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Abstract

A proper vertex-coloring of a graph G is called distinguishing, if the only automorphism preserving
the colors is the identity. The minimum number of colors for such a coloring is denoted by x p(G).
We say a graph G is uniquely proper distinguishing colorable (UPDC, for short) if and only if there
exists only one partition of V' (G) into xp(G) independent sets such that the identity is the only
automorphism of GG preserving the partition.

In this paper, we study the UPDC graphs. We show that a disconnected graph is UPDC if and
only if it is the union of two isomorphic asymmetric connected bipartite graphs. We prove some
results on bipartite UPDC graphs and show that any UPDC tree is one of the following: (i) an
asymmetric tree, (ii) a tree with precisely one non-trivial automorphism and center xy such that this
automorphism interchanges x and y, (iii) a star graph. Additional, a characterization of all graphs
G of order n with the property that xp(G UG) = xp(G) = k, where k = n —2,n — 1,n, is given
in this paper. Finally, we determine all graphs G of order n with the property that xp(G U G) =
Xxp(G)+1=/{where!=n—1,n,n+ 1.
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1. Introduction

In 1977, a concept was introduced by Babai, which became the basis of one of the most im-
portant methods for distinguishing members of graphs by automorphism [4]. This concept, which
we now know as asymmetric coloring (or distinguishing labeling), was added to the graph theory
literature in 1996 by Albertson and Collins [2].

Two research subfields were followed in this concept. Experts in group theory, by taking
into account that the automorphism group of graphs acts on the vertices of that graph, studied
this concept in the general case when a group acts on an arbitrary set. For some outstanding
achievements in this topic, we can refer to the articles [5, 6, 10, 17, 26].

Later, the distinguishing number was assigned to a graph and the proof techniques changed
from the structure of automorphism group to the properties of automorphisms in graphs such as
distance preservation. This fact had many advantages. In fact, we could distinguishably color
graphs that we do not even know their automorphism group. Determining the automorphism group
of a graph is a challenging task, and we do not want the coloring problem to depend on it. Many
papers have been written in such a way. For some articles, we can refer to [1, 3, 13, 14, 25, 19, 16,
17, 20, 23, 24].

In 2006, Collins and Trenk combined this concept with proper coloring and proposed a new
coloring called proper distinguishing coloring [13]. This coloring has attracted the attention of
many researchers and a large number of articles have been published about it. To see some recent
results related to this coloring, the reader can refer to the articles [18, 21, 22].

In [15], Harary, Hedetniemi and Robinson introduced and studied the uniquely colorable (UC,
for short) graphs. In their work ‘coloring’ means the ‘proper coloring’. The interested reader may
refer to the papers [7] and [11] for further results about uniquely colorable graphs.

Details of the definitions are described as follows. Let G be a graph with vertex set V(G). A
coloring of a graph G is a partition of the vertex set of G into classes, called the color classes. If
a coloring contains exactly £ disjoint non-empty color classes, then it is called a k-coloring. We
say that a coloring with color classes Vi, ...,V of G is a distinguishing coloring if there is no
non-trivial automorphism f of G with f(V;) = V; foralli = 1,..., /. We denote the minimum
such ¢ by D(G) and call the distinguishing number of GG. A distinguishing coloring is proper
distinguishing coloring if it is also a proper coloring. The distinguishing chromatic number of a
graph G, denoted by xp(G), is the minimum ¢ such that {V;, ...V} is a proper distinguishing
coloring.

If for any two proper distinguishing colorings ¢, : V(G) — {1,...,xp(G)}, there exists a
permutation « of colors such that ¢ = « o ¢, then G is called a uniquely proper distinguishing col-
orable graph (UPDC, for short). In other words, a graph G is UPDC if and only if there exists only
one partition of V' (G) into xp(G) independent sets such that the identity is the only automorphism
of G preserving the partition. The symbols for proper coloring and proper distinguishing coloring
of a graph G will always represent [x(G)] and [xp(G)], respectively. We say vertices u and v are
siblings if they have a common neighbor. A fixed vertex of a graph G is a vertex that is mapped to
itself by any automorphism of G. Let A, B C V(G). We say that A and B are isomorphic, if there
exists an non-identity automorphism f of GG such that f(A) = B. In the event of vertices = and y
being adjacent (resp. non-adjacent), the notation = ~ y (x ~ y) is employed. We use [12] for any
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Disconnected graphs G U G

G is asymmetric

Figure 1: Disconnected UPDC graphs G' U G with connected component G.

terminology and notation not defined here.

