D. Fitriani ${ }^{\text {a }}$, A.N.M. Salman ${ }^{\text {a }}$, Zata Yumni Awanis ${ }^{\text {b }}$
${ }^{a}$ Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
${ }^{b}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Mataram, Jalan Majapahit No. 62, Mataram 83125, Indonesia
dinny.fitriani@ gmail.com, msalman@math.itb.ac.id, zata.yumni@unram.ac.id

Abstract

An edge-colored graph G is called a rainbow connected if any two vertices are connected by a path whose edges have distinct colors. Such a path is called a rainbow path. The smallest number of colors required in order to make G rainbow connected is called the rainbow connection number of G. For two connected graphs G and H with $v \in V(H)$, the comb product between G and H, denoted by $G \triangleright_{v} H$, is a graph obtained by taking one copy of G and $|V(G)|$ copies of H and identifying the i-th copy of H at the vertex v to the i-th vertex of G. In this paper, we give sharp lower and upper bounds for the rainbow connection number of comb product between two connected graphs. We also determine the exact values of rainbow connection number of $G \triangleright_{v} H$ for some connected graphs G and H.

Keywords: comb product, rainbow connection number, rainbow path
Mathematics Subject Classification: 05C05, 05C15, 05C40
DOI: 10.5614/ejgta.2022.10.2.9

1. Introduction

Throughout this paper, all graphs are simple, finite, and undirected. For $h \in \mathbb{N}$, we define a coloring $c: E(G) \rightarrow\{1,2, \ldots, h\}$ of the edges of G such that the adjacent edges can be
colored the same. An edge-colored graph G is called a rainbow connected if any two vertices are connected by a path whose edges have distinct colors. Such a path is called a rainbow path. In this case, the edge-coloring c is called a rainbow h-coloring of G. The smallest number of colors required in order to make G rainbow connected is called the rainbow connection number of G, denoted by $r c(G)$. This concept was introduced by Chartrand et al. in 2008 [8]. It is obvious that $\operatorname{diam}(G) \leq r c(G) \leq|E(G)|$, where $\operatorname{diam}(G)$ and $|E(G)|$ denote the diameter and the size of G, respectively.

The rainbow connection number has an important application in security systems in a communication network. One of the things that can be done so that any two people in a communication network can communicate securely is by assigning some passwords to a path connecting them (which may have other people as intermediaries) so that there is no repetition of the passwords in it. Of course, the number of passwords that we used are expected to be as minimal as possible. The minimum number of these passwords is represented by the rainbow connection number.

Many previous researchers determined the rainbow connection number of graphs by limiting the study to certain classes of graphs. This is because computing the rainbow connection number of graphs is an NP-Hard problem [7]. Chartrand et al. in [8] determined the rainbow connection number of some classes of graphs, such as complete graphs, trees, cycles, and wheels. These results are given in Theorems 1.1-1.3. Further, Sy et al. determined the rainbow connection number of fans and suns [23], meanwhile Shulhany and Salman determined the rainbow connection number of stellar graphs [20]. Other researchers also interested in studying the color code techniques in rainbow connection like Septyanto and Sugeng did [19].

Theorem 1.1. [8] Let G be a nontrivial connected graph of size m. Then
(a) $r c(G)=1$ if and only if G is a complete graph,
(b) $r c(G)=m$ if and only if G is a tree.

Theorem 1.2. [8] For each integer $n \geq 4$, the rainbow connection number of a cycle C_{n} is $r c\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.

Theorem 1.3. [8] For $n \geq 3$, the rainbow connection number of a wheel W_{n} is

$$
r c\left(W_{n}\right)= \begin{cases}1, & \text { if } n=3 \\ 2, & \text { if } n \in\{4,5,6\} \\ 3, & \text { if } n \geq 7\end{cases}
$$

There are also some results about bounds for rainbow connection number of graphs resulted from graph operations; for instance: Cartesian product graphs [12, 15], composition (lexicographic product) graphs [10, 15], join of graphs [15], direct product and strong product graphs [10], and amalgamation of some graphs [9]. Some other results on rainbow connection number of graphs can be found in $[11,16,17,21,22]$. An overview about rainbow connection number can be found in a survey by Li et al. [13] and a book of Li and Sun [14].

Later, Awanis and Salman [2] introduced a new concept called a strong k-rainbow index. A rainbow tree in G is a tree whose edges have distinct colors. For an integer $k \in\{2,3, \ldots, n\}$, the
strong k-rainbow index of G, denoted by $\operatorname{srx}_{k}(G)$, is the smallest number of colors required in an edge-coloring of G such that every k vertices of G are connected by a rainbow tree with minimum size. If $k=2$, then the strong 2 -rainbow index of G is called the strong rainbow connection number of G, denoted by $\operatorname{src}(G)$ [8]. Awanis and Salman [2] determined the strong 3-rainbow index of some certain graphs, meanwhile Salman et al. [18] investigated the characterization of graphs whose strong 3 -rainbow index equals 2 . Other researchers also determined the strong 3 rainbow index of some graph operations which can be found in [2, 3, 4, 5, 6].

In this paper, we study the rainbow connection number of comb product of graphs. The following definition of comb product of two graphs is taken from [1]. Let G and H be two connected graphs. Let v be a vertex of H. The comb product between G dan H, denoted by $G \triangleright_{v} H$, is a graph obtained by taking one copy of G and $|V(G)|$ copies of H and identifying the i-th copy of H at the vertex v to the i-th vertex of G. We first determine the lower and upper bounds for the rainbow connection number of $G \triangleright_{v} H$, then we provide comb product of graphs whose rainbow connection number satisfies the bounds. These results are given in Section 2. We also determine the exact values of rainbow connection number of $G \triangleright_{v} H$ for some connected graphs G and H which are given in Section 3.

2. Sharp lower and upper bounds for $\boldsymbol{r c}\left(G \triangleright_{v} H\right)$

Let G and H be two connected graphs of order m and n, respectively, with $V(G)=\left\{g_{1}, g_{2}, \ldots\right.$, $\left.g_{m}\right\}$ and $V(H)=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$. Let v be a vertex of H. According to the definition of comb product, we have $V\left(G \triangleright_{v} H\right)=V(G) \times V(H)=\left\{\left(g_{i}, h_{j}\right): g_{i} \in V(G), h_{j} \in V(H)\right\}$ and two vertices $\left(g_{i}, h_{j}\right)$ and $\left(g_{k}, h_{l}\right)$ are adjacent if and only if
(a) $g_{i}=g_{k}$ and $h_{j} h_{l} \in E(H)$, or
(b) $g_{i} g_{k} \in E(G)$ and $h_{j}=h_{l}=v$.

