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Abstract

An edge-colored graph G is called a rainbow connected if any two vertices are connected by a path
whose edges have distinct colors. Such a path is called a rainbow path. The smallest number of
colors required in order to make G rainbow connected is called the rainbow connection number
of G. For two connected graphs G and H with v ∈ V (H), the comb product between G and
H, denoted by G ▷v H , is a graph obtained by taking one copy of G and |V (G)| copies of H
and identifying the i-th copy of H at the vertex v to the i-th vertex of G. In this paper, we give
sharp lower and upper bounds for the rainbow connection number of comb product between two
connected graphs. We also determine the exact values of rainbow connection number of G ▷v H
for some connected graphs G and H .
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1. Introduction

Throughout this paper, all graphs are simple, finite, and undirected. For h ∈ N, we define
a coloring c : E(G) → {1, 2, . . . , h} of the edges of G such that the adjacent edges can be
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colored the same. An edge-colored graph G is called a rainbow connected if any two vertices are
connected by a path whose edges have distinct colors. Such a path is called a rainbow path. In
this case, the edge-coloring c is called a rainbow h-coloring of G. The smallest number of colors
required in order to make G rainbow connected is called the rainbow connection number of G,
denoted by rc(G). This concept was introduced by Chartrand et al. in 2008 [8]. It is obvious that
diam(G) ≤ rc(G) ≤ |E(G)|, where diam(G) and |E(G)| denote the diameter and the size of G,
respectively.

The rainbow connection number has an important application in security systems in a commu-
nication network. One of the things that can be done so that any two people in a communication
network can communicate securely is by assigning some passwords to a path connecting them
(which may have other people as intermediaries) so that there is no repetition of the passwords in
it. Of course, the number of passwords that we used are expected to be as minimal as possible.
The minimum number of these passwords is represented by the rainbow connection number.

Many previous researchers determined the rainbow connection number of graphs by limiting
the study to certain classes of graphs. This is because computing the rainbow connection number
of graphs is an NP-Hard problem [7]. Chartrand et al. in [8] determined the rainbow connection
number of some classes of graphs, such as complete graphs, trees, cycles, and wheels. These results
are given in Theorems 1.1-1.3. Further, Sy et al. determined the rainbow connection number of
fans and suns [23], meanwhile Shulhany and Salman determined the rainbow connection number
of stellar graphs [20]. Other researchers also interested in studying the color code techniques in
rainbow connection like Septyanto and Sugeng did [19].

Theorem 1.1. [8] Let G be a nontrivial connected graph of size m. Then

(a) rc(G) = 1 if and only if G is a complete graph,

(b) rc(G) = m if and only if G is a tree.

Theorem 1.2. [8] For each integer n ≥ 4, the rainbow connection number of a cycle Cn is
rc(Cn) = ⌈n

2
⌉.

Theorem 1.3. [8] For n ≥ 3, the rainbow connection number of a wheel Wn is

rc(Wn) =


1, if n = 3;
2, if n ∈ {4, 5, 6};
3, if n ≥ 7.

There are also some results about bounds for rainbow connection number of graphs resulted
from graph operations; for instance: Cartesian product graphs [12, 15], composition (lexicographic
product) graphs [10, 15], join of graphs [15], direct product and strong product graphs [10], and
amalgamation of some graphs [9]. Some other results on rainbow connection number of graphs
can be found in [11, 16, 17, 21, 22]. An overview about rainbow connection number can be found
in a survey by Li et al. [13] and a book of Li and Sun [14].

Later, Awanis and Salman [2] introduced a new concept called a strong k-rainbow index. A
rainbow tree in G is a tree whose edges have distinct colors. For an integer k ∈ {2, 3, . . . , n}, the
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strong k-rainbow index of G, denoted by srxk(G), is the smallest number of colors required in an
edge-coloring of G such that every k vertices of G are connected by a rainbow tree with minimum
size. If k = 2, then the strong 2-rainbow index of G is called the strong rainbow connection
number of G, denoted by src(G) [8]. Awanis and Salman [2] determined the strong 3-rainbow
index of some certain graphs, meanwhile Salman et al. [18] investigated the characterization of
graphs whose strong 3-rainbow index equals 2. Other researchers also determined the strong 3-
rainbow index of some graph operations which can be found in [2, 3, 4, 5, 6].