This paper focuses on the investigation of UPDC graphs. In Section 2, a comparison is drawn
between UPDC and UC. Furthermore, definitions and illustrative examples have been provided to
facilitate comprehension of the concept and to serve as a basis for the subsequent sections. The
present paper establishes two primary results on UPDC graphs, which are substantiated in Sections
3 and 4. In Section 3, it is demonstrated that the only disconnected UPDC graphs are of the form
G UG, where G is an asymmetric connected bipartite graph. The result is illustrated in Figure 1 by
means of a Venn diagram. In Section 4, UPDC trees are specified. It is demonstrated that the only
UPDC trees are those that apply in one of the following: (i) An asymmetric tree. (ii) A tree with
precisely one non-trivial automorphism and center xy such that this automorphism interchanges x
and y. (iii) A star graph. In Section 5, we characterize all graphs GG of order n with the property
that xp(G U G) = xp(G) = k, where k = n — 2,n — 1,n. Also, we determine all graphs G of
order n with the property that xp(G U G) = xp(G) + 1 = ¢, where { = n — 1,n,n + 1. Finally,
in Section 6, the text advances a research problem to be addressed in future studies.

2. Preliminaries

First, we provide two examples which show that the concepts of unique colorability and unique
proper distinguishing colorability in a graph are different. To this end, consider the graph G in
Figure 2. It is a connected bipartite graph, and so it is uniquely 2-colorable. However, it has two
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proper distinguishing colorings as follows:

[XD(G)]I = {{a’= d}7 {b7 e}a {C}}>
Xp(G)]2 = {{a, d}, {c, e}, {b}}.

Hence it is not UPDC.

Figure 2: A UC graph G that is not UPDC.

Next, consider the graph H in Figure 3. Clearly

X(H)], = {{a1, as}, {az, a5}, {as, a6} }, and
X(H)], = {{a1, ag}, {as, as}, {az, a5} } = [xp(H)].

It is easy to see that H has the unique proper distinguishing color class [xp(H)]. Hence, H is
UPDC but it is not UC.

(2] (0333 (073}

Figure 3: A UPDC graph H that is not UC.

Definition 2.1. Let G be a graph and c; and c; be two vertex colorings. Then ¢; and ¢, are
isomorphic (or equivalent) if there is an automorphism « such that for every vertex v we have
c1(v) = ca(a(v)). Weuse ¢; = 5 and ¢; 2 ¢ when ¢ and ¢, are isomorphic and non-isomorphic,
respectively.

For instance, in the graph in Figure 2, [xp(G)]; and [xp(G)]» are equivalent.

Let G be a UPDC graph with the unique coloring [xp(G)] = {V1, Va,..., Vi}. Clearly, in a
proper distinguishing k-coloring of G, one can assign k colors to V' (G) with k! different ways. We
call each of these assigning ways a labeling of the distinguishing color classes. For the sake of
convenience, in the following definition, we introduce two types of graphs.
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Definition 2.2. Let GG be a connected graph. We say that G is of type 1 if it has only one proper
distinguishing coloring up to coloring isomorphism. Otherwise, we say that G is of type 2.

For instance, the graphs in Figure 4(a) and 4(b) are UPDC of type 1 and type 2, respectively.
As we see, the graph (b) has 3 different proper distinguishing colorings while the graph (a) has
only one such a coloring up to coloring isomorphism.

1
9 1 9 3 2
I I |
1 2 1 9 3

() (b)

Figure 4: UPDC graphs of type 1 and type 2.

Note that a graph of type 1 is not necessarily a UPDC graph. For example, see graph () in
Figure 5. It is easy to see that yp(Q)) = 3 and a proper distinguishing coloring with 3 colors
is already demonstrated in the figure. Moreover, () is not a UPDC because we can exchange the
colors of some pair of vertices and the result is not the same vertex partition, but it remains a proper
distinguishing coloring: for example, make the top left vertex blue and the top right vertex green.
Although () is not a UPDC, but it has only one proper distinguishing coloring up to automorphism.

Figure 5: A graph @ of type 1 which is not a UPDC.

In the following remark, some results are derived directly from the definition.

Remark 2.3. (1) For positive integers n and m, the graphs K, K,, K, n and P, are UPDC.
But C,, (for n > 5) and P, (for n > 2) are not UPDC.
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(2) Let G be a UC graph and D(G) = 1. Then G is UPDC and xp(G) = x(G).

(3) Let G be a connected graph and xp(G) = 2. Then G is UPDC.

3. Disconnected graphs

In 1968, Cartwright and Harary [8] showed that the study of unique colorability is limited to
connected graphs. In fact, they proved that every uniquely colorable graph is connected. In this
section, we show that there exists some family of disconnected UPDC graphs, and we will specify
them.

k
For an integer £, let U G denote the disjoint union of k copies of G.

k
Lemma 3.1. Let GG be a connected graph. For a positive integer k, if UG is a UPDC graph, then
G is UPDC.

