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Abstract

A proper vertex-coloring of a graph G is called distinguishing, if the only automorphism preserving
the colors is the identity. The minimum number of colors for such a coloring is denoted by χD(G).
We say a graph G is uniquely proper distinguishing colorable (UPDC, for short) if and only if there
exists only one partition of V (G) into χD(G) independent sets such that the identity is the only
automorphism of G preserving the partition.

In this paper, we study the UPDC graphs. We show that a disconnected graph is UPDC if and
only if it is the union of two isomorphic asymmetric connected bipartite graphs. We prove some
results on bipartite UPDC graphs and show that any UPDC tree is one of the following: (i) an
asymmetric tree, (ii) a tree with precisely one non-trivial automorphism and center xy such that this
automorphism interchanges x and y, (iii) a star graph. Additional, a characterization of all graphs
G of order n with the property that χD(G∪G) = χD(G) = k, where k = n− 2, n− 1, n, is given
in this paper. Finally, we determine all graphs G of order n with the property that χD(G ∪ G) =
χD(G) + 1 = ℓ, where ℓ = n− 1, n, n+ 1.
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1. Introduction

In 1977, a concept was introduced by Babai, which became the basis of one of the most im-
portant methods for distinguishing members of graphs by automorphism [4]. This concept, which
we now know as asymmetric coloring (or distinguishing labeling), was added to the graph theory
literature in 1996 by Albertson and Collins [2].

Two research subfields were followed in this concept. Experts in group theory, by taking
into account that the automorphism group of graphs acts on the vertices of that graph, studied
this concept in the general case when a group acts on an arbitrary set. For some outstanding
achievements in this topic, we can refer to the articles [5, 6, 10, 17, 26].

Later, the distinguishing number was assigned to a graph and the proof techniques changed
from the structure of automorphism group to the properties of automorphisms in graphs such as
distance preservation. This fact had many advantages. In fact, we could distinguishably color
graphs that we do not even know their automorphism group. Determining the automorphism group
of a graph is a challenging task, and we do not want the coloring problem to depend on it. Many
papers have been written in such a way. For some articles, we can refer to [1, 3, 13, 14, 25, 19, 16,
17, 20, 23, 24].

In 2006, Collins and Trenk combined this concept with proper coloring and proposed a new
coloring called proper distinguishing coloring [13]. This coloring has attracted the attention of
many researchers and a large number of articles have been published about it. To see some recent
results related to this coloring, the reader can refer to the articles [18, 21, 22].

In [15], Harary, Hedetniemi and Robinson introduced and studied the uniquely colorable (UC,
for short) graphs. In their work ‘coloring’ means the ‘proper coloring’. The interested reader may
refer to the papers [7] and [11] for further results about uniquely colorable graphs.

Details of the definitions are described as follows. Let G be a graph with vertex set V (G). A
coloring of a graph G is a partition of the vertex set of G into classes, called the color classes. If
a coloring contains exactly k disjoint non-empty color classes, then it is called a k-coloring. We
say that a coloring with color classes V1, . . . , Vℓ of G is a distinguishing coloring if there is no
non-trivial automorphism f of G with f(Vi) = Vi for all i = 1, . . . , ℓ. We denote the minimum
such ℓ by D(G) and call the distinguishing number of G. A distinguishing coloring is proper
distinguishing coloring if it is also a proper coloring. The distinguishing chromatic number of a
graph G, denoted by χD(G), is the minimum ℓ such that {V1, . . . , Vℓ} is a proper distinguishing
coloring.

If for any two proper distinguishing colorings c, c′ : V (G) −→ {1, . . . , χD(G)}, there exists a
permutation α of colors such that c′ = α ◦ c, then G is called a uniquely proper distinguishing col-
orable graph (UPDC, for short). In other words, a graph G is UPDC if and only if there exists only
one partition of V (G) into χD(G) independent sets such that the identity is the only automorphism
of G preserving the partition. The symbols for proper coloring and proper distinguishing coloring
of a graph G will always represent [χ(G)] and [χD(G)], respectively. We say vertices u and v are
siblings if they have a common neighbor. A fixed vertex of a graph G is a vertex that is mapped to
itself by any automorphism of G. Let A,B ⊆ V (G). We say that A and B are isomorphic, if there
exists an non-identity automorphism f of G such that f(A) = B. In the event of vertices x and y
being adjacent (resp. non-adjacent), the notation x ∼ y (x ≁ y) is employed. We use [12] for any
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G is asymmetric G is bipartite

UPDC graphs G ∪ G

Disconnected graphs G ∪ G

Figure 1: Disconnected UPDC graphs G ∪G with connected component G.

