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Abstract

The d-Fibonacci digraphs F (d, k), introduced here, have the number of vertices following some
generalized Fibonacci-like sequences. They can be defined both as digraphs on alphabets and as
iterated line digraphs. Here we study some of their nice properties. For instance, F (d, k) has
diameter d + k − 2 and is semi-pancyclic; that is, it has a cycle of every length between 1 and `,
with ` ∈ {2k − 2, 2k − 1}. Moreover, it turns out that several other numbers of F (d, k) (of closed
l-walks, classes of vertices, etc.) also follow the same linear recurrences as the numbers of vertices
of the d-Fibonacci digraphs.

Keywords: n-step Fibonacci number, Fibonacci graph, digraph on alphabet, de Bruijn digraph, line digraph,
adjacency matrix, spectrum
Mathematics Subject Classification: 05C20, 05C50.
DOI: 10.5614/ejgta.2021.9.2.22

Received: 28 July 2020, Revised: 27 September 2021, Accepted: 3 October 2021.

The research of the first author has also received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
No 734922.

527



www.ejgta.org

On d-Fibonacci digraphs | C. Dalfó and M. A. Fiol

1. Preliminaries

Let us first introduce some basic notation and results. A digraph G = (V,E) consists of a
(finite) set V = V (G) of vertices and a set E = E(G) of arcs (directed edges) between vertices
of G. As the initial and final vertices of an arc are not necessarily different, the digraphs may have
loops (arcs from a vertex to itself), and multiple arcs, that is, there can be more than one arc from
each vertex to any other. If a = (u, v) is an arc from u to v, then vertex u (and arc a) is adjacent to
vertex v, and vertex v (and arc a) is adjacent from u. The converse digraph G is obtained from G
by reversing the direction of each arc. Let G+(v) and G−(v) denote the set of arcs adjacent from
and to vertex v, respectively. A digraph G is k-regular if |G+(v)| = |G−(v)| = k for all v ∈ V . A
cycle is a closed walk in which all its vertices are different.

The adjacency matrix A of a digraph G = (V,E) is indexed by the vertices in V , and it has
entries (A)uv = α if there are α arcs from u to v, with α ≥ 0. Notice that, as we allow loops, the
diagonal entries of A can be different from zero.

In the line digraph LG of a digraph G, each vertex of LG represents an arc of G, that is,
V (LG) = {uv : (u, v) ∈ E(G)}; and vertices uv and wz of L(G) are adjacent if and only if
v = w, namely, when the arc (u, v) is adjacent to the arc (w, z) in G. The k-iterated line digraph
LkG is recursively defined as L0G = G and LkG = Lk−1LG for k ≥ 1. It can easily be seen that
every vertex of LkG corresponds to a walk v0, v1, . . . , vk of length k in G, where (vi−1, vi) ∈ E
for i = 1, . . . , k. Then, if there is one arc between pairs of vertices and A is the adjacency matrix
of G, the uv-entry of the power Ak, denoted by a(k)uv , corresponds to the number of k-walks from
the vertex u to the vertex v in G. The order nk of LkG turns out to be

nk = 1Ak1>, (1)

where 1 stands for the all-one vector. If there are multiple arcs between pairs of vertices, then the
corresponding entry in the matrix is not 1, but the number of these arcs.

If G is a strongly connected d-regular digraph, different from a directed cycle, with diameter
D, then its line digraph LkG is d-regular with nk = dkn vertices and has (asymptotically optimal)
diameter D + k. In fact, for a strongly connected general digraph, the first author [5] proved
that the iterated line digraphs are always asymptotically dense. For more details, see Harary and
Norman [8], Aigner [1], and Fiol, Yebra, and Alegre [7].

Given integers d ≥ 2 and k ≥ 1, the de Bruijn digraph B(d, k) is commonly defined as a di-
graph on alphabet in the following way. This digraph has vertices x1x2 . . . xk with xi ∈ [0, d−1] for
every i = 1, 2, . . . , k. Moreover, every vertex x1x2 . . . xk is adjacent to the vertices x2 . . . xkxk+1,
where xk+1 ∈ [0, d− 1].

For the concepts and results on digraphs not presented here, see, for instance, Bang-Jensen and
Gutin [3], Chartrand and Lesniak [4] or Diestel [6].