Proof. Let k > 2. If G is not UPDC, then it has at least two partitions of its vertices, as [xp(G)];

and [x p(G)],, into proper distinguishing colorings. If [xp(G)], and [xp(G)], are not isomorphic,
k

then we can consider two components of UG and color each component with one of the proper

k
distinguishing colorings of GG each time. Therefore, a different partition of U G is achieved each
time, which forms a proper distinguishing coloring. If [xp(G)]; and [xp(G)], are isomorphic,

k
then consider the proper distinguishing coloring of UG. If both [xp(G)], and [xp(G)], are used

in the proper distinguishing coloring of components of LkJ G, we do the same as above. (Note that
in this case there is a labeling of proper distinguishing color classes of [xp(G)], and [xp(G)],
such that there is no color-preserving automorphism that maps [xp(G)], to [xp(G)],.) Otherwise,
at most one of [xp(G)], and [xp(G)], is used in the proper distinguishing coloring of components

k k
of UG. Assume that [y p(G)]; is not used in the proper distinguishing coloring of U G. Consider
an arbitrary labeling of proper distinguishing color classes of [xp(G)];. There is at most one

k
component of U G such that its coloring is mapped by an automorphism to the [xp(G)], with its
considered labeling and preserves the labels. Replace the coloring of this component with [y p(G)],

k
and its considered labeling. Thus we have another proper distinguishing coloring for U G. This

k
means that U G has at least two proper distinguishing colorings and the result follows. 0

k
Lemma 3.2. Let G be a non-trivial connected graph. For a positive integer k, if UG is UPDC,
k
then xp(UG) = xp(G).

k

Proof. For the sake of contradiction, assume that yp(UG) > xp(G). We claim that there exist
k

two components of U G with at least one different color in the proper distinguishing coloring of

k k

U G. For this purpose, suppose that exactly xp(U G) colors are used in each component. Consider

k
the coloring of one component of U G and replace it with the unique proper distinguishing coloring
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of the graph G with x p(G) colors. Therefore, we will have another proper distinguishing coloring

k k
for U G. Now, we can select two components G; and G5 of U G such that the colors used in them
are not the same. Interchanging the proper distinguishing colorings of (G; and G, gives us a new

k
proper distinguishing coloring for U (G, a contradiction. U
Lemma 3.3. If GG is connected graph of type 1, then xp(G U G) = xp(G) + 1.

Proof. Since G is of type 1, there is only one proper distinguishing coloring with x p(G) colors
up to automorphism. Hence, any proper coloring with x p(G) colors cannot break symmetries that
map one component of G U GG onto the other. Therefore, another color is needed. [

k
Lemma 3.4. Let GG be a non-trivial connected graph. For a positive integer k, if UG is a UPDC
graph, then k& < 2.

Proof. For the sake of contradiction, assume that k£ > 3. Let GG;, G5 and G5 be some components

k
of UG. Lemmas 3.1, 3.2, conclude that the colorings of G; and G55 are the same with a different
assigned label for some color classes. There exists a color class of [xp(G)] that is labeled by 1
and 2 in G and Gj, respectively. Interchanging the labels of the color classes of G; and G5, and

k
keeping the coloring of (53, give us another partition of vertices U GG into a proper distinguishing
coloring, a contradiction. ]

Lemma 3.5. Let G be a connected graph. If GUG is UPDC, then there exists exactly two labelings
of the proper distinguishing color classes of GG up to automorphism.

Proof. If G has only one labeling of the proper distinguishing color classes up to automorphism,
then G is of type 1. So, Lemmas 3.3, 3.2 lead to a contradiction. Assume that G has more than two
labelings up to automorphism. Let c;, c; and c3 be three non-isomorphic labelings of the proper
distinguishing color classes of G. Color components of G U GG once with ¢; and ¢,, and again
with ¢o and c3. We will obtain two partition of V(G U G) into proper distinguishing coloring, a
contradiction. 0

Lemma 3.6. Let GG be a non-trivial connected graph. If G U G is UPDC, then xp(G) = 2.

Proof. For a contradiction, suppose that yp(G) > 3. Thus, there exist at least 6 labelings of the
proper distinguishing color classes of G. Lemma 3.5 concludes that there exist labelings ¢; and
co such that ¢; 2 co. Let c3 be another labeling of the proper distinguishing color classes of G.
Therefore c3 = ¢ and so c3 2 c¢,, a contradiction. O

Lemma 3.7. Let GG be a non-trivial connected graph. If G U GG is UPDC, then G is an asymmetric
graph.

Proof. Lemma 5.5 allows us to say G is a bipartite graph with parts V' and U. So, [xp(G)] =
{V, U} is the unique proper distinguishing coloring of G. If there exists a non-identity automor-
phism f of G, then there exist vertices v € V and u € U such that f(v) = w. Since the set of
vertices at odd distance from v (which is U) must be mapped to the set at odd distance from f(v)
(which must now be V'), f(V) = U and f(U) = V. This implies that there is only one labeling of
[Xp(G)] up to automorphism. This is impossible because it contradicts Lemma 3.5. O
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Theorem 3.8. Let G be a non-empty disconnected graph. Then G is UPDC if and only if G
isomorphic to / U H, where H is an asymmetric connected bipartite graph.