Without loss of generality, let $v=h_{1}$. For each $i \in\{1,2, \ldots, m\}$, let $H(i)$ denote a subgraph of $G \triangleright_{v} H$ induced by $\left\{\left(g_{i}, h_{j}\right): j \in\{1,2, \ldots, n\}\right\}$, and $G\left(h_{1}\right)$ denote a subgraph of $G \triangleright_{v} H$ induced by $\left\{\left(g_{i}, h_{1}\right): i \in\{1,2, \ldots, m\}\right\}$. For further discussion, we denote $c(X)$ as a set of colors assigned to the edges in $X \subseteq E\left(G \triangleright_{v} H\right)$.

The following theorem provides the sharp lower and upper bounds for the rainbow connection number of comb product of two arbitrary graphs.

Theorem 2.1. Let G and H be two connected graphs of order m and n, respectively, and let $v \in V(H)$. Then

$$
\operatorname{diam}\left(G \triangleright_{v} H\right) \leq r c\left(G \triangleright_{v} H\right) \leq r c(G)+m(r c(H))
$$

Proof. Without loss of generality, let $v=h_{1}$. It is obvious that $\operatorname{diam}\left(G \triangleright_{v} H\right) \leq r c\left(G \triangleright_{v} H\right)$. Let c^{1} be a rainbow $r c(G)$-coloring of G and c^{2} be a rainbow $r c(H)$-coloring of H. We define an edge-coloring $c: E\left(G \triangleright_{v} H\right) \rightarrow\{1,2, \ldots, r c(G)+m(r c(H))\}$ as follows.

$$
c(e)=\left\{\begin{aligned}
c^{1}(e), & e \in E\left(G\left(h_{1}\right)\right) ; \\
r c(G)+c^{2}(e)+(p-1) r c(H), & e \in E(H(p)) \text { for each } p \in\{1,2, \ldots, m\} .
\end{aligned}\right.
$$

Now, we show that an edge-coloring c above is a rainbow coloring of $G \triangleright_{v} H$. For $i, k \in$ $\{1,2, \ldots, m\}$ and $j, l \in\{1,2, \ldots, n\}$, let $x=\left(g_{i}, h_{j}\right)$ and $y=\left(g_{k}, h_{l}\right)$ be two vertices of $G \triangleright_{v} H$. If $i=k$, then there exists a rainbow $x-y$ path by edge-coloring c corresponding to edge-coloring c^{2}. If $i \neq k$, there exist a rainbow $\left(g_{i}, h_{j}\right)-\left(g_{i}, h_{1}\right)$ path P_{1} in $H(i)$, a rainbow $\left(g_{i}, h_{1}\right)-\left(g_{k}, h_{1}\right)$ path P_{2} in $G\left(h_{1}\right)$, and a rainbow $\left(g_{k}, h_{1}\right)-\left(g_{k}, h_{l}\right)$ path P_{3} in $H(k)$, so that $c\left(E\left(P_{a}\right)\right) \cap c\left(E\left(P_{b}\right)\right)=\emptyset$ for distinct $a, b \in\{1,2,3\}$. Then $P=P_{1} \cup P_{2} \cup P_{3}$ is a rainbow $x-y$ path.

Now, we prove the existence of comb product of graphs whose rainbow connection number satisfies either the lower or upper bound in Theorem 2.1. These results are given in the next two theorems.

Theorem 2.2. Let G be a connected graph of order $m \geq 2$ with $\operatorname{rc}(G)=\operatorname{diam}(G), C_{n}$ be a cycle of order $n \geq 3$, and $v \in V\left(C_{n}\right)$. For $m \geq 2$ and even $n \geq 4$, or $m=2$ and odd $n \geq 3$, $r c\left(G \triangleright_{v} C_{n}\right)=\operatorname{diam}\left(G \triangleright_{v} C_{n}\right)$.

Proof. Let $V\left(C_{n}\right)=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ such that $E\left(C_{n}\right)=\left\{h_{j} h_{j+1}: j \in\{1,2, \ldots, n\}\right.$ and $h_{n+1}=$ $\left.h_{1}\right\}$. Without loss of generality, let $v=h_{1}$. By Theorem 2.1, we only need to show that $r c\left(G \triangleright_{v} C_{n}\right) \leq \operatorname{diam}\left(G \triangleright_{v} C_{n}\right)=\operatorname{diam}(G)+2 \operatorname{diam}\left(C_{n}\right)$.

For $m \geq 2$ and even $n \geq 4, \operatorname{diam}\left(G \triangleright_{v} C_{n}\right)=r c(G)+n$. Let c^{\prime} be a rainbow $r c(G)$-coloring of G. We define an edge-coloring $c: E\left(G \triangleright_{v} C_{n}\right) \rightarrow\{1,2, \ldots, r c(G)+n\}$ as follows.
(i) For each $i \in\{1,2, \ldots, m\}$ and $j \in\{1,2, \ldots, n\}$, define $c\left(\left(g_{i}, h_{j}\right)\left(g_{i}, h_{j+1}\right)\right)=j$.
(ii) For distinct $i, k \in\{1,2, \ldots, m\}$, define $c\left(\left(g_{i}, h_{1}\right)\left(g_{k}, h_{1}\right)\right)=c^{\prime}\left(g_{i} g_{k}\right)+n$.