In this paper, we study the rainbow connection number of comb product of graphs. The fol-
lowing definition of comb product of two graphs is taken from [1]. Let G and H be two connected
graphs. Let v be a vertex of H . The comb product between G dan H, denoted by G ▷v H , is a
graph obtained by taking one copy of G and |V (G)| copies of H and identifying the i-th copy of
H at the vertex v to the i-th vertex of G. We first determine the lower and upper bounds for the
rainbow connection number of G ▷v H , then we provide comb product of graphs whose rainbow
connection number satisfies the bounds. These results are given in Section 2. We also determine
the exact values of rainbow connection number of G ▷v H for some connected graphs G and H
which are given in Section 3.

2. Sharp lower and upper bounds for rc(G ▷v H)

Let G and H be two connected graphs of order m and n, respectively, with V (G) = {g1, g2, . . . ,
gm} and V (H) = {h1, h2, . . . , hn}. Let v be a vertex of H. According to the definition of comb
product, we have V (G ▷v H) = V (G) × V (H) = {(gi, hj) : gi ∈ V (G), hj ∈ V (H)} and two
vertices (gi, hj) and (gk, hl) are adjacent if and only if

(a) gi = gk and hjhl ∈ E(H), or

(b) gigk ∈ E(G) and hj = hl = v.

Without loss of generality, let v = h1. For each i ∈ {1, 2, . . . ,m}, let H(i) denote a subgraph of
G▷v H induced by {(gi, hj) : j ∈ {1, 2, . . . , n}}, and G (h1) denote a subgraph of G▷v H induced
by {(gi, h1) : i ∈ {1, 2, . . . ,m}}. For further discussion, we denote c(X) as a set of colors assigned
to the edges in X ⊆ E (G ▷v H).

The following theorem provides the sharp lower and upper bounds for the rainbow connection
number of comb product of two arbitrary graphs.

Theorem 2.1. Let G and H be two connected graphs of order m and n, respectively, and let
v ∈ V (H). Then

diam (G ▷v H) ≤ rc (G ▷v H) ≤ rc(G) +m(rc(H)).

Proof. Without loss of generality, let v = h1. It is obvious that diam (G ▷v H) ≤ rc (G ▷v H).
Let c1 be a rainbow rc(G)-coloring of G and c2 be a rainbow rc(H)-coloring of H . We define an
edge-coloring c : E (G ▷v H) → {1, 2, . . . , rc(G) +m(rc(H))} as follows.

c(e) =

{
c1(e), e ∈ E(G(h1));

rc(G) + c2(e) + (p− 1)rc(H), e ∈ E(H(p)) for each p ∈ {1, 2, . . . ,m}.
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Now, we show that an edge-coloring c above is a rainbow coloring of G ▷v H . For i, k ∈
{1, 2, . . . ,m} and j, l ∈ {1, 2, . . . , n}, let x = (gi, hj) and y = (gk, hl) be two vertices of G▷vH . If
i = k, then there exists a rainbow x−y path by edge-coloring c corresponding to edge-coloring c2.
If i ̸= k, there exist a rainbow (gi, hj)− (gi, h1) path P1 in H(i), a rainbow (gi, h1)− (gk, h1) path
P2 in G(h1), and a rainbow (gk, h1)− (gk, hl) path P3 in H(k), so that c (E(Pa)) ∩ c (E(Pb)) = ∅
for distinct a, b ∈ {1, 2, 3}. Then P = P1 ∪ P2 ∪ P3 is a rainbow x− y path.

Now, we prove the existence of comb product of graphs whose rainbow connection number
satisfies either the lower or upper bound in Theorem 2.1. These results are given in the next two
theorems.