Proof. (=) Let G be a disconnected UPDC graph. By Lemmas 3.1, 3.4, G has two UPDC com-
ponents, say H; and H,. Consider a proper distinguishing coloring of G' with minimum number
of colors. Then H; and H, have at least one same color. Now suppose that H; 22 H,. Since GG
has at least one edge, we may assume that xp(H;) > 2. Thus H; has at least two color classes V;
and V5 in [xp(H;)]. Also, let U be a color class of Hy. So we may assume that V; and U have a
common color. Interchange the colors V; and V5, and produce a new partition of V(G) into proper
distinguishing color classes. This is the required contradiction. Hence we have H; = H,. Now
Lemmas 5.5, 3.7 conclude that H; (and so H5) is an asymmetric bipartite graph.

(<) Since H is asymmetric connected bipartite, it has non-isomorphic parts V and U as the
proper distinguishing color classes. This implies that H is of type 2 with exactly two labelings of
the proper distinguishing color classes up to automorphism. Therefore, H U H is UPDC. [

The disconnected graph in Figure 6 is UPDC.

1 2 1 2 2 1 2 1
o ° ° °
°

2 1 2 1 2 1

Figure 6: A disconnected UPDC graph.

Corollary 3.9. If G is a disconnected UPDC graph, then xp(G) = 2.
Corollary 3.10. Let GG be a UPDC graph. If G is 2-regular, then G is isomorphic to C'3 or Cj.

4. Bipartite graphs

In this section, we study the UPDC trees. As main result of this section, we show that the only
UPDC tree is a star graph, when distinguishing chromatic number is more than 2.

Lemma 4.1. Let G be a graph and z be a fixed vertex of G such that xp(G) — 1 > deg(z). Then
G is not UPDC.

Proof. Let [xp(G)] = {V1,Va,..., Vi ()} be a proper distinguishing coloring of G such that
N(x) has no intersection with at least two proper distinguishing color classes of G, say with V}
and V5. Now, assume that the proper distinguishing color class of x is of cardinality one and that
x € V1. By replacing the color of V; with the color of V5, one can obtain a proper distinguishing
coloring of GG with less than x(G) colors. This implies that the proper distinguishing color class
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of = is of cardinality at least two. Suppose that x € V; and that |[V;| > 2. Now, by replacing the
color of x with the color of V5, we get another proper distinguishing color class of G. Hence G is
not UPDC. [

Proposition 4.2. Let GG be a connected UPDC graph with a fixed pendant vertex. Then D(G) = 1
and xp(G) = 2.

Proof. By Lemma 4.1, xp(G) = 2. Hence G is bipartite. Assume that D(G) # 1 and seek a
contradiction. There is a non-trivial automorphism f of G such that f(v) = u, for two vertices v
and u. Vertices v and u should be of the same distance from the pendant vertex. This implies that
the distance between v and © must be even and so they will be in the same part in the bipartite graph

G. Therefore, f preserves the unique proper distinguishing coloring and which is a contradiction.
[

Lemma 4.3. Let G be a UPDC graph with at least two sibling pendant vertices. Then G is a star
graph.

Proof. Let a and b be sibling pendant vertices of G. Assume that G is not a star graph. Consider
a proper distinguishing coloring of GG. If at least one of a and b belongs to a non-singleton color
class, by interchanging the colors of a and b we get another proper distinguishing color class of
G, a contradiction. Suppose a and b belong to a singleton color class. Since G is not a star graph,
there exists a vertex c such that a ~ ¢ » b, and c is neither a sibling of a nor b. Now, by replacing
the color of ¢ with the color of a, we get another proper distinguishing color class of GG, so we
reach a contradiction. [

Lemma 4.4. Let 7" be a tree. For two vertices v and u of T, if there exists an automorphism f of
T with f(v) = u, then there exists an automorphism g of 7" with g(v) = w and g(u) = v.

Proof. Letv,u € V(T) and f(v) = u, for an automorphism f of G. Let P be a maximal path
containing v and u. There exist pendant vertices p, and p, that P is between them such that
f(pv) = pu, where p, and p, are the closest endpoints of P to v and u, respectively. Considering
that the length of P is odd or even, the center of P is a vertex w or an edge wz. Thus, f(w) = w or
f(w) = z. If we delete w or the edge between w and z, then 7" has at least two isomorphic graphs
H, and H,. Where H, and H, are the components that contain p, and p,,, respectively. We define
the automorphism ¢ as follows.

f(z), ifzeV(H)
g(x) = ¢ " (x), ifreV(H,),
z, if 2 € V(T)\ (V(H,) UV(H,)).