1.1. Generalized Fibonacci numbers
A proposed generalization of the well-known Fibonacci numbers is the following. Given an

integer d ≥ 2, the d-step Fibonacci numbers F (d)
1 , F

(d)
2 , F

(d)
3 , . . . are defined through the linear
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101

0

10 01

00

1

000

100

010

001

0000

00011000
1001

00100100

1010 0101

F(2,1) F(2,2) F(2,3) F(2,4)

Figure 1. The 2-Fibonacci digraphs F (2, k) for k = 1, 2, 3, 4 as subdigraphs of the de Bruijn digraphs.

recurrence relation

F
(d)
k =

d∑
i=1

F
(d)
k−i, (2)

initialized with F
(d)
k = 0 for k ≤ 0 and F

(d)
1 = F

(d)
2 = 1. Thus, the cases d = 2, 3, 4, . . .

correspond to the so-called Fibonacci numbers Fk, tribonacci numbers, tetrabonacci numbers,
etc., respectively. For more information, see, for example, Miles [9].

In particular, the Fibonacci numbers hold the recurrence Fk = Fk−1+Fk−2, which, as it is well
known, is satisfied by the numbers of the form

f(k) = aφk + bψk = a

(
1 +
√
5

2

)k

+ b

(
1−
√
5

2

)k

, (3)

where a and b are constants, φ = 1+
√
5

2
is the golden ratio, and ψ = −φ−1. Recall also that, from

F0 = 0 and F1 = 1, we get a = −b = 1/
√
5, giving the Binet’s formula Fk = (1/

√
5)(φk − ψk).

2. d-Fibonacci digraphs on alphabets

Definition 2.1. For some given integers d ≥ 2 and k ≥ 1, the d-Fibonacci digraph F (d, k) has
vertices x = x1x2 . . . xk, where for i = 0, . . . , k−1, xi+1 ∈ [0, d−1] if xi−1 = 0, and xi+1 = xi+
1 (mod d) otherwise. Moreover, every vertex x1x2 . . . xk is adjacent to the vertices x2 . . . xkxk+1,
where xk+1 ∈ [0, d− 1] if xk = 0, and xk+1 = xk + 1 (mod d) otherwise.

For instance, the 2-Fibonacci digraphs F (2, k) with k ≤ 4 and 2, 3, 5, 8 vertices, are shown in
Figure 1, whereas the 1-Fibonacci digraphs F (d, 1) on d vertices, with d ∈ [2, 5], are depicted in
Figure 3.

Some simple properties of the d-Fibonacci digraphs, which are easy consequences of their
definition, are the following.
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Lemma 2.1. Let F (d, k) be the d-Fibonacci digraph, with vertices x = x1x2 . . . xk, for xi ∈
[0, d− 1].

(i) The out-degree of x is deg(x) = d if xk = 0, and deg(x) = 1 otherwise.

(ii) The digraph F (d, k) is an induced subdigraph of the de Bruijn digraph B(d, k).

(iii) The digraph F (d, k) contains F (d′, k) as an induced subdigraph, for every d′ ≤ d.

(iv) There is a homomorphism φ from F (d, k) to F (d, k′), for every k′ ≤ k.

(v) The automorphism group of F (d, k) is the trivial one. Moreover, the digraph F (2, k) is
isomorphic to its converse.

Proof. (i) follows immediately from Definition 2.1. Similarly, (ii) is a direct consequence of the
definitions of F (d, k) andB(d, k). Concerning (iii), notice that the vertices of F (d, k) correspond-
ing to the sequences x1x2 . . . xk with xi ∈ {0, d−1, . . . , d−d′+1} induce a subdigraph isomorphic
to F (d′, k). Alternatively, from the results of Section 4, note that Td′ is clearly an induced sub-
digraph of Td for every d′ ≤ d and, hence, the same property is inherited by F (d′, k) = LkTd′
and F (d, k) = LkTd. To prove (iv), we only need to exhibit the homomorphism from F (d, k) to
F (d, k′), which is the following map on the corresponding sets of vertices

φ : V (F (d, k)) → V (F (d, k′))

x = x1x2 . . . xk → φ(x) = xk−k′+1xk−k′+2 . . . xk.