terminology and notation not defined here.
This paper focuses on the investigation of UPDC graphs. In Section 2, a comparison is drawn

between UPDC and UC. Furthermore, definitions and illustrative examples have been provided to
facilitate comprehension of the concept and to serve as a basis for the subsequent sections. The
present paper establishes two primary results on UPDC graphs, which are substantiated in Sections
3 and 4. In Section 3, it is demonstrated that the only disconnected UPDC graphs are of the form
G∪G, where G is an asymmetric connected bipartite graph. The result is illustrated in Figure 1 by
means of a Venn diagram. In Section 4, UPDC trees are specified. It is demonstrated that the only
UPDC trees are those that apply in one of the following: (i) An asymmetric tree. (ii) A tree with
precisely one non-trivial automorphism and center xy such that this automorphism interchanges x
and y. (iii) A star graph. In Section 5, we characterize all graphs G of order n with the property
that χD(G ∪ G) = χD(G) = k, where k = n − 2, n − 1, n. Also, we determine all graphs G of
order n with the property that χD(G ∪G) = χD(G) + 1 = ℓ, where ℓ = n− 1, n, n + 1. Finally,
in Section 6, the text advances a research problem to be addressed in future studies.

2. Preliminaries

First, we provide two examples which show that the concepts of unique colorability and unique
proper distinguishing colorability in a graph are different. To this end, consider the graph G in
Figure 2. It is a connected bipartite graph, and so it is uniquely 2-colorable. However, it has two
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proper distinguishing colorings as follows:

[χD(G)]1 = {{a, d}, {b, e}, {c}},
[χD(G)]2 = {{a, d}, {c, e}, {b}}.

Hence it is not UPDC.

a

b

d

c

e

Figure 2: A UC graph G that is not UPDC.

Next, consider the graph H in Figure 3. Clearly

[χ(H)]1 = {{a1, a3}, {a2, a5}, {a4, a6}}, and
[χ(H)]2 = {{a1, a6}, {a3, a4}, {a2, a5}} = [χD(H)] .

It is easy to see that H has the unique proper distinguishing color class [χD(H)]. Hence, H is
UPDC but it is not UC.

a4 a5 a6

a1 a2 a3

Figure 3: A UPDC graph H that is not UC.

Definition 2.1. Let G be a graph and c1 and c2 be two vertex colorings. Then c1 and c2 are
isomorphic (or equivalent) if there is an automorphism α such that for every vertex v we have
c1(v) = c2(α(v)). We use c1 ∼= c2 and c1 ≇ c2 when c1 and c2 are isomorphic and non-isomorphic,
respectively.

For instance, in the graph in Figure 2, [χD(G)]1 and [χD(G)]2 are equivalent.
Let G be a UPDC graph with the unique coloring [χD(G)] = {V1, V2, . . . , Vk}. Clearly, in a

proper distinguishing k-coloring of G, one can assign k colors to V (G) with k! different ways. We
call each of these assigning ways a labeling of the distinguishing color classes. For the sake of
convenience, in the following definition, we introduce two types of graphs.
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Definition 2.2. Let G be a connected graph. We say that G is of type 1 if it has only one proper
distinguishing coloring up to coloring isomorphism. Otherwise, we say that G is of type 2.

For instance, the graphs in Figure 4(a) and 4(b) are UPDC of type 1 and type 2, respectively.
As we see, the graph (b) has 3 different proper distinguishing colorings while the graph (a) has
only one such a coloring up to coloring isomorphism.

1 2 1

2 1 2

(a)

2

1

3

2 3

(b)

Figure 4: UPDC graphs of type 1 and type 2.

Note that a graph of type 1 is not necessarily a UPDC graph. For example, see graph Q in
Figure 5. It is easy to see that χD(Q) = 3 and a proper distinguishing coloring with 3 colors
is already demonstrated in the figure. Moreover, Q is not a UPDC because we can exchange the
colors of some pair of vertices and the result is not the same vertex partition, but it remains a proper
distinguishing coloring: for example, make the top left vertex blue and the top right vertex green.
Although Q is not a UPDC, but it has only one proper distinguishing coloring up to automorphism.

Figure 5: A graph Q of type 1 which is not a UPDC.

In the following remark, some results are derived directly from the definition.

Remark 2.3. (1) For positive integers n and m, the graphs Kn, Kn, Kn,m and P2n are UPDC.
But Cn (for n ≥ 5) and P2n+1 (for n ≥ 2) are not UPDC.
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(2) Let G be a UC graph and D(G) = 1. Then G is UPDC and χD(G) = χ(G).

(3) Let G be a connected graph and χD(G) = 2. Then G is UPDC.

3. Disconnected graphs

In 1968, Cartwright and Harary [8] showed that the study of unique colorability is limited to
connected graphs. In fact, they proved that every uniquely colorable graph is connected. In this
section, we show that there exists some family of disconnected UPDC graphs, and we will specify
them.