Therefore, g(v) = u and g(u) = v. N

Let us recall the following interesting result about trees, which we shall use in the rest of the
paper.
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Theorem 4.5. [13, Theorem 3.1] Let 7" be a tree with at least 2 vertices. Then xp(7') = 2 if and
only if 7" has no non-trivial automorphism, or the center of 7" is an edge xy and 7" has precisely
one non-trivial automorphism, and this automorphism interchanges = and .

Theorem 4.6. Let T’ be a UPDC tree with xp(7") > 3. Then T is a star graph.

Proof. Assume that 7' is not a star, and seek a contradiction. Consider a proper distinguishing
coloring of 7" with minimum number of colors. By Lemma 4.3, 7" cannot have sibling pendant
vertices.

Now, we claim that there is at least one pendant vertex fixed by any automorphism of 7" which
is the required contradiction. To achieve this, suppose that any given pendant vertex of 7" is moved
by an automorphism of 7. By Lemma 4.4, without loss of generality, we may assume that v and
u are two pendant vertices of 7" mapped to each other by some automorphism of 7". Consider the
unique path from v to u. If the length of this path is even, then there exists a vertex, say a, in the
unique path from v to u with the same distance from of v and w. Among the set of automorphisms
of T" which image v to u, consider an automorphism f with maximum set of fixed vertices of
T. Let A denote the set of fixed vertices of 7' by f. Clearly A # (), because a € A. Assume
that A and V(T') \ A have vertices with the same color in the proper distinguishing coloring of
T. Now, consider the induced subgraph T'[V(T') \ A] containing two isomorphic components.
By interchanging the colors of the corresponding vertices in the two components, we get another
proper distinguishing color class of 7', a contradiction. This implies that the vertices in A and the
vertices in V' (7') \ A have different colors. Since A is non-empty, there is at least one color of
vertices of A that is not assigned to any vertex of V(T') \ A. Now, we claim that, by replacing
the color v (or u) with this color, one can obtain another proper distinguishing color class of 7.
To achieve this, it suffices to show that there is no automorphism of 7" that moves v (or v) which
preserves the vertex colors. Assume that, by some automorphism of 7" which preserves the vertex
colors, v (or u) is imaged to some vertex of 7', say to b, and seek a contradiction. Clearly b € A.
Now, since I" has no sibling pendant vertices, a »~ b. Therefore, b and v (or u) have no common
neighbors. Hence the neighbors of b (resp. v (or u)) that belongs to A (resp. V(T') \ A) have the
same color, which is a contradiction.

Therefore the length of the unique path from v to w is odd. The general form of 7" is depicted
in Figure 7. In Figure 7, G; = H; for all © = 1,... k. Thus the edge a.b; is the center of 7.

Figure 7: Graph T'.

Furthermore, a; and by are imaged to each other by an automorphism of 7', and 7" has only this
non-trivial automorphism, otherwise, we obtain two pendant vertices with the same distance from
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a; (and b;) for i = 1,...,k, and so the distance between these two vertices is even, which is a
contradiction. Thus Theorem 4.5 implies that x p(7") = 2, a contradiction. So there is at least one
pendant vertex fixed by any automorphism of 7'. Therefore, by Lemma 4.1, 7" is not a UPDC tree.
This is a required contradiction. ]

The following corollary is immediate by Remark 2.3 and Theorems 4.5, 4.6.
Corollary 4.7. Let 7" be a UPDC tree. Then 7' is one of the following:

(i) An asymmetric tree.

(i) A tree with precisely one non-trivial automorphism and center xy such that this automor-
phism interchanges = and y.

(iii) A star graph.

5. Graphs with xp(G U G) = xp(G)

If G is a connected graph, then xp(G U G) = xp(G) or xp(G U G) = xp(G) + 1. Clearly
Xp(G UG) = xp(G) + 1if and only if G is a connected graph of type 1. In the following, we
investigate all graphs G such that xp(G U G) = xp(G), when xp(G) = k, for k € {|V(G)| —
2,|V(G)| — 1,|V(G)|}. To do this, we begin with Theorem 5.1, Theorem 5.2 and Theorem 5.3,
in which all graphs of order n with distinguishing chromatic number n, n — 1 and n — 2 were
charaterized [13, 9]. We first state some necessary preliminaries.

For any graph G with vertices (vy,...,v,) and for any collection of vertex-disjoint graphs
Hy,...,H,, let G(Hy,..., H,) denote the graph obtained from G by replacing each v; with a
copy of H; and replacing each edge v;v; by H; V H;. If an H; is vacuous, i.e., H; = (), then replac-
ing v; by () refers to deleting v; and all edges incident to it. Note that the substituted H can be an
independent set; i.e. both the empty set and independent sets are viewed as “complete multipartite”
graphs. We present three graphs Gs, G and G along with a class of labelled graphs ¢; consisting
of two non-isomorphic graphs. The labelled graphs Gs, G and G7 have vertices (v1, V9,3, v4),
(v1, Vg, V3, V4, v5) and (vy, Ve, U3, Vg, Us, V) Tespectively, while a labelled graph G belonging to the
class ¢ has vertices (vy, ve, v3, vy, U5 ), see Figure 6 and Figure 7. Furthermore, define K. > and K. 3
to be the labelled complete graphs of orders two and three respectively, where K, (v1,v9) has ver-
tices (v, vo) and K. 3(v1, vg, v3) has vertices (v, v, v3). In particular, if H; and H, are nonvacuous
complete multipartite graphs, then K o(Hy, Hs) represents a complete multipartite graph with at
least two parts. (For more details, see [9])

Theorem 5.1. [13, Theorem 2.3] Let G be a graph. Then xp(G) = |V(G)] if and only of G is a
complete multipartite graph.