Theorem 2.2. Let G be a connected graph of order m ≥ 2 with rc(G) = diam(G), Cn be a
cycle of order n ≥ 3, and v ∈ V (Cn). For m ≥ 2 and even n ≥ 4, or m = 2 and odd n ≥ 3,
rc (G ▷v Cn) = diam (G ▷v Cn).

Proof. Let V (Cn) = {h1, h2, . . . , hn} such that E(Cn) = {hjhj+1 : j ∈ {1, 2, . . . , n} and hn+1 =
h1}. Without loss of generality, let v = h1. By Theorem 2.1, we only need to show that
rc (G ▷v Cn) ≤ diam (G ▷v Cn) = diam(G) + 2 diam(Cn).

For m ≥ 2 and even n ≥ 4, diam (G ▷v Cn) = rc(G) + n. Let c′ be a rainbow rc(G)-coloring
of G. We define an edge-coloring c : E (G ▷v Cn) → {1, 2, . . . , rc(G) + n} as follows.

(i) For each i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, define c ((gi, hj) (gi, hj+1)) = j.

(ii) For distinct i, k ∈ {1, 2, . . . ,m}, define c ((gi, h1) (gk, h1)) = c′(gigk) + n.

Meanwhile for m = 2 and odd n ≥ 3, diam (G ▷v Cn) = n. We define an edge-coloring
c : E (G ▷v Cn) → {1, 2, . . . , n} as follows.

(i) Define c ((g1, h1) (g2, h1)) = 1.

(ii) Define c ((g1, hj) (g1, hj+1)) = j+1 for each j ∈
{
1, 2, . . . , n+1

2

}
and c ((g1, hj) (g1, hj+1)) =

j − n−1
2

for each j ∈
{

n+3
2
, . . . , n

}
.

(iii) Define c ((g2, hj) (g2, hj+1)) = j+n+1
2

for each j ∈
{
1, 2, . . . , n−1

2

}
and c ((g2, hj) (g2, hj+1))

= j for each j ∈
{

n+1
2
, . . . , n

}
.

Now, we show that there exists a rainbow x− y path for any two vertices x, y ∈ V (G ▷v Cn). For
i, k ∈ {1, 2, . . . ,m} and j, l ∈ {1, 2, . . . , n}, let x = (gi, hj) and y = (gk, hl). We consider two
cases.

Case 1. i = k
Observe that the edge-colorings c above assign n distinct colors to the edges of Cn(i) for m ≥ 2

and even n ≥ 4, and n+1
2

distinct colors to the edges of Cn(i) for m = 2 and odd n ≥ 3. Hence, it
is easy to find a rainbow x− y path in G ▷v Cn.

Case 2. i ̸= k
If j = l = 1, there exists a rainbow x − y path in G ▷v Cn by edge-coloring c corresponding

to edge-coloring c′. Otherwise, there exist a shortest rainbow (gi, hj)− (gi, h1) path P1 in Cn(i), a
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shortest rainbow (gi, h1)−(gk, h1) path P2 in G(h1), and a shortest rainbow (gk, h1)−(gk, hl) path
P3 in Cn(k), so that c (E(Pa))∩c (E(Pb)) = ∅ for distinct a, b ∈ {1, 2, 3}. Then P = P1∪P2∪P3

is a rainbow x− y path.

Theorem 2.3. Let G and H be two arbitrary trees of order m and n, respectively, and let v ∈
V (H). Then rc (G ▷v H) = rc(G) +m(rc(H)).

Proof. Note that G ▷v H is also a tree with |E (G ▷v H)| = |E(G)| +m(|E(H)|). According to
Theorem 1.1(b), rc(G) = |E(G)| if and only if G is a tree. Thus, rc (G ▷v H) = |E (G ▷v H)| =
|E(G)|+m(|E(H)|) = rc(G) +m(rc(H)).

For illustration of Theorems 2.2 and 2.3, please see Figures 1 and 2, respectively.