For an integer k, let
k
∪G denote the disjoint union of k copies of G.

Lemma 3.1. Let G be a connected graph. For a positive integer k, if
k
∪G is a UPDC graph, then

G is UPDC.

Proof. Let k ≥ 2. If G is not UPDC, then it has at least two partitions of its vertices, as [χD(G)]1
and [χD(G)]2, into proper distinguishing colorings. If [χD(G)]1 and [χD(G)]2 are not isomorphic,

then we can consider two components of
k
∪G and color each component with one of the proper

distinguishing colorings of G each time. Therefore, a different partition of
k
∪G is achieved each

time, which forms a proper distinguishing coloring. If [χD(G)]1 and [χD(G)]2 are isomorphic,

then consider the proper distinguishing coloring of
k
∪G. If both [χD(G)]1 and [χD(G)]2 are used

in the proper distinguishing coloring of components of
k
∪G, we do the same as above. (Note that

in this case there is a labeling of proper distinguishing color classes of [χD(G)]1 and [χD(G)]2
such that there is no color-preserving automorphism that maps [χD(G)]1 to [χD(G)]2.) Otherwise,
at most one of [χD(G)]1 and [χD(G)]2 is used in the proper distinguishing coloring of components

of
k
∪G. Assume that [χD(G)]1 is not used in the proper distinguishing coloring of

k
∪G. Consider

an arbitrary labeling of proper distinguishing color classes of [χD(G)]1. There is at most one

component of
k
∪G such that its coloring is mapped by an automorphism to the [χD(G)]1 with its

considered labeling and preserves the labels. Replace the coloring of this component with [χD(G)]1

and its considered labeling. Thus we have another proper distinguishing coloring for
k
∪G. This

means that
k
∪G has at least two proper distinguishing colorings and the result follows.

Lemma 3.2. Let G be a non-trivial connected graph. For a positive integer k, if
k
∪G is UPDC,

then χD(
k
∪G) = χD(G).

Proof. For the sake of contradiction, assume that χD(
k
∪G) > χD(G). We claim that there exist

two components of
k
∪G with at least one different color in the proper distinguishing coloring of

k
∪G. For this purpose, suppose that exactly χD(

k
∪G) colors are used in each component. Consider

the coloring of one component of
k
∪G and replace it with the unique proper distinguishing coloring
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of the graph G with χD(G) colors. Therefore, we will have another proper distinguishing coloring

for
k
∪G. Now, we can select two components G1 and G2 of

k
∪G such that the colors used in them

are not the same. Interchanging the proper distinguishing colorings of G1 and G2, gives us a new

proper distinguishing coloring for
k
∪G, a contradiction.

Lemma 3.3. If G is connected graph of type 1, then χD(G ∪G) = χD(G) + 1.

Proof. Since G is of type 1, there is only one proper distinguishing coloring with χD(G) colors
up to automorphism. Hence, any proper coloring with χD(G) colors cannot break symmetries that
map one component of G ∪G onto the other. Therefore, another color is needed.

Lemma 3.4. Let G be a non-trivial connected graph. For a positive integer k, if
k
∪G is a UPDC

graph, then k ≤ 2.

Proof. For the sake of contradiction, assume that k ≥ 3. Let G1, G2 and G3 be some components

of
k
∪G. Lemmas 3.1, 3.2, conclude that the colorings of G1 and G2 are the same with a different

assigned label for some color classes. There exists a color class of [χD(G)] that is labeled by 1
and 2 in G1 and G2, respectively. Interchanging the labels of the color classes of G1 and G2, and

keeping the coloring of G3, give us another partition of vertices
k
∪G into a proper distinguishing

coloring, a contradiction.

Lemma 3.5. Let G be a connected graph. If G∪G is UPDC, then there exists exactly two labelings
of the proper distinguishing color classes of G up to automorphism.

Proof. If G has only one labeling of the proper distinguishing color classes up to automorphism,
then G is of type 1. So, Lemmas 3.3, 3.2 lead to a contradiction. Assume that G has more than two
labelings up to automorphism. Let c1, c2 and c3 be three non-isomorphic labelings of the proper
distinguishing color classes of G. Color components of G ∪ G once with c1 and c2, and again
with c2 and c3. We will obtain two partition of V (G ∪ G) into proper distinguishing coloring, a
contradiction.

Lemma 3.6. Let G be a non-trivial connected graph. If G ∪G is UPDC, then χD(G) = 2.