Theorem 5.2. [9, Theorem 3.2] Let G be a graph of order n > 3. Then xp(G) = n — 1 if and
only if GG is the join of a complete multipartite graph (possibly vacuous) with one of the following:

(1) 2K5, or

(2) HU K, where H is a complete multipartite graph with at least two parts.
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o5

)
/ C
N

U

Figure 8: Graphs é5 (Ul, V2, V3, 1}4) and é@ (1}1, V2, V3, V4, ’U5).

Ve Us
@
(%) U3

V2 V4
Qo
)
U3 Us

Figure 9: Graphs G7(v1, v2, v3, Vg, U5, vg) and 93 (v1, Ua, U3, Vg, V).

Theorem 5.3. [9, Theorem 3.5] Let G be a graph of order n > 4. Then xp(G) = n— 2 if and only
if GG is the join of a complete multipartite graph (possibly vacuous) with one of the following:

(@) Ps (b)
(c) Cs (d)
(e) [A(T U KQ, for r Z 2 (f)
(g) K3(Hy, Ha, H3) U Ko (h)
(1) 2K9V 2K, .
&) 2Ky UK, W
(m) é3(H1,HQ,H3,K1,K1),fOI’ Gg Ggg (1)

()
(p)

(0) Gs(K1, Hy, Ha, K1)
(q) G7(Hlv H27H37 H47 Kla Kl)

Cs

2Ks

Ky(K,, H) U Ky, for r > 2
Ky(Hy, Hy) UK,

2K, V (Ko(Hy, Ho) U K7)
(2K2 \Y Hl) UK,

Gs(Hy, Ho, K1, K1)
Go(K1, Hy, Hy, H3, K1)

where each of Hy, Hy, Hs, H4 is a nonvacuous complete multipartite graph.

Theorem 5.4. Let GG be a graph of order n and xp(G) = n. Then

n+1,

xp(GUG) =< 2n,

n,
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Proof. By Theorem 5.1, GG is a complete multipartite graph. The only non-trivial case is when
G ¢ {K,, K,}. In this case, there is at least one part, say U/, with cardinality more than 2. There
exist at least two subsets of size |U| of {1,2....,xp(G)}. Color U with {1,2,...,|U|} in a
component of G U G and color U in the other component with {1,2,...,|U| — 1, |U| + 1}. Also,
color other vertices of G U G arbitrary. One can check that this is a distinguishing x p (G)-coloring
for GUG. [l

Lemma 5.5. Let GG be the join of a nonvacuous complete multipartite graph with one of graphs (1)
and (2) in Theorem 5.2 or one of graphs (a) - (q) in Theorem 5.3. Then xp(G U G) = xp(G).

Proof. Let H be a nonvacuous complete multipartite graph and /K be one of graphs (1) and (2)
in Theorem 5.2 or one of graphs (a) - (q) in Theorem 5.3. Let GG;, H; and K; denote the graphs
isomorphic to G, H and K respectively, for i = 1,2. We claim that if f is an automorphism
with f(G1) = G, then f(H,) = H,. For this, assume that all parts of H have cardinality more
than one. On the other hand, all vertices of K adjacent to all vertices of H in GG. This implies
that we cannot replace some vertices of H with some vertices of K such that the structure of H is
preserved. (Note that K is not a complete multipartite graph.) If H has a part {x}, then a necessary
condition for that we can replace {x} with a vertex of K such that the structure of H is preserved,
is that there exist a vertex y € V' (K') with degy () = |V(K)| — 1. One can check there is no such
2 in graphs (1) and (2) in Theorem 5.2 and graphs (a) - (q) in Theorem 5.3.

There exist two vertices with the same color in G. Assume that color 1 is assigned to two
vertices in G; and color 2 is assigned to a vertex in H;. The vertices colored by 1 are in K;. Now,
color the vertices of G5 with the coloring of (G; by interchanging colors 1 and 2. Therefore, any
automorphism that maps (G; to GGy does not preserve the colors. [

Theorem 5.6. Let GG be a graph of order n > 3 with xp(G) = n — 1. Then
(a) xp(GUQG) = xp(G) if and only if
(a1) G is the join of a nonvacuous complete multipartite graph with one of the following:
(a11) 2Ky, or,
(a12) HU K;.
(ag) G2 HUK,,H2 K, 1,

where H is a complete multipartite graph with at least two parts.
(b) xp(GUG) = xp(G) + 1if and only if G is one of the following:

(b1) 2K,

(b2) K1 UKj.