Indeed, observe that if x → y, then φ(x) → φ(y). To prove the first part of (v), we only need to
realize that every automorphism of F (d, k) must send the unique cycles of lengths 1 and 2 (loop
and digon, where a digon is a directed cycle on two vertices) to themselves. This means that vertex
00 . . . 0 must be fixed, and the vertex set {0101, . . . , 1010 . . .}must be an orbit. But the only way to
preserve the adjacencies between these two vertices and 00 . . . 0 is to fix them, which implies that
all the other vertices have to be also fixed, and the automorphism is the identity. Finally, the second
statement of (v) is justified by the mapping x1x2 . . . xk 7→ xk . . . x2x1, which is an isomorphism
between F (2, k) and its converse F (2, k).

In contrast with F (2, k), the Fibonacci digraph F (d, k) with d > 2 is not isomorphic to its
converse. By using the line digraph approach of Section 4 again, this is a simple consequence of
the fact that, for d > 2, Td 6∼= Td. However, the same approach allows us to show that most of the
properties of F (d, k) related to d-Fibonacci numbers are shared by its converse F (d, k).

To illustrate case (ii), in Figure 1, each Fibonacci digraph F (2, k) with k ≤ 4 is shown with
thick lines as a subdigraph of its corresponding de Bruijn digraph B(d, k). In particular, note that
F (d, 1) has d vertices, which coincides with the order dk of the de Bruijn digraph B(d, k) when
k = 1. In contrast, the number of vertices of F (d, k) is much smaller when k increases, as the
following result shows.
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Proposition 2.1. The numbers of vertices N(d, k) of the d-Fibonacci digraphs F (d, k) satisfy the
same linear recurrence as the d-step Fibonacci numbers in (2)

N(d, k + 1) =
k∑

i=k−d+1

N(d, i) (k ≥ 1), (4)

but now initialized with N(d, i) = 1 for i = −(d− 2),−(d− 1), . . . , 0, and N(d, 1) = d.

Proof. For j ∈ [0, d− 1], let nk
j be the number of vertices x1x2 . . . xk of F (d, k) such that xk = j.

Thus, n1
j = 1 for j ∈ [0, d− 1], N(d, k) =

∑d−1
j=0 n

k
j and, from the conditions on the digits xi, we

get

nk+1
0 = nk

0 + nk
d−1,

nk+1
1 = nk

0,

nk+1
2 = nk

0 + nk
1,

...
nk+1
d−1 = nk

0 + nk
d−2,

or, in matrix form,

nk+1 =
(
nk+1
0 , nk+1

1 , nk+1
2 , . . . , nk+1

d−1
)

=
(
nk
0, n

k
1, n

k
2, . . . , n

k
d−1
)


1 1 1 1 . . . 1
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

... . . . ...
0 0 0 0 . . . 1
1 0 0 0 . . . 0


:= nkR. (5)

Then, applying recursively (5), nk+1 = n1Rk = 1Rk. Now, it is readily checked that the char-
acteristic polynomial of the above recurrence d × d matrix R is φ(x) = xd −

∑d−1
i=0 x

i. Indeed,
since

φ(x) = det(R− xI) = det



x− 1 −1 −1 −1 . . . −1
0 x −1 0 . . . 0
0 0 x −1 . . . 0
...

...
...

... . . . ...
0 0 0 0 . . . −1
−1 0 0 0 . . . x


,

we can expand the determinant relative to the first line to get φ(x) = (x− 1)xd−1−xd−2−xd−3−
· · · − 1 (notice that, in doing so, every (d− 1)× (d− 1) submatrix have only one transversal with
nonzero product (x − 1)xd−1, −xd−2, xd−3, etc.) Then, from Rk−dφ(R) = O, where O is the
all-zero matrix, we get

Rk =
k−1∑

i=k−d

Ri (6)
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or, multiplying both terms by the vector n1 = 1,

1Rk = nk+1 =
k−1∑

i=k−d

1Ri =
k−1∑

i=k−d

ni+1 =
k∑

i=k−d+1

ni. (7)

Hence,

N(d, k + 1) =
d−1∑
j=0

nk+1
j =

d−1∑
j=0

k∑
i=k−d+1

ni
j =

k∑
i=k−d+1

d−1∑
j=0

ni
j =

k∑
i=k−d+1

N(d, i),

as claimed. Besides, to show that the recurrence can be initialized with the d values N(d, i) = 1
for i = d − 2, d − 1, . . . , 0 and N(d, 1) = d, we need to show that N(d, 2) = N(d, 1) + d − 1,
N(d, 3) = N(d, 2) + N(d, 1) + d − 2, . . . , N(d, d) =