Proof. For a contradiction, suppose that χD(G) ≥ 3. Thus, there exist at least 6 labelings of the
proper distinguishing color classes of G. Lemma 3.5 concludes that there exist labelings c1 and
c2 such that c1 ≇ c2. Let c3 be another labeling of the proper distinguishing color classes of G.
Therefore c3 ∼= c1 and so c3 ≇ c2, a contradiction.

Lemma 3.7. Let G be a non-trivial connected graph. If G ∪G is UPDC, then G is an asymmetric
graph.

Proof. Lemma 5.5 allows us to say G is a bipartite graph with parts V and U . So, [χD(G)] =
{V, U} is the unique proper distinguishing coloring of G. If there exists a non-identity automor-
phism f of G, then there exist vertices v ∈ V and u ∈ U such that f(v) = u. Since the set of
vertices at odd distance from v (which is U ) must be mapped to the set at odd distance from f(v)
(which must now be V ), f(V ) = U and f(U) = V . This implies that there is only one labeling of
[χD(G)] up to automorphism. This is impossible because it contradicts Lemma 3.5.
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Theorem 3.8. Let G be a non-empty disconnected graph. Then G is UPDC if and only if G
isomorphic to H ∪H , where H is an asymmetric connected bipartite graph.

Proof. (⇒) Let G be a disconnected UPDC graph. By Lemmas 3.1, 3.4, G has two UPDC com-
ponents, say H1 and H2. Consider a proper distinguishing coloring of G with minimum number
of colors. Then H1 and H2 have at least one same color. Now suppose that H1 ≇ H2. Since G
has at least one edge, we may assume that χD(H1) ≥ 2. Thus H1 has at least two color classes V1

and V2 in [χD(H1)]. Also, let U be a color class of H2. So we may assume that V1 and U have a
common color. Interchange the colors V1 and V2, and produce a new partition of V (G) into proper
distinguishing color classes. This is the required contradiction. Hence we have H1

∼= H2. Now
Lemmas 5.5, 3.7 conclude that H1 (and so H2) is an asymmetric bipartite graph.

(⇐) Since H is asymmetric connected bipartite, it has non-isomorphic parts V and U as the
proper distinguishing color classes. This implies that H is of type 2 with exactly two labelings of
the proper distinguishing color classes up to automorphism. Therefore, H ∪H is UPDC.

The disconnected graph in Figure 6 is UPDC.

2 1 2

1 2 1 2

1 2 1

2 1 2 1

Figure 6: A disconnected UPDC graph.

Corollary 3.9. If G is a disconnected UPDC graph, then χD(G) = 2.

Corollary 3.10. Let G be a UPDC graph. If G is 2-regular, then G is isomorphic to C3 or C4.

4. Bipartite graphs

In this section, we study the UPDC trees. As main result of this section, we show that the only
UPDC tree is a star graph, when distinguishing chromatic number is more than 2.

Lemma 4.1. Let G be a graph and x be a fixed vertex of G such that χD(G)− 1 > deg(x). Then
G is not UPDC.

Proof. Let [χD(G)] = {V1, V2, . . . , VχD(G)} be a proper distinguishing coloring of G such that
N(x) has no intersection with at least two proper distinguishing color classes of G, say with V1

and V2. Now, assume that the proper distinguishing color class of x is of cardinality one and that
x ∈ V1. By replacing the color of V1 with the color of V2, one can obtain a proper distinguishing
coloring of G with less than χD(G) colors. This implies that the proper distinguishing color class
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of x is of cardinality at least two. Suppose that x ∈ V1 and that |V1| ≥ 2. Now, by replacing the
color of x with the color of V2, we get another proper distinguishing color class of G. Hence G is
not UPDC.

Proposition 4.2. Let G be a connected UPDC graph with a fixed pendant vertex. Then D(G) = 1
and χD(G) = 2.

Proof. By Lemma 4.1, χD(G) = 2. Hence G is bipartite. Assume that D(G) ̸= 1 and seek a
contradiction. There is a non-trivial automorphism f of G such that f(v) = u, for two vertices v
and u. Vertices v and u should be of the same distance from the pendant vertex. This implies that
the distance between v and u must be even and so they will be in the same part in the bipartite graph
G. Therefore, f preserves the unique proper distinguishing coloring and which is a contradiction.

Lemma 4.3. Let G be a UPDC graph with at least two sibling pendant vertices. Then G is a star
graph.

Proof. Let a and b be sibling pendant vertices of G. Assume that G is not a star graph. Consider
a proper distinguishing coloring of G. If at least one of a and b belongs to a non-singleton color
class, by interchanging the colors of a and b we get another proper distinguishing color class of
G, a contradiction. Suppose a and b belong to a singleton color class. Since G is not a star graph,
there exists a vertex c such that a ≁ c ≁ b, and c is neither a sibling of a nor b. Now, by replacing
the color of c with the color of a, we get another proper distinguishing color class of G, so we
reach a contradiction.