Proof. According to Theorem 5.2, assume first that G is the join of a nonvacuous complete multi-
partite graph with one of the graphs 2K, or H U K;. Lemma 5.5 concludes the results in (a;). For
(b1), let G = 2K5. Hence, xp(GUG) = xp(4K3) = 4 = xp(G) + 1 and the result follows. Let
G = H UK. Since H is a complete multipartite graph with at least two parts, H % K,,_;. Now,
the results in (bs) and (a9) conclude from Theorem 5.4. O
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Theorem 5.7. Let GG be a graph of order n > 4 with xp(G) = n — 2. Then

(@) xp(GUQG) = xp(G) if and only if

(a1) G is the join of a nonvacuous complete multipartite graph with one of the following:

(a11) Ps

(a13) Cs

(a15) K, UKo, forr > 2

(a17) K3(Hy, Ha, H3) U Ko

(a19) 2Ko V 2K

(a111) 2K2 U Ky

(a113) (2K2V Hy) UK,

(a115) G5(K1, Hy, Hy, K1)

(a117) G7(Hy, Hy, Hs, Hy, K1, K)

(az) G is one of the following:

(a21) Ps

(a23) Cs

(ag5) 2Ko V 2K

(az7) (2K2V Hy) U Ky

(a20) Gr(Hy, Hy, Hs, Hy, K1, K1)
(ag11) Go(K1, Hy, Ho, Hs, K1)

(a12) Cs

(a14) 2K3

(a16) Ko(K,, H;)U Ko, forr > 2

(a18) Ko(Hy, Hy) UK,

(a110) 2K9 V (Ko(Hy, Hy) U K1)

(a112) Gs(Hi, Hy, H3, K1, K)), for G5 €%
(a114) Gs(Hy, Hy, K1, Ky)

(a116) Go(K1, Hy, Hy, Hs, K1)

(a22) Cs

(a24) 2K3

(azs) Ko(K,,H;)U Ko, forr > 2

(a2g) 2K V (Ko(Hy, Hy) U K1)
(ag10) G3(Hy, Ha, H3, K1, K1), for G3 €43

(a212) f(g(Hl, Hy, H3) U Ko, where Kg(Hl, Hy, H3) is not a complete graph.

(a213) f(g(Hl, Hs) U K, where Kg(Hl, H,) is not a complete graph and \Kg(Hl, Hy)| > 4.
(a214) Gs(Hy, Hy, K1, K1), where Hy # K, or Hy # K.

(a215) Gs(K1,Hi, Hy, K1), where H; # K, or Hy # K.

where each of H,, Hy, H3, H4 is a nonvacuous complete multipartite graph.

(b) xp(GUG) = xp(G) + 1if and only if G is one of the following:

(b1) K2 UK>
(bz) KUE,K S {Pg,Kg}.

(b3) 2K5 U K,
(by) Py

(¢) xp(GUG) = xp(G) +2ifand only if G = K, U K.

(d) xp(GUG) =2xp(G)if and only if G = K, U K, for r > 2.

Proof. The graph G is the join of a complete multipartite graph (possibly vacuous) with one of
the graphs presented in Theorem 5.3. If (G is the join of a nonvacuous complete multipartite graph
with one of the graphs (a) - (q) presented in Theorem 5.3, then by Lemma 5.5, we have the results
in (a;). Now, let G be one of the graphs (a) - (q) that are presented in Theorem 5.3. In some
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cases with xp(GUG) = xp(G), we will select distinct vertices vy, vy, v3, v4 of each component of
GG U G for a coloring of G U G such that all vertices other than vy, vy, v3, v, receive distinct colors

in G.

(a21), (az2)

(ag3)

(ag4)

(azs)

(aze)

(az7), (azs)

(azg)

(az210)

(az11)

(a212), (b1)

Assign to v, and v, one color and to vz and v, another color in each component of G U G.

In these cases, there is a singleton color class in each distinguishing coloring. Asign color 1
and color 2 to the singleton color classes in each component.

Assign color 1 to v; and v, and color 2 to v3 and v, in a component. Also, assign color 3 to
vy and v, and color 2 to v3 and vy in the other component.

In this case, we have four triangles K5. The vertices v, and v are in a triangle in G and the
vertices vy and v, are in the other triangle. Assign color 1 to v; and v9, color 2 to vs and
v, and renaming vertices are colored by colors 3 and 4 in a copy of . For the other copy,

assign color 3 to v; and v, color 4 to v3 and v, and renaming vertices are colored by colors
1 and 2.