Meanwhile for $m=2$ and odd $n \geq 3$, $\operatorname{diam}\left(G \triangleright_{v} C_{n}\right)=n$. We define an edge-coloring $c: E\left(G \triangleright_{v} C_{n}\right) \rightarrow\{1,2, \ldots, n\}$ as follows.
(i) Define $c\left(\left(g_{1}, h_{1}\right)\left(g_{2}, h_{1}\right)\right)=1$.
(ii) Define $c\left(\left(g_{1}, h_{j}\right)\left(g_{1}, h_{j+1}\right)\right)=j+1$ for each $j \in\left\{1,2, \ldots, \frac{n+1}{2}\right\}$ and $c\left(\left(g_{1}, h_{j}\right)\left(g_{1}, h_{j+1}\right)\right)=$ $j-\frac{n-1}{2}$ for each $j \in\left\{\frac{n+3}{2}, \ldots, n\right\}$.
(iii) Define $c\left(\left(g_{2}, h_{j}\right)\left(g_{2}, h_{j+1}\right)\right)=j+\frac{n+1}{2}$ for each $j \in\left\{1,2, \ldots, \frac{n-1}{2}\right\}$ and $c\left(\left(g_{2}, h_{j}\right)\left(g_{2}, h_{j+1}\right)\right)$ $=j$ for each $j \in\left\{\frac{n+1}{2}, \ldots, n\right\}$.

Now, we show that there exists a rainbow $x-y$ path for any two vertices $x, y \in V\left(G \triangleright_{v} C_{n}\right)$. For $i, k \in\{1,2, \ldots, m\}$ and $j, l \in\{1,2, \ldots, n\}$, let $x=\left(g_{i}, h_{j}\right)$ and $y=\left(g_{k}, h_{l}\right)$. We consider two cases.

Case 1. $i=k$
Observe that the edge-colorings c above assign n distinct colors to the edges of $C_{n}(i)$ for $m \geq 2$ and even $n \geq 4$, and $\frac{n+1}{2}$ distinct colors to the edges of $C_{n}(i)$ for $m=2$ and odd $n \geq 3$. Hence, it is easy to find a rainbow $x-y$ path in $G \triangleright_{v} C_{n}$.

Case 2. $i \neq k$
If $j=l=1$, there exists a rainbow $x-y$ path in $G \triangleright_{v} C_{n}$ by edge-coloring c corresponding to edge-coloring c^{\prime}. Otherwise, there exist a shortest rainbow $\left(g_{i}, h_{j}\right)-\left(g_{i}, h_{1}\right)$ path P_{1} in $C_{n}(i)$, a
shortest rainbow $\left(g_{i}, h_{1}\right)-\left(g_{k}, h_{1}\right)$ path P_{2} in $G\left(h_{1}\right)$, and a shortest rainbow $\left(g_{k}, h_{1}\right)-\left(g_{k}, h_{l}\right)$ path P_{3} in $C_{n}(k)$, so that $c\left(E\left(P_{a}\right)\right) \cap c\left(E\left(P_{b}\right)\right)=\emptyset$ for distinct $a, b \in\{1,2,3\}$. Then $P=P_{1} \cup P_{2} \cup P_{3}$ is a rainbow $x-y$ path.

Theorem 2.3. Let G and H be two arbitrary trees of order m and n, respectively, and let $v \in$ $V(H)$. Then $r c\left(G \triangleright_{v} H\right)=r c(G)+m(r c(H))$.

Proof. Note that $G \triangleright_{v} H$ is also a tree with $\left|E\left(G \triangleright_{v} H\right)\right|=|E(G)|+m(|E(H)|)$. According to Theorem 1.1(b), $r c(G)=|E(G)|$ if and only if G is a tree. Thus, $r c\left(G \triangleright_{v} H\right)=\left|E\left(G \triangleright_{v} H\right)\right|=$ $|E(G)|+m(|E(H)|)=r c(G)+m(r c(H))$.

For illustration of Theorems 2.2 and 2.3, please see Figures 1 and 2, respectively.

Figure 1. A rainbow 10-coloring of $C_{4} \triangleright_{v} C_{8}$

3. Rainbow connection number of comb product of some graphs

In Section 2, we have proven the sharpness of the lower and upper bounds in Theorem 2.1. In this section, we provide comb product of graphs $G \triangleright_{v} H$ for some connected graphs G and H whose rainbow connection number lies between these lower and upper bounds.

Our first result is the rainbow connection number of $P_{m} \triangleright_{v} C_{n}$ for certain values of n, which is given in the following theorem.

Theorem 3.1. Let P_{m} be a path of order $m \geq 3, C_{n}$ be a cycle of order $n \geq 3$ where n is odd, and $v \in V\left(C_{n}\right)$. Then $r c\left(P_{m} \triangleright_{v} C_{n}\right)=\operatorname{diam}\left(P_{m} \triangleright_{v} C_{n}\right)+1=\operatorname{rc}\left(P_{m}\right)+n$.

Figure 2. A rainbow 23-coloring of comb product of two trees

Proof. Let $V\left(P_{m}\right)=\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$ such that $E\left(P_{m}\right)=\left\{g_{i} g_{i+1}: i \in\{1,2, \ldots, m-1\}\right\}$. We can check that $\operatorname{diam}\left(P_{m} \triangleright_{v} C_{n}\right)=r c\left(P_{m}\right)+n-1$. Without loss of generality, let $v=$ h_{1}. By assigning colors $1,2, \ldots, r c\left(P_{m}\right)$ to the edges of P_{m} and colors $r c\left(P_{m}\right)+1, r c\left(P_{m}\right)+$ $2, \ldots, r c\left(P_{m}\right)+n$ to the edges of $C_{n}(i)$ for each $i \in\{1,2, \ldots, m\}$, we can find a rainbow $x-y$ path for any two vertices $x, y \in V\left(P_{m} \triangleright_{v} C_{n}\right)$, where the proof is similar to that used in Theorem 2.2 for case $m \geq 2$ and even $n \geq 4$.