Figure 1. A rainbow 10-coloring of C4 ▷v C8

3. Rainbow connection number of comb product of some graphs

In Section 2, we have proven the sharpness of the lower and upper bounds in Theorem 2.1.
In this section, we provide comb product of graphs G ▷v H for some connected graphs G and H
whose rainbow connection number lies between these lower and upper bounds.

Our first result is the rainbow connection number of Pm ▷v Cn for certain values of n, which is
given in the following theorem.

Theorem 3.1. Let Pm be a path of order m ≥ 3, Cn be a cycle of order n ≥ 3 where n is odd, and
v ∈ V (Cn). Then rc (Pm ▷v Cn) = diam (Pm ▷v Cn) + 1 = rc(Pm) + n.
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Figure 2. A rainbow 23-coloring of comb product of two trees

Proof. Let V (Pm) = {g1, g2, . . . , gm} such that E(Pm) = {gigi+1 : i ∈ {1, 2, . . . ,m − 1}}.
We can check that diam(Pm ▷v Cn) = rc(Pm) + n − 1. Without loss of generality, let v =
h1. By assigning colors 1, 2, . . . , rc(Pm) to the edges of Pm and colors rc(Pm) + 1, rc(Pm) +
2, . . . , rc(Pm) + n to the edges of Cn(i) for each i ∈ {1, 2, . . . ,m}, we can find a rainbow x − y
path for any two vertices x, y ∈ V (Pm ▷v Cn), where the proof is similar to that used in Theorem
2.2 for case m ≥ 2 and even n ≥ 4 .

Next,we prove the lower bound. Suppose to the contrary that rc (Pm ▷v Cn) ≤ rc(Pm)+n−1.
Let c be a rainbow (rc(Pm) + n − 1)-coloring of Pm ▷v Cn and let A =

{
1, 2, . . . , n−1

2

}
, B ={

n−1
2

+ 1, n−1
2

+ 2, . . . , n− 1
}

, and C = {n, n + 1, . . . , rc(Pm) + n − 1} be the sets of colors.
Consider two vertices (gi, hj), (gk, hl) ∈ V (Pm ▷v Cn) so that d ((gi, hj), (gk, hl)) = rc(Pm) +
n − 1. This condition is satisfied when i, k ∈ {1,m}, i ̸= k, and j, l ∈ {n+1

2
, n+3

2
}. Without

loss of generality, let i = 1 and k = m. Note that there exists only one (g1, hj) − (gm, hl) path
of length rc(Pm) + n − 1, which can be obtained by identifying vertices (g1, h1) and (gm, h1)
in a (g1, hj) − (g1, h1) path of length n−1

2
, a (g1, h1) − (gm, h1) path of length rc(Pm), and a

(gm, h1)−(gm, hl) path of length n−1
2

. Thus, we need at least rc(Pm)+n−1 distinct colors to color
all edges in (g1, hj) − (gm, hl) path. First, consider vertices (g1, hn+1

2
) and (gm, hn+1

2
). Without

loss of generality, assign colors from A to all edges in (g1, hn+1
2
)− (g1, h1) path, colors from C to

all edges in (g1, h1)− (gm, h1) path, and colors from B to all edges in (gm, h1)− (gm, hn+1
2
) path.

Next, by considering vertices (g1, hn+3
2
) and (gm, hn+1

2
) and vertices (g1, hn+1

2
) and (gm, hn+3

2
),

we obtain that all edges in (g1, hn+3
2
) − (g1, h1) path and all edges in (gm, h1) − (gm, hn+3

2
) path

should be colored with colors from A and B, respectively. Next, consider vertices (g1, hn+1
2
)

466



www.ejgta.org

Rainbow connection number of comb product of graphs | D. Fitriani et al.

and (gm−1, hn+1
2
). Note that any (g1, hn+1

2
) − (gm−1, hn+1

2
) path has length either rc(Pm) + n −

2 or rc(Pm) + n − 1 and must contains a (g1, hn+1
2
) − (gm−1, h1) path as a subgraph. Since

some edges in any (g1, hn+1
2
) − (gm−1, h1) path have been colored with colors from A ∪ C \

{c ((gm−1, h1), (gm, h1))}, this forces all edges in Cn(m − 1) should be colored with colors from
B ∪ {c ((gm−1, h1), (gm, h1))}. However, there is no rainbow (gm−1, hn+1

2
) − (gm, hn+1

2
) path, a

contradiction.