Lemma 4.4. Let T be a tree. For two vertices v and u of T , if there exists an automorphism f of
T with f(v) = u, then there exists an automorphism g of T with g(v) = u and g(u) = v.

Proof. Let v, u ∈ V (T ) and f(v) = u, for an automorphism f of G. Let P be a maximal path
containing v and u. There exist pendant vertices pv and pv that P is between them such that
f(pv) = pu, where pv and pu are the closest endpoints of P to v and u, respectively. Considering
that the length of P is odd or even, the center of P is a vertex w or an edge wz. Thus, f(w) = w or
f(w) = z. If we delete w or the edge between w and z, then T has at least two isomorphic graphs
Hv and Hu. Where Hv and Hu are the components that contain pv and pu, respectively. We define
the automorphism g as follows.

g(x) =


f(x), if x ∈ V (Hv)

f−1(x), if x ∈ V (Hu),

x, if x ∈ V (T ) \ (V (Hv) ∪ V (Hu)).

Therefore, g(v) = u and g(u) = v.

Let us recall the following interesting result about trees, which we shall use in the rest of the
paper.
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Theorem 4.5. [13, Theorem 3.1] Let T be a tree with at least 2 vertices. Then χD(T ) = 2 if and
only if T has no non-trivial automorphism, or the center of T is an edge xy and T has precisely
one non-trivial automorphism, and this automorphism interchanges x and y.

Theorem 4.6. Let T be a UPDC tree with χD(T ) ≥ 3. Then T is a star graph.

Proof. Assume that T is not a star, and seek a contradiction. Consider a proper distinguishing
coloring of T with minimum number of colors. By Lemma 4.3, T cannot have sibling pendant
vertices.

Now, we claim that there is at least one pendant vertex fixed by any automorphism of T which
is the required contradiction. To achieve this, suppose that any given pendant vertex of T is moved
by an automorphism of T . By Lemma 4.4, without loss of generality, we may assume that v and
u are two pendant vertices of T mapped to each other by some automorphism of T . Consider the
unique path from v to u. If the length of this path is even, then there exists a vertex, say a, in the
unique path from v to u with the same distance from of v and u. Among the set of automorphisms
of T which image v to u, consider an automorphism f with maximum set of fixed vertices of
T . Let A denote the set of fixed vertices of T by f . Clearly A ̸= ∅, because a ∈ A. Assume
that A and V (T ) \ A have vertices with the same color in the proper distinguishing coloring of
T . Now, consider the induced subgraph T [V (T ) \ A] containing two isomorphic components.
By interchanging the colors of the corresponding vertices in the two components, we get another
proper distinguishing color class of T , a contradiction. This implies that the vertices in A and the
vertices in V (T ) \ A have different colors. Since A is non-empty, there is at least one color of
vertices of A that is not assigned to any vertex of V (T ) \ A. Now, we claim that, by replacing
the color v (or u) with this color, one can obtain another proper distinguishing color class of T .
To achieve this, it suffices to show that there is no automorphism of T that moves v (or u) which
preserves the vertex colors. Assume that, by some automorphism of T which preserves the vertex
colors, v (or u) is imaged to some vertex of T , say to b, and seek a contradiction. Clearly b ∈ A.
Now, since T has no sibling pendant vertices, a ≁ b. Therefore, b and v (or u) have no common
neighbors. Hence the neighbors of b (resp. v (or u)) that belongs to A (resp. V (T ) \ A) have the
same color, which is a contradiction.

Therefore the length of the unique path from v to u is odd. The general form of T is depicted
in Figure 7. In Figure 7, Gi

∼= Hi for all i = 1, . . . , k. Thus the edge akbk is the center of T .

u˚ a1˚

G1

a2˚

G2

a3˚

G3

ak˚

Gk

bk˚

Hk

b3˚

H3

b2˚

H2

b1˚

H1

v˚

Figure 7: Graph T .

Furthermore, ak and bk are imaged to each other by an automorphism of T , and T has only this
non-trivial automorphism, otherwise, we obtain two pendant vertices with the same distance from
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ai (and bi) for i = 1, . . . , k, and so the distance between these two vertices is even, which is a
contradiction. Thus Theorem 4.5 implies that χD(T ) = 2, a contradiction. So there is at least one
pendant vertex fixed by any automorphism of T . Therefore, by Lemma 4.1, T is not a UPDC tree.
This is a required contradiction.

The following corollary is immediate by Remark 2.3 and Theorems 4.5, 4.6.

Corollary 4.7. Let T be a UPDC tree. Then T is one of the following:

(i) An asymmetric tree.

(ii) A tree with precisely one non-trivial automorphism and center xy such that this automor-
phism interchanges x and y.