In 2K, V 2K, let the vertices v, and v, be in a copy 2K, in 2K, V 2K, and the vertices
vy and vy be in the other copy. Assign color 1 to vy and vy and color 2 to v3 and v4 in a
component of G U G. For the other component, assign color 3 to v; and v and color 4 to v
and v,.

Since r > 2, k2(7T,H1) % K, _9,K,_5 and ]k2(7T,H1)] > 3. Letv; € V(Hy),vq,v3 €
V(K;) and vy € V(FT) in a copy of GG. Assign color 1 to v; and v, color 2 to v3 and vy and
color 3 to an other vertex of K,.. For the other copy, let vg, v3 € V(K3) and vy, vy € V(FT).
Assign color 1 to v; and v, and color 3 to v3 and vy.

In both copies of G U G, let vy,v5 € V(2K,), v3 € V(K;) and vy € V(KQ(H17H2))
(vqg € V(Hy)). Assign color 1 to v; and vy and color 2 to v3 and vy in a copy. For the other
copy, assign color 2 to v; and v, and color 1 to v3 and vy.

Let v, € V(Kl) = {?}5}7 V3 € V(Kl) = {UG}, V4 € V(H4) and vy € V(Hl) in the both
components of G U G. Assign color 1 to v; and v, and color 2 to v and vy, in a component.
For the other component, assign color 3 to v; and v, and color 4 to v3 and v,.

In both copies of G U G, let v; € V(K1) = {vs},v3 € V(K;) = {vs},v2 € V(H3) and
vy € V(Hsy). Assign color 1 to v; and vy and color 2 to v3 and vy, in a component. For the
other component, assign color 1 to v; and v, and color 3 to v3 and v.

Letv; € V(K;) = {v1},v3 € V(K;) = {vs}, vy € V(H,) and vy € V(Hy), in the both
components of G U G. Assign color 1 to v; and v, and color 2 to v and vy, in a component.
For the other component, assign color 2 to v; and v, and color 1 to v3 and v,.

LetG = Kg(Hl, H,y, H3)UK,. Iff(g(Hl, H,, Hs) is a complete graph, then Kg(Hl, H,y, H3)U
Kg(Hl, H,, H3) is not distinguished by xp(G) colors. In this case, one can check that
xp(GUG) = xp(G) + 1. If K3(Hy, Hy, Hs) is not a complete graph, by Theorem 5.4, the
result in (ag12) is immediate.
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Let G = Kg(Hl, Hy) U K. If |K2(H1, H,)| < 3, then for distinguishing the vertices K} in
GUG, we need at least 4 colors. For result in (), let | Ky(Hy, Hy)| = 2. Then Ky(Hy, Hy) is
isomorphic with K5 and xp(G) = 2. If |K2(H1, H,)| = 3, then KQ(Hl, Hy) is isomorphic
with K3 or Ps. Inboth cases, x p(GUG) = xp(G)+1. If | Ky (Hy, Hy)| > 4and Ky (Hy, H,)
is a complete graph by Theorem 5.4, then x D(G UG) = xp(G) + 1 and the result in (be) is
obtained. Otherwise, we have the results in (as3).

In this case, if H; = H, = K, then 65(H1,H2,K1,K1) = P, and clearly xp(G UG) =
Xp(G) + 1. This is the result in (by). If Hy # K; or Hy # Ky, letv; € V(K7) = {v3},v3 €
V(K1) = {vs}, vy € V(H;) and vy € V(H;) in both components of G U GG. Assign color 1
to v; and vy and color 2 to v3 and v4 in a component. For the other component, assign color
2 to v; and v, and color 1 to vs and vy.

Similarly to the case (as14), (bs), if H; = Hy = Kj, then we have the result in (by). So,
let Hy # K or Hy # K. For both components of G U G, let v; € V(K;) = {v1},v3 €
V(Ky) = {v4},v2 € V(H3) and vy € V(H;). Assign color 1 to v, and vy and color 2 to v
and v, in a component. For the other component, assign color 2 to v; and v, and color 3 to
V3 and V4.

In this case, there are four copies of K5 in G U (G. For distinguishing those copies, we need
four colors. Also the copies K are colored by the colors used in K5. Hence, xp(G U G) =
n—1=xp(G)+ 1.

Since GUG = K, U2K, and r > 2, we can color the vertices of 2K by the colors used in

Ky, So, xp(GUG) = xp(Kay,) = 2r.

]

6. Conclusions and Future Research

The study of the number of colorings of a graph has been a subject of interest in the literature
on graph colorings. Meanwhile, the study of graphs that have only one coloring is of particular
importance. In this paper, the focus is on graphs that have only one proper distinguishing coloring.
As the two main results of this paper, the disconnected UPDC graphs and UPDC trees has been
determined. The concept of the UPDC has considerable potential for further study in certain graph
families. We end the paper with the following problem.

Problem 6.1. Find the family of connected graphs that are UPDC or not.
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