Our next results are the rainbow connection number of Km ▷v H where H is either a complete
graph, a wheel, or a fan.

Theorem 3.2. For m ≥ 2 and n ≥ 3, Let Km and Kn be two complete graphs of order m and n,
respectively, and let v ∈ V (Kn). Then

rc(Km ▷v Kn) =

{
3, for m ∈ {2, 3};
4, for m ≥ 4.

Proof. Without loss of generality, let v = h1. We consider two cases.
Case 1. m ∈ {2, 3}
We first show that rc (Km ▷v Kn) ≤ 3 by defining a rainbow 3-coloring of Km▷vKn as follows.

(i) For each i ∈ {1, . . . ,m}, assign colors i to all edges of Kn(i).

(ii) If m = 2, assign color 3 to the edge (g1, h1)(g2, h1). If m = 3, assign color 3 to the edge
(g1, h1)(g2, h1), color 1 to the edge (g2, h1)(g3, h1), and color 2 to the edge (g1, h1)(g3, h1).

By the edge-coloring above, it is easy to find a rainbow x − y path for any two vertices x, y ∈
V (Km ▷v Kn). Meanwhile for the lower bound, note that diam(Km ▷v Kn) = 3. Thus, we get
rc(Km ▷v Kn) ≥ 3 by Theorem 2.1.

Case 2. m ≥ 4
We show that rc (Km ▷v Kn) ≤ 4 by defining a rainbow 4-coloring of Km ▷v Kn as follows.

(i) For each i ∈ {1, 2, . . . ,m} and j ∈ {2, 3, . . . , n}, assign color 1 to the edges (gi, h1)(gi, hj)
for even j, color 2 to the edges (gi, h1)(gi, hj) for odd j, and color 3 to the remaining edges
of Kn(i).

(ii) Assign color 4 to the edges of Km(h1).

For i, k ∈ {1, 2, . . . ,m} and j, l ∈ {1, 2, . . . , n}, let x = (gi, hj) and y = (gk, hl) be two vertices
of Km ▷v Kn. If i = k and j ̸= l, or if i ̸= k and j = l = 1, then the edge xy is a rainbow x − y
path. If i ̸= k, j = 1, and l ∈ {2, 3, . . . , n}, then P = (gi, h1), (gk, h1), (gk, hl) is a rainbow x− y
path. Next, we may further consider cases when i ̸= k and j, l ∈ {2, 3, . . . , n} as follows.

• j and l have same parity. If l ̸= n, then P = (gi, hj), (gi, h1), (gk, h1), (gk, hl+1), (gk, hl)
is a rainbow x − y path. Otherwise, P = (gi, hj), (gi, h1), (gk, h1), (gk, hl−1), (gk, hl) is a
rainbow x− y path.
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Figure 3. A rainbow 4-coloring of K6 ▷v K4

• j and l have distinct parity. Then P = (gi, hj), (gi, h1), (gk, h1), (gk, hl) is a rainbow x − y
path.