Next, we prove the lower bound. Suppose to the contrary that $\operatorname{rc}\left(P_{m} \triangleright_{v} C_{n}\right) \leq r c\left(P_{m}\right)+n-1$. Let c be a rainbow $\left(r c\left(P_{m}\right)+n-1\right)$-coloring of $P_{m} \triangleright_{v} C_{n}$ and let $A=\left\{1,2, \ldots, \frac{n-1}{2}\right\}, B=$ $\left\{\frac{n-1}{2}+1, \frac{n-1}{2}+2, \ldots, n-1\right\}$, and $C=\left\{n, n+1, \ldots, r c\left(P_{m}\right)+n-1\right\}$ be the sets of colors. Consider two vertices $\left(g_{i}, h_{j}\right),\left(g_{k}, h_{l}\right) \in V\left(P_{m} \triangleright_{v} C_{n}\right)$ so that $d\left(\left(g_{i}, h_{j}\right),\left(g_{k}, h_{l}\right)\right)=r c\left(P_{m}\right)+$ $n-1$. This condition is satisfied when $i, k \in\{1, m\}, i \neq k$, and $j, l \in\left\{\frac{n+1}{2}, \frac{n+3}{2}\right\}$. Without loss of generality, let $i=1$ and $k=m$. Note that there exists only one $\left(g_{1}, h_{j}\right)-\left(g_{m}, h_{l}\right)$ path of length $r c\left(P_{m}\right)+n-1$, which can be obtained by identifying vertices $\left(g_{1}, h_{1}\right)$ and $\left(g_{m}, h_{1}\right)$ in a $\left(g_{1}, h_{j}\right)-\left(g_{1}, h_{1}\right)$ path of length $\frac{n-1}{2}$, a $\left(g_{1}, h_{1}\right)-\left(g_{m}, h_{1}\right)$ path of length $r c\left(P_{m}\right)$, and a $\left(g_{m}, h_{1}\right)-\left(g_{m}, h_{l}\right)$ path of length $\frac{n-1}{2}$. Thus, we need at least $r c\left(P_{m}\right)+n-1$ distinct colors to color all edges in $\left(g_{1}, h_{j}\right)-\left(g_{m}, h_{l}\right)$ path. First, consider vertices $\left(g_{1}, h_{\frac{n+1}{2}}\right)$ and $\left(g_{m}, h_{\frac{n+1}{2}}\right)$. Without loss of generality, assign colors from A to all edges in $\left(g_{1}, h_{\frac{n+1}{2}}\right)-\left(g_{1}, h_{1}\right)$ path, colors from C to all edges in $\left(g_{1}, h_{1}\right)-\left(g_{m}, h_{1}\right)$ path, and colors from B to all edges in $\left(g_{m}, h_{1}\right)-\left(g_{m}, h_{\frac{n+1}{2}}\right)$ path. Next, by considering vertices $\left(g_{1}, h_{\frac{n+3}{2}}\right)$ and $\left(g_{m}, h_{\frac{n+1}{2}}\right)$ and vertices $\left(g_{1}, h_{\frac{n+1}{2}}\right)$ and $\left(g_{m}, h_{\frac{n+3}{2}}\right)$, we obtain that all edges in $\left(g_{1}, h_{\frac{n+3}{2}}\right)-\left(g_{1}, h_{1}\right)$ path and all edges in $\left(g_{m}, h_{1}\right)-\left(g_{m}, h_{\frac{n+3}{2}}\right)$ path should be colored with colors from A and B, respectively. Next, consider vertices $\left(g_{1}, h_{\frac{n+1}{2}}\right)$
and $\left(g_{m-1}, h_{\frac{n+1}{2}}\right)$. Note that any $\left(g_{1}, h_{\frac{n+1}{2}}\right)-\left(g_{m-1}, h_{\frac{n+1}{2}}\right)$ path has length either $r c\left(P_{m}\right)+n-$ 2 or $r c\left(P_{m}\right)+n-1$ and must contains a $\left(g_{1}, h_{\frac{n+1}{2}}\right)-\left(g_{m-1}, h_{1}\right)$ path as a subgraph. Since some edges in any $\left(g_{1}, h_{\frac{n+1}{2}}\right)-\left(g_{m-1}, h_{1}\right)$ path have been colored with colors from $A \cup C \backslash$ $\left\{c\left(\left(g_{m-1}, h_{1}\right),\left(g_{m}, h_{1}\right)\right)\right\}$, this forces all edges in $C_{n}(m-1)$ should be colored with colors from $B \cup\left\{c\left(\left(g_{m-1}, h_{1}\right),\left(g_{m}, h_{1}\right)\right)\right\}$. However, there is no rainbow $\left(g_{m-1}, h_{\frac{n+1}{2}}\right)-\left(g_{m}, h_{\frac{n+1}{2}}\right)$ path, a contradiction.

Our next results are the rainbow connection number of $K_{m} \triangleright_{v} H$ where H is either a complete graph, a wheel, or a fan.

Theorem 3.2. For $m \geq 2$ and $n \geq 3$, Let K_{m} and K_{n} be two complete graphs of order m and n, respectively, and let $v \in V\left(K_{n}\right)$. Then

$$
r c\left(K_{m} \triangleright_{v} K_{n}\right)=\left\{\begin{array}{l}
3, \text { for } m \in\{2,3\} \\
4, \text { for } m \geq 4
\end{array}\right.
$$

Proof. Without loss of generality, let $v=h_{1}$. We consider two cases.
Case 1. $m \in\{2,3\}$
We first show that $r c\left(K_{m} \triangleright_{v} K_{n}\right) \leq 3$ by defining a rainbow 3 -coloring of $K_{m} \triangleright_{v} K_{n}$ as follows.
(i) For each $i \in\{1, \ldots, m\}$, assign colors i to all edges of $K_{n}(i)$.
(ii) If $m=2$, assign color 3 to the edge $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{1}\right)$. If $m=3$, assign color 3 to the edge $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{1}\right)$, color 1 to the edge $\left(g_{2}, h_{1}\right)\left(g_{3}, h_{1}\right)$, and color 2 to the edge $\left(g_{1}, h_{1}\right)\left(g_{3}, h_{1}\right)$.

By the edge-coloring above, it is easy to find a rainbow $x-y$ path for any two vertices $x, y \in$ $V\left(K_{m} \triangleright_{v} K_{n}\right)$. Meanwhile for the lower bound, note that $\operatorname{diam}\left(K_{m} \triangleright_{v} K_{n}\right)=3$. Thus, we get $r c\left(K_{m} \triangleright_{v} K_{n}\right) \geq 3$ by Theorem 2.1.

Case 2. $m \geq 4$
We show that $r c\left(K_{m} \triangleright_{v} K_{n}\right) \leq 4$ by defining a rainbow 4 -coloring of $K_{m} \triangleright_{v} K_{n}$ as follows.
(i) For each $i \in\{1,2, \ldots, m\}$ and $j \in\{2,3, \ldots, n\}$, assign color 1 to the edges $\left(g_{i}, h_{1}\right)\left(g_{i}, h_{j}\right)$ for even j, color 2 to the edges $\left(g_{i}, h_{1}\right)\left(g_{i}, h_{j}\right)$ for odd j, and color 3 to the remaining edges of $K_{n}(i)$.
(ii) Assign color 4 to the edges of $K_{m}\left(h_{1}\right)$.