(iii) A star graph.

5. Graphs with χD(G ∪ G) = χD(G)

If G is a connected graph, then χD(G ∪ G) = χD(G) or χD(G ∪ G) = χD(G) + 1. Clearly
χD(G ∪ G) = χD(G) + 1 if and only if G is a connected graph of type 1. In the following, we
investigate all graphs G such that χD(G ∪ G) = χD(G), when χD(G) = k, for k ∈ {|V (G)| −
2, |V (G)| − 1, |V (G)|}. To do this, we begin with Theorem 5.1, Theorem 5.2 and Theorem 5.3,
in which all graphs of order n with distinguishing chromatic number n, n − 1 and n − 2 were
charaterized [13, 9]. We first state some necessary preliminaries.

For any graph G with vertices (v1, . . . , vn) and for any collection of vertex-disjoint graphs
H1, . . . , Hn, let G(H1, . . . , Hn) denote the graph obtained from G by replacing each vi with a
copy of Hi and replacing each edge vivj by Hi ∨Hj . If an Hi is vacuous, i.e., Hi = ∅, then replac-
ing vi by ∅ refers to deleting vi and all edges incident to it. Note that the substituted H can be an
independent set; i.e. both the empty set and independent sets are viewed as “complete multipartite”
graphs. We present three graphs Ĝ5, Ĝ6 and Ĝ7 along with a class of labelled graphs G3 consisting
of two non-isomorphic graphs. The labelled graphs Ĝ5, Ĝ6 and Ĝ7 have vertices (v1, v2, v3, v4),
(v1, v2, v3, v4, v5) and (v1, v2, v3, v4, v5, v6) respectively, while a labelled graph Ĝ3 belonging to the
class G3 has vertices (v1, v2, v3, v4, v5), see Figure 6 and Figure 7. Furthermore, define K̂2 and K̂3

to be the labelled complete graphs of orders two and three respectively, where K̂2(v1, v2) has ver-
tices (v1, v2) and K̂3(v1, v2, v3) has vertices (v1, v2, v3). In particular, if H1 and H2 are nonvacuous
complete multipartite graphs, then K̂2(H1, H2) represents a complete multipartite graph with at
least two parts. (For more details, see [9])

Theorem 5.1. [13, Theorem 2.3] Let G be a graph. Then χD(G) = |V (G)| if and only of G is a
complete multipartite graph.

Theorem 5.2. [9, Theorem 3.2] Let G be a graph of order n > 3. Then χD(G) = n − 1 if and
only if G is the join of a complete multipartite graph (possibly vacuous) with one of the following:

(1) 2K2, or

(2) H ∪K1, where H is a complete multipartite graph with at least two parts.
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Figure 8: Graphs Ĝ5(v1, v2, v3, v4) and Ĝ6(v1, v2, v3, v4, v5).
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Figure 9: Graphs Ĝ7(v1, v2, v3, v4, v5, v6) and G3 (v1, v2, v3, v4, v5).

Theorem 5.3. [9, Theorem 3.5] Let G be a graph of order n > 4. Then χD(G) = n−2 if and only
if G is the join of a complete multipartite graph (possibly vacuous) with one of the following:

(a) P5

(c) C6

(e) Kr ∪K2, for r ≥ 2

(g) K̂3(H1, H2, H3) ∪K2

(i) 2K2 ∨ 2K2

(k) 2K2 ∪K1

(m) Ĝ3(H1, H2, H3,K1,K1), for Ĝ3 ∈G3

(o) Ĝ5(K1, H1, H2,K1)

(q) Ĝ7(H1, H2, H3, H4,K1,K1)

(b) C5

(d) 2K3

(f) K̂2(Kr, H1) ∪K2, for r ≥ 2

(h) K̂2(H1, H2) ∪K2

(j) 2K2 ∨ (K̂2(H1, H2) ∪K1)

(l) (2K2 ∨H1) ∪K1

(n) Ĝ5(H1, H2,K1,K1)

(p) Ĝ6(K1, H1, H2, H3,K1)

where each of H1, H2, H3, H4 is a nonvacuous complete multipartite graph.

Theorem 5.4. Let G be a graph of order n and χD(G) = n. Then

χD(G ∪G) =


n+ 1, if G ∼= Kn,

2n, if G ∼= Kn,

n, Otherwise.
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Proof. By Theorem 5.1, G is a complete multipartite graph. The only non-trivial case is when
G /∈ {Kn, Kn}. In this case, there is at least one part, say U , with cardinality more than 2. There
exist at least two subsets of size |U | of {1, 2. . . . , χD(G)}. Color U with {1, 2, . . . , |U |} in a
component of G ∪G and color U in the other component with {1, 2, . . . , |U | − 1, |U |+ 1}. Also,
color other vertices of G∪G arbitrary. One can check that this is a distinguishing χD(G)-coloring
for G ∪G.