Figure 3 gives an illustration of a rainbow 4-coloring of K6 ▷v K4.
For the lower bound, suppose to the contrary that rc (Km ▷v Kn) ≤ 3. Let c be a rainbow

3 coloring of Km ▷v Kn. Observe that for distinct i, k ∈ {1, 2, . . . ,m} and j, l ∈ {2, 3, . . . , n},
any (gi, hj) − (gk, hl) path has length at least 3. This forces (gi, hj), (gi, h1), (gk, h1), (gk, hl) is
the only possible (gi, hj) − (gk, hl) path, where c((gi, h1)(gi, hj)) ̸= c((gk, h1)(gk, hl)). First,
consider vertices (g1, h2) and (g2, h2). Without loss of generality, let c((g1, h1)(g1, h2)) = 1,
c((g1, h1)(g2, h1)) = 2, and c((g2, h1)(g2, h2)) = 3. Next, consider vertices (g1, h2) and (gi, h2)
and vertices (g2, h2) and (gi, h2) for all i ∈ {3, 4, . . . ,m}, successively. Thus, c((gi, h1)(gi, h2)) =
2 for all i ∈ {3, 4, . . . ,m}. However, there is no rainbow (gi, h2) − (gk, h2) path for distinct
i, k ∈ {3, 4, . . . ,m}, a contradiction.

A wheel of order n + 1, denoted by Wn, is a graph formed by joining a new vertex to all
vertices of a cycle Cn. Let V (Wn) = {h1, h2, . . . , hn+1} such that E(Wn) = {h1hi, hihi+1 : i ∈
{2, 3, . . . , n + 1} and hn+2 = h2}. The vertex h1 is called the center vertex of Wn, and the edge
h1hi for each i ∈ {2, 3, . . . , n+ 1} is called the spoke of Wn.

Theorem 3.3. For m ≥ 2 and n ≥ 4, let Km be a complete graph of order m, Wn be a wheel of
order n+ 1, and v be the center vertex of Wn. Then

rc(Km ▷v Wn) =

{
3, for m ∈ {2, 3} and n ∈ {4, 5, 6};
4, for m ≥ 4 and n ∈ {4, 5, 6}, or m ≥ 2 and n ≥ 7.
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Proof. We consider two cases.
Case 1. n ∈ {4, 5, 6}
We consider two subcases.
Subcase 1.1. m ∈ {2, 3}
Let i ∈ {1, . . . ,m}. We show that rc (Km ▷v Wn) ≤ 3 by defining a rainbow 3-coloring of

Km ▷v Wn as follows.

(i) If m = 2, assign color 3 to the edge (g1, h1)(g2, h1). Otherwise, assign color 3 to the edge
(g1, h1)(g2, h1), color 1 to the edge (g2, h1)(g3, h1), and color 2 to the edge (g1, h1)(g3, h1).

(ii) Assign colors i to the edges (gi, h1)(gi, hj) for all j ∈ {2, 3, . . . , n+ 1}.

(iii) For n = 4, assign color 1 to the edges (gi, h2)(gi, h3) and (gi, h4)(gi, h5) and color 2 to the
edges (gi, h3)(gi, h4) and (gi, h2)(gi, h5).

(iv) For n = 5, assign color 1 to the edges (gi, h2)(gi, h3) and (gi, h5)(gi, h6), color 2 to the edges
(gi, h3)(gi, h4) and (gi, h2)(gi, h6), and color 3 to the edge (gi, h4)(gi, h5).

(v) For n = 6, assign color 1 to the edges (gi, h2)(gi, h3) and (gi, h5)(gi, h6), color 2 to the edges
(gi, h3)(gi, h4) and (gi, h6)(gi, h7), and color 3 to the edges (gi, h4)(gi, h5) and (gi, h2)(gi, h7).

For i, k ∈ {1, . . . ,m} and j, l ∈ {1, 2, . . . , n+1}, let x = (gi, hj) and y = (gk, hl) be two vertices
of Km ▷v Wn. We show that there exists a rainbow x − y path by considering the following two
subcases.

- i = k. Without loss of generality, let j < l. If d(x, y) = 1, then it is clearly that edge xy is a
rainbow x − y path. If d(x, y) = 2, then a shortest x − y path which contained in the cycle
Cn is a rainbow x− y path.

- i ̸= k. If j = l = 1, then edge xy is a rainbow x− y path. If j = 1 and l ∈ {2, 3, . . . , n+1},
then a path P = (gi, h1), (gk, h1), (gk, hl) is a rainbow x − y path. Otherwise, a path P =
(gi, hj), (gi, h1), (gk, h1), (gk, hl) is a rainbow x− y path.