For $i, k \in\{1,2, \ldots, m\}$ and $j, l \in\{1,2, \ldots, n\}$, let $x=\left(g_{i}, h_{j}\right)$ and $y=\left(g_{k}, h_{l}\right)$ be two vertices of $K_{m} \triangleright_{v} K_{n}$. If $i=k$ and $j \neq l$, or if $i \neq k$ and $j=l=1$, then the edge $x y$ is a rainbow $x-y$ path. If $i \neq k, j=1$, and $l \in\{2,3, \ldots, n\}$, then $P=\left(g_{i}, h_{1}\right),\left(g_{k}, h_{1}\right),\left(g_{k}, h_{l}\right)$ is a rainbow $x-y$ path. Next, we may further consider cases when $i \neq k$ and $j, l \in\{2,3, \ldots, n\}$ as follows.

- j and l have same parity. If $l \neq n$, then $P=\left(g_{i}, h_{j}\right),\left(g_{i}, h_{1}\right),\left(g_{k}, h_{1}\right),\left(g_{k}, h_{l+1}\right),\left(g_{k}, h_{l}\right)$ is a rainbow $x-y$ path. Otherwise, $P=\left(g_{i}, h_{j}\right),\left(g_{i}, h_{1}\right),\left(g_{k}, h_{1}\right),\left(g_{k}, h_{l-1}\right),\left(g_{k}, h_{l}\right)$ is a rainbow $x-y$ path.

Figure 3. A rainbow 4-coloring of $K_{6} \triangleright_{v} K_{4}$

- j and l have distinct parity. Then $P=\left(g_{i}, h_{j}\right),\left(g_{i}, h_{1}\right),\left(g_{k}, h_{1}\right),\left(g_{k}, h_{l}\right)$ is a rainbow $x-y$ path.

Figure 3 gives an illustration of a rainbow 4-coloring of $K_{6} \triangleright_{v} K_{4}$.
For the lower bound, suppose to the contrary that $r c\left(K_{m} \triangleright_{v} K_{n}\right) \leq 3$. Let c be a rainbow 3 coloring of $K_{m} \triangleright_{v} K_{n}$. Observe that for distinct $i, k \in\{1,2, \ldots, m\}$ and $j, l \in\{2,3, \ldots, n\}$, any $\left(g_{i}, h_{j}\right)-\left(g_{k}, h_{l}\right)$ path has length at least 3 . This forces $\left(g_{i}, h_{j}\right),\left(g_{i}, h_{1}\right),\left(g_{k}, h_{1}\right),\left(g_{k}, h_{l}\right)$ is the only possible $\left(g_{i}, h_{j}\right)-\left(g_{k}, h_{l}\right)$ path, where $c\left(\left(g_{i}, h_{1}\right)\left(g_{i}, h_{j}\right)\right) \neq c\left(\left(g_{k}, h_{1}\right)\left(g_{k}, h_{l}\right)\right)$. First, consider vertices $\left(g_{1}, h_{2}\right)$ and $\left(g_{2}, h_{2}\right)$. Without loss of generality, let $c\left(\left(g_{1}, h_{1}\right)\left(g_{1}, h_{2}\right)\right)=1$, $c\left(\left(g_{1}, h_{1}\right)\left(g_{2}, h_{1}\right)\right)=2$, and $c\left(\left(g_{2}, h_{1}\right)\left(g_{2}, h_{2}\right)\right)=3$. Next, consider vertices $\left(g_{1}, h_{2}\right)$ and $\left(g_{i}, h_{2}\right)$ and vertices $\left(g_{2}, h_{2}\right)$ and $\left(g_{i}, h_{2}\right)$ for all $i \in\{3,4, \ldots, m\}$, successively. Thus, $c\left(\left(g_{i}, h_{1}\right)\left(g_{i}, h_{2}\right)\right)=$ 2 for all $i \in\{3,4, \ldots, m\}$. However, there is no rainbow $\left(g_{i}, h_{2}\right)-\left(g_{k}, h_{2}\right)$ path for distinct $i, k \in\{3,4, \ldots, m\}$, a contradiction.

A wheel of order $n+1$, denoted by W_{n}, is a graph formed by joining a new vertex to all vertices of a cycle C_{n}. Let $V\left(W_{n}\right)=\left\{h_{1}, h_{2}, \ldots, h_{n+1}\right\}$ such that $E\left(W_{n}\right)=\left\{h_{1} h_{i}, h_{i} h_{i+1}: i \in\right.$ $\{2,3, \ldots, n+1\}$ and $\left.h_{n+2}=h_{2}\right\}$. The vertex h_{1} is called the center vertex of W_{n}, and the edge $h_{1} h_{i}$ for each $i \in\{2,3, \ldots, n+1\}$ is called the spoke of W_{n}.

Theorem 3.3. For $m \geq 2$ and $n \geq 4$, let K_{m} be a complete graph of order m, W_{n} be a wheel of order $n+1$, and v be the center vertex of W_{n}. Then

$$
r c\left(K_{m} \triangleright_{v} W_{n}\right)=\left\{\begin{array}{l}
3, \text { for } m \in\{2,3\} \text { and } n \in\{4,5,6\} \\
4, \text { for } m \geq 4 \text { and } n \in\{4,5,6\}, \text { or } m \geq 2 \text { and } n \geq 7 .
\end{array}\right.
$$