Lemma 5.5. Let G be the join of a nonvacuous complete multipartite graph with one of graphs (1)
and (2) in Theorem 5.2 or one of graphs (a) - (q) in Theorem 5.3. Then χD(G ∪G) = χD(G).

Proof. Let H be a nonvacuous complete multipartite graph and K be one of graphs (1) and (2)
in Theorem 5.2 or one of graphs (a) - (q) in Theorem 5.3. Let Gi, Hi and Ki denote the graphs
isomorphic to G, H and K respectively, for i = 1, 2. We claim that if f is an automorphism
with f(G1) = G2, then f(H1) = H2. For this, assume that all parts of H have cardinality more
than one. On the other hand, all vertices of K adjacent to all vertices of H in G. This implies
that we cannot replace some vertices of H with some vertices of K such that the structure of H is
preserved. (Note that K is not a complete multipartite graph.) If H has a part {x}, then a necessary
condition for that we can replace {x} with a vertex of K such that the structure of H is preserved,
is that there exist a vertex y ∈ V (K) with degK(x) = |V (K)| − 1. One can check there is no such
x in graphs (1) and (2) in Theorem 5.2 and graphs (a) - (q) in Theorem 5.3.

There exist two vertices with the same color in G. Assume that color 1 is assigned to two
vertices in G1 and color 2 is assigned to a vertex in H1. The vertices colored by 1 are in K1. Now,
color the vertices of G2 with the coloring of G1 by interchanging colors 1 and 2. Therefore, any
automorphism that maps G1 to G2 does not preserve the colors.

Theorem 5.6. Let G be a graph of order n > 3 with χD(G) = n− 1. Then

(a) χD(G ∪G) = χD(G) if and only if

(a1) G is the join of a nonvacuous complete multipartite graph with one of the following:

(a11) 2K2, or,
(a12) H ∪K1.

(a2) G ∼= H ∪K1, H ≇ Kn−1,

where H is a complete multipartite graph with at least two parts.

(b) χD(G ∪G) = χD(G) + 1 if and only if G is one of the following:

(b1) 2K2

(b2) Kn−1 ∪K1.

Proof. According to Theorem 5.2, assume first that G is the join of a nonvacuous complete multi-
partite graph with one of the graphs 2K2 or H ∪K1. Lemma 5.5 concludes the results in (a1). For
(b1), let G = 2K2. Hence, χD(G ∪G) = χD(4K2) = 4 = χD(G) + 1 and the result follows. Let
G = H ∪K1. Since H is a complete multipartite graph with at least two parts, H ≇ Kn−1. Now,
the results in (b2) and (a2) conclude from Theorem 5.4.
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Theorem 5.7. Let G be a graph of order n > 4 with χD(G) = n− 2. Then

(a) χD(G ∪G) = χD(G) if and only if

(a1) G is the join of a nonvacuous complete multipartite graph with one of the following:

(a11) P5

(a13) C6

(a15) Kr ∪K2, for r ≥ 2

(a17) K̂3(H1, H2, H3) ∪K2

(a19) 2K2 ∨ 2K2

(a111) 2K2 ∪K1

(a113) (2K2 ∨H1) ∪K1

(a115) Ĝ5(K1, H1, H2,K1)

(a117) Ĝ7(H1, H2, H3, H4,K1,K1)

(a12) C5

(a14) 2K3

(a16) K̂2(Kr, H1) ∪K2, for r ≥ 2

(a18) K̂2(H1, H2) ∪K2

(a110) 2K2 ∨ (K̂2(H1, H2) ∪K1)

(a112) Ĝ3(H1, H2, H3,K1,K1), for Ĝ3 ∈G3

(a114) Ĝ5(H1, H2,K1,K1)

(a116) Ĝ6(K1, H1, H2, H3,K1)

(a2) G is one of the following:

(a21) P5

(a23) C6

(a25) 2K2 ∨ 2K2

(a27) (2K2 ∨H1) ∪K1

(a29) Ĝ7(H1, H2, H3, H4,K1,K1)

(a211) Ĝ6(K1, H1, H2, H3,K1)

(a22) C5

(a24) 2K3

(a26) K̂2(Kr, H1) ∪K2, for r ≥ 2

(a28) 2K2 ∨ (K̂2(H1, H2) ∪K1)

(a210) Ĝ3(H1, H2, H3,K1,K1), for Ĝ3 ∈G3

(a212) K̂3(H1, H2, H3) ∪K2, where K̂3(H1, H2, H3) is not a complete graph.
(a213) K̂2(H1, H2) ∪K2, where K̂2(H1, H2) is not a complete graph and |K̂2(H1, H2)| ≥ 4.
(a214) Ĝ5(H1, H2,K1,K1), where H1 ̸= K1 or H2 ̸= K1.