For the lower bound, note that diam(Km ▷v Wn) = 3. Thus, rc(Km ▷v Kn) ≥ 3 by Theorem 2.1.
Subcase 1.2. m ≥ 4
We show that rc (Km ▷v Wn) ≤ 4 by defining a rainbow 4-coloring of Km ▷v Wn. Let i ∈

{1, 2, . . . ,m} and j ∈ {2, 3, . . . , n+ 1}. We assign color 1 to the edges (gi, h1)(gi, hj) for even j,
color 2 to the edges (gi, h1)(gi, hj) for odd j, color 3 to the remaining edges of Wn(i), and color
4 to all edges of Km(h1). For i, k ∈ {1, 2, . . . ,m} and j, l ∈ {1, 2, . . . , n + 1}, let x = (gi, hj)
and y = (gk, hl) be two vertices of Km ▷v Wn. We show that there exists a rainbow x− y path by
considering the following two subcases.

• i = k. Without loss of generality, let j < l. It is clearly that edge xy is a rainbow x − y
path if d(x, y) = 1. Hence, we may further consider cases when d(x, y) = 2. If j and l have
same parity, then P = (gi, hj), (gi, h1), (gi, hl−1), (gi, hl) is a rainbow x−y path. Otherwise,
P = (gi, hj), (gi, h1), (gi, hl) is a rainbow x− y path.
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• i ̸= k. If j = l = 1, then edge xy is a rainbow x− y path. If j = 1 and l ∈ {2, 3, . . . , n+1},
then P = (gi, h1), (gk, h1), (gk, hl) is a rainbow x − y path. Next, we may further consider
cases when j, l ∈ {2, 3, . . . , n + 1}. If j and l have same parity with l ̸= 2, then P =
(gi, hj), (gi, h1), (gk, h1), (gk, hl−1), (gi, hl) is a rainbow x − y path. If j and l have same
parity with l = 2, then P = (gi, hj), (gi, h1), (gk, h1), (gk, hl+1), (gi, hl) is a rainbow x − y
path. Otherwise, P = (gi, hj), (gi, h1), (gk, h1), (gk, hl) is a rainbow x− y path.

For the lower bound, suppose to the contrary that rc (Km ▷v Wn) ≤ 3. Let c be a rainbow
3-coloring of Km ▷vWn. Observe that for distinct i, k ∈ {1, 2, . . . ,m} and j, l ∈ {2, 3, . . . , n+1},
the only possible (gi, hj)−(gk, hl) path of length 3 is (gi, hj), (gi, h1), (gk, h1), (gk, hl). This forces
c((gi, h1)(gi, hj)) ̸= c((gk, h1)(gk, hl)) for all distinct i, k ∈ {1, 2, . . . ,m} and j, l ∈ {2, 3, . . . , n+
1}. However, m ≥ 4, implying that we need at least 4 distinct colors to color edges (gi, h1)(gi, hj)
for all i ∈ {1, 2, . . . ,m} and j ∈ {2, 3, . . . , n+ 1}, which is impossible.

Case 2. n ≥ 7
By using the same 4-rainbow coloring as in Subcase 1.2, we have rc (Km ▷v Kn) ≤ 4. For the

lower bound, suppose to the contrary that rc (Km ▷v Wn) ≤ 3. Let c be a rainbow 3-coloring of
Km ▷v Wn. First, consider vertices (g1, hj) and (g2, hl) for j, l ∈ {2, 3, . . . , n + 1}. Since path
(g1, hj), (g1, h1), (g2, h1), (g2, hl) is the only possible (g1, hj) − (g2, hl) path of length 3, without
loss of generality, let c((g1, h1)(g1, hj)) = 1, c((g1, h1)(g2, h1)) = 2, and c((g2, h1)(g2, hl)) = 3
for all j, l ∈ {2, 3, . . . , n + 1}. Next, consider vertices (g1, hj) and (g1, hl) for distinct j, l ∈
{2, 3, . . . , n+ 1}. Since all spokes of Wn(1) have the same color, which is 1, a rainbow (g1, hj)−
(g1, hl) path should be a subgraph of Cn. Since n ≥ 7, it follows by Theorem 1.2 that we need at
least 4 distinct colors assigned to the edges of Cn so that there exists a rainbow (g1, hj)− (g1, hl)
as a subgraph of Cn, which is impossible.