Proof. We consider two cases.
Case 1. $n \in\{4,5,6\}$
We consider two subcases.
Subcase 1.1. $m \in\{2,3\}$
Let $i \in\{1, \ldots, m\}$. We show that $r c\left(K_{m} \triangleright_{v} W_{n}\right) \leq 3$ by defining a rainbow 3 -coloring of $K_{m} \triangleright_{v} W_{n}$ as follows.
(i) If $m=2$, assign color 3 to the edge $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{1}\right)$. Otherwise, assign color 3 to the edge $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{1}\right)$, color 1 to the edge $\left(g_{2}, h_{1}\right)\left(g_{3}, h_{1}\right)$, and color 2 to the edge $\left(g_{1}, h_{1}\right)\left(g_{3}, h_{1}\right)$.
(ii) Assign colors i to the edges $\left(g_{i}, h_{1}\right)\left(g_{i}, h_{j}\right)$ for all $j \in\{2,3, \ldots, n+1\}$.
(iii) For $n=4$, assign color 1 to the edges $\left(g_{i}, h_{2}\right)\left(g_{i}, h_{3}\right)$ and $\left(g_{i}, h_{4}\right)\left(g_{i}, h_{5}\right)$ and color 2 to the edges $\left(g_{i}, h_{3}\right)\left(g_{i}, h_{4}\right)$ and $\left(g_{i}, h_{2}\right)\left(g_{i}, h_{5}\right)$.
(iv) For $n=5$, assign color 1 to the edges $\left(g_{i}, h_{2}\right)\left(g_{i}, h_{3}\right)$ and $\left(g_{i}, h_{5}\right)\left(g_{i}, h_{6}\right)$, color 2 to the edges $\left(g_{i}, h_{3}\right)\left(g_{i}, h_{4}\right)$ and $\left(g_{i}, h_{2}\right)\left(g_{i}, h_{6}\right)$, and color 3 to the edge $\left(g_{i}, h_{4}\right)\left(g_{i}, h_{5}\right)$.
(v) For $n=6$, assign color 1 to the edges $\left(g_{i}, h_{2}\right)\left(g_{i}, h_{3}\right)$ and $\left(g_{i}, h_{5}\right)\left(g_{i}, h_{6}\right)$, color 2 to the edges $\left(g_{i}, h_{3}\right)\left(g_{i}, h_{4}\right)$ and $\left(g_{i}, h_{6}\right)\left(g_{i}, h_{7}\right)$, and color 3 to the edges $\left(g_{i}, h_{4}\right)\left(g_{i}, h_{5}\right)$ and $\left(g_{i}, h_{2}\right)\left(g_{i}, h_{7}\right)$.

For $i, k \in\{1, \ldots, m\}$ and $j, l \in\{1,2, \ldots, n+1\}$, let $x=\left(g_{i}, h_{j}\right)$ and $y=\left(g_{k}, h_{l}\right)$ be two vertices of $K_{m} \triangleright_{v} W_{n}$. We show that there exists a rainbow $x-y$ path by considering the following two subcases.

- $i=k$. Without loss of generality, let $j<l$. If $d(x, y)=1$, then it is clearly that edge $x y$ is a rainbow $x-y$ path. If $d(x, y)=2$, then a shortest $x-y$ path which contained in the cycle C_{n} is a rainbow $x-y$ path.
- $i \neq k$. If $j=l=1$, then edge $x y$ is a rainbow $x-y$ path. If $j=1$ and $l \in\{2,3, \ldots, n+1\}$, then a path $P=\left(g_{i}, h_{1}\right),\left(g_{k}, h_{1}\right),\left(g_{k}, h_{l}\right)$ is a rainbow $x-y$ path. Otherwise, a path $P=$ $\left(g_{i}, h_{j}\right),\left(g_{i}, h_{1}\right),\left(g_{k}, h_{1}\right),\left(g_{k}, h_{l}\right)$ is a rainbow $x-y$ path.

For the lower bound, note that $\operatorname{diam}\left(K_{m} \triangleright_{v} W_{n}\right)=3$. Thus, $r c\left(K_{m} \triangleright_{v} K_{n}\right) \geq 3$ by Theorem 2.1.
Subcase 1.2. $m \geq 4$
We show that $r c\left(K_{m} \triangleright_{v} W_{n}\right) \leq 4$ by defining a rainbow 4-coloring of $K_{m} \triangleright_{v} W_{n}$. Let $i \in$ $\{1,2, \ldots, m\}$ and $j \in\{2,3, \ldots, n+1\}$. We assign color 1 to the edges $\left(g_{i}, h_{1}\right)\left(g_{i}, h_{j}\right)$ for even j, color 2 to the edges $\left(g_{i}, h_{1}\right)\left(g_{i}, h_{j}\right)$ for odd j, color 3 to the remaining edges of $W_{n}(i)$, and color 4 to all edges of $K_{m}\left(h_{1}\right)$. For $i, k \in\{1,2, \ldots, m\}$ and $j, l \in\{1,2, \ldots, n+1\}$, let $x=\left(g_{i}, h_{j}\right)$ and $y=\left(g_{k}, h_{l}\right)$ be two vertices of $K_{m} \triangleright_{v} W_{n}$. We show that there exists a rainbow $x-y$ path by considering the following two subcases.

- $i=k$. Without loss of generality, let $j<l$. It is clearly that edge $x y$ is a rainbow $x-y$ path if $d(x, y)=1$. Hence, we may further consider cases when $d(x, y)=2$. If j and l have same parity, then $P=\left(g_{i}, h_{j}\right),\left(g_{i}, h_{1}\right),\left(g_{i}, h_{l-1}\right),\left(g_{i}, h_{l}\right)$ is a rainbow $x-y$ path. Otherwise, $P=\left(g_{i}, h_{j}\right),\left(g_{i}, h_{1}\right),\left(g_{i}, h_{l}\right)$ is a rainbow $x-y$ path.
- $i \neq k$. If $j=l=1$, then edge $x y$ is a rainbow $x-y$ path. If $j=1$ and $l \in\{2,3, \ldots, n+1\}$, then $P=\left(g_{i}, h_{1}\right),\left(g_{k}, h_{1}\right),\left(g_{k}, h_{l}\right)$ is a rainbow $x-y$ path. Next, we may further consider cases when $j, l \in\{2,3, \ldots, n+1\}$. If j and l have same parity with $l \neq 2$, then $P=$ $\left(g_{i}, h_{j}\right),\left(g_{i}, h_{1}\right),\left(g_{k}, h_{1}\right),\left(g_{k}, h_{l-1}\right),\left(g_{i}, h_{l}\right)$ is a rainbow $x-y$ path. If j and l have same parity with $l=2$, then $P=\left(g_{i}, h_{j}\right),\left(g_{i}, h_{1}\right),\left(g_{k}, h_{1}\right),\left(g_{k}, h_{l+1}\right),\left(g_{i}, h_{l}\right)$ is a rainbow $x-y$ path. Otherwise, $P=\left(g_{i}, h_{j}\right),\left(g_{i}, h_{1}\right),\left(g_{k}, h_{1}\right),\left(g_{k}, h_{l}\right)$ is a rainbow $x-y$ path.
For the lower bound, suppose to the contrary that $r c\left(K_{m} \triangleright_{v} W_{n}\right) \leq 3$. Let c be a rainbow 3-coloring of $K_{m} \triangleright_{v} W_{n}$. Observe that for distinct $i, k \in\{1,2, \ldots, m\}$ and $j, l \in\{2,3, \ldots, n+1\}$, the only possible $\left(g_{i}, h_{j}\right)-\left(g_{k}, h_{l}\right)$ path of length 3 is $\left(g_{i}, h_{j}\right),\left(g_{i}, h_{1}\right),\left(g_{k}, h_{1}\right),\left(g_{k}, h_{l}\right)$. This forces $c\left(\left(g_{i}, h_{1}\right)\left(g_{i}, h_{j}\right)\right) \neq c\left(\left(g_{k}, h_{1}\right)\left(g_{k}, h_{l}\right)\right)$ for all distinct $i, k \in\{1,2, \ldots, m\}$ and $j, l \in\{2,3, \ldots, n+$ $1\}$. However, $m \geq 4$, implying that we need at least 4 distinct colors to color edges $\left(g_{i}, h_{1}\right)\left(g_{i}, h_{j}\right)$ for all $i \in\{1,2, \ldots, m\}$ and $j \in\{2,3, \ldots, n+1\}$, which is impossible.