∑d−1
i=1 N(d, i) + 1. With this aim, note

first that N(d, k) =
∑d−1

j=0 n
k
j = nk1> = 1Rk−11> for k = 1, . . . , d, so that we first compute the

vectors uk−1 = Rk−11> for k = 0, 1, . . . , k + 1 to get:

u0 = 1> = (1, 1, 1, (d). . ., 1, 1)>,

u1 = R1> = (d, 1, 1, (d−1). . . , 1, 1)>,

u2 = R21> = R(u1)> = (d+ (d− 1), 1, (d−2). . . , 1, d)>,

u3 = R31> = R(u2)> = (2d+ (d− 1) + (d− 2), 1, (d−3). . . , 1, d, d+ (d− 1))>,

...

ud = Rd1> = R(ud−1)>

= (2d−2d+ 2d−3(d− 1) + · · ·+ 1, d, d+ (d− 1), . . . , 2d−3d+ 2d−4(d− 1) + · · ·+ 2)>.

Notice that, for each k = 1, . . . , d, the sum of all entries of uk−1 equals the first entry uk0 of uk.
Consequently, N(d, k) = 1(uk−1)> = u0k, so giving

N(d, 2) = u20 = d+ (d− 1) = N(d, 1) + d− 1,

N(d, 3) = u30 = 2d+ (d− 1) + d− 2 = N(d, 2) +N(d, 1) + d− 2,

...

N(d, d) = ud0 = 2d−2d+ 2d−3(d− 1) + · · ·+ 1 =
d−1∑
i=1

N(d, i) + 1,

as required.

Since N(d, i) has no meaning for i ≤ 0, an alternative way of stating Proposition 2.1, would
be to distinguish two cases: For k ≥ d, N(d, k + 1) is computed by using 4; and, for 1 ≤ k < d,
we have

N(d, k + 1) =
k∑

i=1

N(d, i) + d− k.
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j 0 1 2 3 4 N(5, k)
n1 1 1 1 1 1 5
n2 2 1 2 2 2 9
n3 4 2 3 4 4 17
n4 8 4 6 7 8 33
n5 16 8 12 14 15 65
n6 31 16 24 28 30 129
n7 61 31 47 55 59 253
n8 120 61 92 108 116 497

Table 1. The vectors nk, for k = 1, . . . , 8, with entries nk
j being the numbers of vertices x1x2 . . . xk of F (5, k) such

that xk = j ∈ [0, 4], and the total number of vertices N(5, k).

Notice that, from (7), we proved that not only the total number of vertices of F (d, k) but also
those vertices whose sequences end with a given digit j ∈ [0, d − 1] satisfy similar recurrence
relations as those of d-step Fibonacci numbers in (2). More precisely,

• If k ≥ d, then nk+1
j =

∑k
i=k−d+1 n

i
j for j = 0, . . . , d− 1.

• If k < d, then nk+1
j =

∑k
i=1 n

i
j + εj , where

– If j ∈ [1, d− 1], then εj = 1 if k ≤ j − 1, and εj = 0 otherwise,

– If j = 0, then then εj = 1 if k ≤ d− 1, and εj = 0 otherwise.

Notice that j = 0 behaves as j = d(≡ 0 mod d).

For example, for d = 5, Table 1 shows the vectors nk, for k = 1, . . . , 8, with entries being
such number of sequences. Then, we can observe the claimed recurrences by looking at each j-th
column of the formed array. For instance, when k = 7(> d), we get n8

j =
∑7

i=3 n
1
j (8-th row in this

table); whereas, for k = 2, we have n3
j = n1

j + n2
j + εj , where ε1 = ε2 = 0 and ε3 = ε4 = ε0 = 1

(3-rd row in this table).