For illustration of Theorem 3.3, please see Figure 4.
A fan Fn of order n + 1 is a graph formed by joining a new vertex to all vertices of a path Pn.

Let V (Fn) = {h1, h2, . . . , hn+1} such that E(Fn) = {h1hi : i ∈ {2, 3, . . . , n + 1}} ∪ {hihi+1 :
i ∈ {2, 3, . . . , n}}. The vertex h1 is called the center vertex of Fn, and the edge h1hi for each
i ∈ {2, 3, . . . , n+ 1} is called the spoke of Fn.

Theorem 3.4. For m ≥ 2 and n ≥ 3, let Km be a complete graph of order m, Fn be a fan of order
n+ 1, and v be the center vertex of Fn. Then

rc(Km ▷v Fn) =

{
3, for m ∈ {2, 3} and n ∈ {3, 4};
4, for m ≥ 4 and n ∈ {3, 4}, or m ≥ 2 and n ≥ 5.

Proof. We consider two cases.
Case 1. n ∈ {3, 4}
We consider two subcases.
Subcase 1.1 m ∈ {2, 3}
Let i ∈ {1, . . . ,m}. We show that rc (Km ▷v Fn) ≤ 3 by defining a rainbow 3-coloring of

Km ▷v Fn as follows.

(i) If m = 2, assign color 3 to the edge (g1, h1)(g2, h1). Otherwise, assign color 3 to the edge
(g1, h1)(g2, h1), color 1 to the edge (g2, h1)(g3, h1), and color 2 to the edge (g1, h1)(g3, h1).
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Figure 4. A rainbow 4-coloring of K5 ▷v W5

(ii) Assign colors i to the edges (gi, h1)(gi, hj) for all j ∈ {2, 3, . . . , n+ 1}.

(iii) For j ∈ {2, 3, . . . , n}, assign colors j − 1 to the edges (gi, hj)(gi, hj+1).

By using a similar argument as in the proof of Subcase 1.1 in Theorem 3.3, we can show that there
exists a rainbow x− y path for any two distinct vertices x and y of Km ▷v Fn. Meanwhile for the
lower bound, since diam(Km ▷v Fn) = 3, it follows by Theorem 2.1 that rc(Km ▷v Fn) ≥ 3.

Subcase 1.2. m ≥ 4
Arguments similar to that used in the proof of Subcase 1.2 in Theorem 3.3 (both for the proof

of upper and lower bounds) will verify that rc (Km ▷v Fn) = 4.
Case 2. n ≥ 5
By using the same 4-rainbow coloring as in Subcase 1.2 in Theorem 3.3, we obtain that

rc (Km ▷v Fn) ≤ 4. For the lower bound, suppose to the contrary that rc (Km ▷v Fn) ≤ 3.
By using a similar argument as Case 2 in Theorem 3.3, we will obtain that all spokes of Fn(i)
for each i ∈ {1, 2} have the same color. Thus, any rainbow (g1, hj) − (g1, hl) path for dis-
tinct j, l ∈ {2, 3, . . . , n + 1} should be a subgraph of Pn. However, n ≥ 5. Thus, by Theorem
1.1(b), we need at least 4 distinct colors assigned to the edges of Pn so that there exists a rainbow
(g1, hj)− (g1, hl) as a subgraph of Pn, which is impossible.

For illustration of Theorem 3.4, please see Figure 5.
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Figure 5. A rainbow 4-coloring of K4 ▷v F5
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