Case 2. $n \geq 7$
By using the same 4-rainbow coloring as in Subcase 1.2, we have $\operatorname{rc}\left(K_{m} \triangleright_{v} K_{n}\right) \leq 4$. For the lower bound, suppose to the contrary that $r c\left(K_{m} \triangleright_{v} W_{n}\right) \leq 3$. Let c be a rainbow 3 -coloring of $K_{m} \triangleright_{v} W_{n}$. First, consider vertices $\left(g_{1}, h_{j}\right)$ and $\left(g_{2}, h_{l}\right)$ for $j, l \in\{2,3, \ldots, n+1\}$. Since path $\left(g_{1}, h_{j}\right),\left(g_{1}, h_{1}\right),\left(g_{2}, h_{1}\right),\left(g_{2}, h_{l}\right)$ is the only possible $\left(g_{1}, h_{j}\right)-\left(g_{2}, h_{l}\right)$ path of length 3 , without loss of generality, let $c\left(\left(g_{1}, h_{1}\right)\left(g_{1}, h_{j}\right)\right)=1, c\left(\left(g_{1}, h_{1}\right)\left(g_{2}, h_{1}\right)\right)=2$, and $c\left(\left(g_{2}, h_{1}\right)\left(g_{2}, h_{l}\right)\right)=3$ for all $j, l \in\{2,3, \ldots, n+1\}$. Next, consider vertices $\left(g_{1}, h_{j}\right)$ and $\left(g_{1}, h_{l}\right)$ for distinct $j, l \in$ $\{2,3, \ldots, n+1\}$. Since all spokes of $W_{n}(1)$ have the same color, which is 1 , a rainbow $\left(g_{1}, h_{j}\right)-$ $\left(g_{1}, h_{l}\right)$ path should be a subgraph of C_{n}. Since $n \geq 7$, it follows by Theorem 1.2 that we need at least 4 distinct colors assigned to the edges of C_{n} so that there exists a rainbow $\left(g_{1}, h_{j}\right)-\left(g_{1}, h_{l}\right)$ as a subgraph of C_{n}, which is impossible.

For illustration of Theorem 3.3, please see Figure 4.
A fan F_{n} of order $n+1$ is a graph formed by joining a new vertex to all vertices of a path P_{n}. Let $V\left(F_{n}\right)=\left\{h_{1}, h_{2}, \ldots, h_{n+1}\right\}$ such that $E\left(F_{n}\right)=\left\{h_{1} h_{i}: i \in\{2,3, \ldots, n+1\}\right\} \cup\left\{h_{i} h_{i+1}\right.$: $i \in\{2,3, \ldots, n\}\}$. The vertex h_{1} is called the center vertex of F_{n}, and the edge $h_{1} h_{i}$ for each $i \in\{2,3, \ldots, n+1\}$ is called the spoke of F_{n}.

Theorem 3.4. For $m \geq 2$ and $n \geq 3$, let K_{m} be a complete graph of order m, F_{n} be a fan of order $n+1$, and v be the center vertex of F_{n}. Then

$$
r c\left(K_{m} \triangleright_{v} F_{n}\right)=\left\{\begin{array}{l}
3, \text { for } m \in\{2,3\} \text { and } n \in\{3,4\} \\
4, \text { for } m \geq 4 \text { and } n \in\{3,4\}, \text { or } m \geq 2 \text { and } n \geq 5 .
\end{array}\right.
$$

Proof. We consider two cases.
Case 1. $n \in\{3,4\}$
We consider two subcases.
Subcase $1.1 m \in\{2,3\}$
Let $i \in\{1, \ldots, m\}$. We show that $r c\left(K_{m} \triangleright_{v} F_{n}\right) \leq 3$ by defining a rainbow 3 -coloring of $K_{m} \triangleright_{v} F_{n}$ as follows.
(i) If $m=2$, assign color 3 to the edge $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{1}\right)$. Otherwise, assign color 3 to the edge $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{1}\right)$, color 1 to the edge $\left(g_{2}, h_{1}\right)\left(g_{3}, h_{1}\right)$, and color 2 to the edge $\left(g_{1}, h_{1}\right)\left(g_{3}, h_{1}\right)$.

Figure 4. A rainbow 4-coloring of $K_{5} \triangleright_{v} W_{5}$
(ii) Assign colors i to the edges $\left(g_{i}, h_{1}\right)\left(g_{i}, h_{j}\right)$ for all $j \in\{2,3, \ldots, n+1\}$.
(iii) For $j \in\{2,3, \ldots, n\}$, assign colors $j-1$ to the edges $\left(g_{i}, h_{j}\right)\left(g_{i}, h_{j+1}\right)$.