3. Fibonacci digraphs

Although a similar (although more involved) study for general d can be done, we concentrate
here in the case d = 2, where we simply refer to Fibonacci digraphs F (k). The reason is that,
from Proposition 2.1, the numbers N(k) = N(2, k) of vertices of the (2-)Fibonacci digraphs
F (k) = F (2, k) are

N(1) = 2, N(2) = 3, N(3) = 5, N(4) = 8, N(5) = 13, N(6) = 21, . . .

which corresponds to the standard Fibonacci sequence F3, F4, F5, F6, F7, F8, . . ., see again Figure
1. Indeed, it is known that the number of binary sequences of length k without consecutive 1’s
is the Fibonacci number Fk+2. For example, among the 16 binary sequences of length k = 4,
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Figure 2. The first four Fibonacci graphs as subgraphs of the hypercubes.

there are F6 = 8 without consecutive 1’s. Namely, 0000, 0001, 0010, 0100, 0101, 1000, 1001, and
1010 are the vertices of F (2, 4) in Figure 1. Indeed, such binary sequences also correspond to the
vertices of the (undirected) Fibonacci graphs that are induced subgraphs of the k-cubes. So, two
vertices are adjacent when their labels differ exactly in one digit. In Figure 2, we can see the first
four Fibonacci graphs. For more information, see Hsu, Page, and Liu [10].

Now, let us show a result on the lengths of the cycles in the Fibonacci digraphs. More precisely,
we prove that F (k) is semi-pancyclic.

Proposition 3.1. For every k ≥ 2, let ` = 2k − 2 if k is odd and ` = 2k − 1 if k is even. Then, the
Fibonacci digraph F (k) is (1, `)-pancyclic, that is, it contains a cycle of every length 1, 2, . . . , `.

Proof. A p(> 1)-periodic vertex of F (k) has 1’s in the positions i(≤ k), i+ p, i+2p, . . . Then, by
cyclically shifting at the left the corresponding sequence, but keeping the periodicity, such a vertex
gives rise to a cycle of length p. For instance in F (7), the vertex 0001000 gives the 4-cycle

0001000→ 0010001→ 0100010→ 1000100→ 0001000.

The other cycles (of lengths k + 1, k + 2, . . . , `) go either through the vertex 0 = 00 . . . 0 or the
vertex 1 = 00 . . . 01. In both cases, if we look at the successive sequences of the cycle as the rows
of an array, the entries 1 form a number q = 1, 2, . . . , bk/2c of anti-diagonals, as shown in Table
2 for k = 7 and q = 1, 2, 3. We label the corresponding cycles with the prefixes [0, q] and [1, q],
respectively. Then, summarizing, we have the following cases:

• The vertex 0 gives a cycle of length 1 (a loop).

• The p-periodic vertices give cycles of length p for p = 2, 3, . . . , k.

• The [1, q]-cycles, containing vertex 1, have length k + 2q − 2 for q = 1, 2, . . . , bk/2c. (For
q = 1, the cycle of length k is also obtained in the previous case for p = k.)

• The [0, q]-cycles, containing vertex 0, have lengths k + 2q − 1 for q = 1, 2, . . . , bk/2c. In
particular, for q = bk/2c, the [0, bk/2c]-cycle has length ` = k+2bk/2c−1 ∈ {2k−2, 2k−
1}, as required.

This completes the proof.
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x1x2x3x4x5x6x7
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

x1x2x3x4x5x6x7
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0
0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

x1x2x3x4x5x6x7
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0
0 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 0
0 1 0 1 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

Table 2. Cycles of lengths 7-8, 9-10, and 11-12 in F (7).

4. d-Fibonacci digraphs as iterated line digraphs

The following result shows that the d-Fibonacci digraphs can also be constructed as iterated
line digraphs. Let Td be the digraph with set of vertices Zd and arcs (0, i) for every i ∈ Zd, and
arcs (i, i + 1) for every i = Zd \ 0. Thus, Td has d vertices and 2d − 1 arcs. Moreover, it is a
strongly connected digraph with diameter D = d− 1. As examples, see Figure 3.

The adjacency matrix A of Td, indexed by the vertices 0, 1, . . . , d − 1, has first row 1, the
all-one vector, and i-th row the unit vector ei+1, for i = 1, 2, . . . , d − 1 (recall that the arithmetic
is modulo d). Then, A coincides with the recurrence matrix R in (5) and, hence, the entries of the
powers of A satisfy the recurrence

(Ak+1)uv =
k∑

i=k−d+1

(Ai)uv (8)

for k ≥ d.
In the following result, we show that the d-Fibonacci digraphs can also be defined as iterated

line digraphs of Td.