By using a similar argument as in the proof of Subcase 1.1 in Theorem 3.3, we can show that there exists a rainbow $x-y$ path for any two distinct vertices x and y of $K_{m} \triangleright_{v} F_{n}$. Meanwhile for the lower bound, since $\operatorname{diam}\left(K_{m} \triangleright_{v} F_{n}\right)=3$, it follows by Theorem 2.1 that $r c\left(K_{m} \triangleright_{v} F_{n}\right) \geq 3$.

Subcase 1.2. $m \geq 4$
Arguments similar to that used in the proof of Subcase 1.2 in Theorem 3.3 (both for the proof of upper and lower bounds) will verify that $r c\left(K_{m} \triangleright_{v} F_{n}\right)=4$.

Case 2. $n \geq 5$
By using the same 4 -rainbow coloring as in Subcase 1.2 in Theorem 3.3, we obtain that $r c\left(K_{m} \triangleright_{v} F_{n}\right) \leq 4$. For the lower bound, suppose to the contrary that $r c\left(K_{m} \triangleright_{v} F_{n}\right) \leq 3$. By using a similar argument as Case 2 in Theorem 3.3, we will obtain that all spokes of $F_{n}(i)$ for each $i \in\{1,2\}$ have the same color. Thus, any rainbow $\left(g_{1}, h_{j}\right)-\left(g_{1}, h_{l}\right)$ path for distinct $j, l \in\{2,3, \ldots, n+1\}$ should be a subgraph of P_{n}. However, $n \geq 5$. Thus, by Theorem 1.1(b), we need at least 4 distinct colors assigned to the edges of P_{n} so that there exists a rainbow $\left(g_{1}, h_{j}\right)-\left(g_{1}, h_{l}\right)$ as a subgraph of P_{n}, which is impossible.

For illustration of Theorem 3.4, please see Figure 5.

Figure 5. A rainbow 4-coloring of $K_{4} \triangleright_{v} F_{5}$

Acknowledgement

This research was supported by a research grant from Ministry of Education, Culture, Research, and Technology, Indonesia.

References

[1] L. Accardi, A.B. Ghorbal, and N. Obata, Monotone independence, comb graph, and BoseEinstein condensation, World Scientific 7(3) (2004), 419-435.
[2] Z.Y. Awanis and A.N.M. Salman, The strong 3-rainbow index of some certain graphs and its amalgamation, Opuscula Mathematica 42(4) (2022), 527-547.
[3] Z.Y. Awanis and A.N.M. Salman, The 3-rainbow index of amalgamation of some graphs with diameter 2, IOP Conference Series: Journal of Physics 1127 (2019), 012058.
[4] Z.Y. Awanis, A. Salman, S.W. Saputro, M. Bača, and A. Semaničová-Feňovčíková, The strong 3-rainbow index of edge-amalgamation of some graphs, Turkish Journal of Mathematics 44 (2020), 446-462.
[5] Z.Y. Awanis, A.N.M. Salman, and S.W. Saputro, The strong 3-rainbow index of edge-comb product of a path and a connected graph, Electronic Journal of Graph Theory and Applications 10(1) (2022), 33-50.
[6] Z.Y. Awanis, A.N.M. Salman, and S.W. Saputro, The strong 3-rainbow index of comb product of a tree and a connected graph, Journal of Information Processing 28 (2020), 865-875.
[7] S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster, Hardness and algorithms for rainbow connection, Journal of Combinatorial Optimization 21 (2011), 330-347.
[8] G. Chartrand, G.L. Johns, K.A. Mc Keon, and P. Zhang, Rainbow connection in graphs, Mathematica Bohemica, 133(1) (2008), 85-98.
[9] D. Fitriani and A.N.M. Salman, Rainbow connection number of amalgamation of some graphs, AKCE International Journal of Graphs and Combinatorics 13(1) (2016), 90-99.
[10] T. Gologranc, G. Mekis, and I. Peterin, Rainbow connection and graph products, Graphs and Combinatorics 30 (2014), 591-607.
[11] I.S. Kumala and A.N.M. Salman, The rainbow connection number of a flower $\left(C_{m}, K_{n}\right)$ graph and a flower $\left(C_{3}, F_{n}\right)$ graph, Procedia Computer Science 74 (2015), 168-172.
[12] S. Klavzar and G. Mekis, On the rainbow connection of Cartesian products and their subgraphs, Discussiones Mathematicae Graph Theory, 32(4) (2012), 783-793.
[13] X. Li, Y. Shi, and Y. Sun, Rainbow connections of graphs: a survey, Graphs and Combinatorics, 29(1) (2013), 1-38.
[14] X. Li and Y. Sun, Rainbow Connection of Graphs, Springer-Verlag, New York, (2012).
[15] X. Li and Y. Sun, Characterization of graphs with large rainbow connection number and rainbow connection numbers of some graph operations, Discrete Mathematics, to appear.
[16] S. Nabila and A.N.M. Salman, The rainbow connection number of origami graphs and pizza graphs, Procedia Computer Science 74 (2015), 162-167.
[17] D. Resty and A.N.M. Salman, The rainbow connection number of an n-crossed prism graph and its corona product with a trivial graph, Procedia Computer Science 74 (2015), 143-150.
[18] A.N.M. Salman, Z.Y. Awanis, and S.W. Saputro, Graphs with strong 3-rainbow index equals 2, IOP Conference Series: Journal of Physics 2157 (2022), 012011.
[19] F. Septyanto, K.A. Sugeng, Color code techniques in rainbow connection, Electronic Journal of Graph Theory and Applications 6(2) (2018), 347-361.
[20] M.A. Shulhany and A.N.M. Salman, The (strong) rainbow connection number of stellar graphs, AIP Conference Proceedings of Mathematics, Science, and Computer Science Education International Seminar 1708, (2016).
[21] B.H. Susanti, A.N.M. Salman, and R. Simanjuntak, The rainbow connection number of some subdivided roof graphs, AIP Conference Proceedings 1707 (2016), 020021.
[22] Susilawati and A.N.M. Salman, Rainbow connection number of rocket graphs, AIP Conference Proceedings 1677 (2015), 030012.
[23] S. Sy, G.H. Medika, and L. Yulianti, The rainbow connection number of fan and sun, Applied Mathematical Sciences 7 (2013), 3155-3159.