Proposition 4.1. The d-Fibonacci digraph F (d, k) coincides with the (k−1)-iterated line digraph
of Td, that is F (d, k) = Lk−1Td, for k ≥ 0, with F (d, 1) = L0Td = Td.

Proof. We know that the vertices of Lk−1Td correspond to the walks of length k − 1 in Td. But,
according to Definition 2.1, such walks are in correspondence with the sequences of length k
defining the vertices of F (d, k). Moreover, the adjacencies in Lk−1Td are the same as in F (d, k).

As a consequence of the last proposition and the proof of Proposition 2.1, we have the following
result.
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Figure 3. The digraphs Td = F (d, 1) for d = 2, 3, 4, 5.

Proposition 4.2. Let F (d, k) be the d-Fibonacci digraph with N = N(d, k) vertices given by
Proposition 2.1. Let A(k) and A be, respectively, the adjacency matrices of F (d, k) and Td.

(i) The diameter of the d-Fibonacci digraph F (d, k) is D = k + d− 2.

(ii) The eigenvalues of F (d, k) are the d zeros of the polynomial p(x) = xd−xd−1−xd−2−· · ·−1
(or, alternatively, the d zeros different from 1 of the polynomial q(x) = xd+1− 2xd + 1) plus
N − d zeros.

(iii) Fo any given d, k ≥ 0, the total number of closed l-walks Cl(d, k) in F (d, k) satisfies the
same linear recurrence as the d-step Fibonacci numbers in (2), initiated with Cl(d, k) =
trAl for l = 0, . . . , d− 1.

Proof. (i) Since the diameter of Td is D = d − 1 , the result follows from Proposition 4.1 and
the results in Fiol, Yebra, and Alegre [7].

(ii) Since A = R, the characteristic polynomial φ(x) of Td is φd(x) = xd −
∑d−1

r=0 x
r. Hence,

from the results in Balbuena, Ferrero, Marcote, and Pelayo [2], the characteristic polynomial
of F (d, k) = LkTd is ψ(x) = xN−dφ(x), which gives the result.

(iii) From (ii), the nonzero eigenvalues of F (d, k) and T (d) coincide. Then, for k ≥ 1, the
total numbers of closed walks of length l, with l ≥ 1, in F (d, k) and in Td coincide because
trA(k)l = trAl. But A coincides with the recurrence matrix R in (5), so that, from (8) and
l ≥ d,

Cl+1(d, k) = trAl+1 =
l∑

i=l−d+1

trAi =
l∑

i=l−d+1

Ci(d, k), (9)

and Cl(d, k) = trAk for l = 0, . . . , d− 1.

For instance, in the case of Fibonacci digraphs (d = 2), (9) becomes the version of 3 for the
number of closed walks in F (2, k). Namely,

Cl(2, k) = φl + ψl =

(
1 +
√
5

2

)l

+

(
1−
√
5

2

)l

, (10)
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initiated with C0(2, k) = 2 and C1(2, k) = 1. Compare (10) with the Binet’s formula Fl =
(1/
√
5)(φl − ψl).

In fact, from (8) and the fact that every closed walk of length l in Td gives a closed walk of
the same length in F (d, k), and vice versa, we can prove that, for any given j, d ∈ [0, d − 1], the
numbers Cj(d, k) of closed walks in the digraphs F (d, k) for k ≥ d follow the same recurrence
of the d-step Fibonacci numbers. What is more, the same holds for the total number of walks in
F (d, k), which go from the vertices of type x1x2 . . . j to the vertices of type x1x2 . . . j′ for any
given j, j′ ∈ [0, d− 1]. In the case of d = 2, this is a consequence of the following known formula
for the powers of the adjacency matrix of T2, as a particular case of (6),

Ak =

(
1 1
1 0

)k

=

(
1 1
1 0

)k−1

+

(
1 1
1 0

)k−2

=

(
Fk+1 Fk

Fk Fk−1

)
for k ≥ 2.

The fact that (Ak)00 = Fk corresponds to the number of closed walks of length k rooted at
vertex 0 in the digraph T2 is cited in the On-line Encyclopedia of Integer Sequences A000045
[11].
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