(a215) Ĝ5(K1, H1, H2,K1), where H1 ̸= K1 or H2 ̸= K1.

where each of H1, H2, H3, H4 is a nonvacuous complete multipartite graph.

(b) χD(G ∪G) = χD(G) + 1 if and only if G is one of the following:

(b1) Kn−2 ∪K2

(b2) K ∪K2, K ∈ {P3,K3}.

(b3) 2K2 ∪K1

(b4) P4

(c) χD(G ∪G) = χD(G) + 2 if and only if G ∼= K2 ∪K2.

(d) χD(G ∪G) = 2χD(G) if and only if G ∼= Kr ∪K2, for r ≥ 2.

Proof. The graph G is the join of a complete multipartite graph (possibly vacuous) with one of
the graphs presented in Theorem 5.3. If G is the join of a nonvacuous complete multipartite graph
with one of the graphs (a) - (q) presented in Theorem 5.3, then by Lemma 5.5, we have the results
in (a1). Now, let G be one of the graphs (a) - (q) that are presented in Theorem 5.3. In some
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cases with χD(G∪G) = χD(G), we will select distinct vertices v1, v2, v3, v4 of each component of
G ∪G for a coloring of G ∪G such that all vertices other than v1, v2, v3, v4 receive distinct colors
in G. Assign to v1 and v2 one color and to v3 and v4 another color in each component of G ∪G.

(a21), (a22) In these cases, there is a singleton color class in each distinguishing coloring. Asign color 1
and color 2 to the singleton color classes in each component.

(a23) Assign color 1 to v1 and v2 and color 2 to v3 and v4 in a component. Also, assign color 3 to
v1 and v2 and color 2 to v3 and v4 in the other component.

(a24) In this case, we have four triangles K3. The vertices v1 and v3 are in a triangle in G and the
vertices v2 and v4 are in the other triangle. Assign color 1 to v1 and v2, color 2 to v3 and
v4 and renaming vertices are colored by colors 3 and 4 in a copy of G. For the other copy,
assign color 3 to v1 and v2, color 4 to v3 and v4 and renaming vertices are colored by colors
1 and 2.

(a25) In 2K2 ∨ 2K2, let the vertices v1 and v2 be in a copy 2K2 in 2K2 ∨ 2K2 and the vertices
v3 and v4 be in the other copy. Assign color 1 to v1 and v2 and color 2 to v3 and v4 in a
component of G ∪G. For the other component, assign color 3 to v1 and v2 and color 4 to v3
and v4.

(a26) Since r ≥ 2, K̂2(Kr, H1) ≇ Kn−2, Kn−2 and |K̂2(Kr, H1)| ≥ 3. Let v1 ∈ V (H1), v2, v3 ∈
V (K2) and v4 ∈ V (Kr) in a copy of G. Assign color 1 to v1 and v2, color 2 to v3 and v4 and
color 3 to an other vertex of Kr. For the other copy, let v2, v3 ∈ V (K2) and v1, v4 ∈ V (Kr).
Assign color 1 to v1 and v2 and color 3 to v3 and v4.

(a27), (a28) In both copies of G ∪ G, let v1, v2 ∈ V (2K2), v3 ∈ V (K1) and v4 ∈ V (K̂2(H1, H2))
(v4 ∈ V (H1)). Assign color 1 to v1 and v2 and color 2 to v3 and v4 in a copy. For the other
copy, assign color 2 to v1 and v2 and color 1 to v3 and v4.

(a29) Let v1 ∈ V (K1) = {v5}, v3 ∈ V (K1) = {v6}, v4 ∈ V (H4) and v2 ∈ V (H1) in the both
components of G ∪G. Assign color 1 to v1 and v2 and color 2 to v3 and v4, in a component.
For the other component, assign color 3 to v1 and v2 and color 4 to v3 and v4.

(a210) In both copies of G ∪ G, let v1 ∈ V (K1) = {v4}, v3 ∈ V (K1) = {v5}, v2 ∈ V (H3) and
v4 ∈ V (H2). Assign color 1 to v1 and v2 and color 2 to v3 and v4, in a component. For the
other component, assign color 1 to v1 and v2 and color 3 to v3 and v4.

(a211) Let v1 ∈ V (K1) = {v1}, v3 ∈ V (K1) = {v5}, v2 ∈ V (H2) and v4 ∈ V (H1), in the both
components of G ∪G. Assign color 1 to v1 and v2 and color 2 to v3 and v4, in a component.
For the other component, assign color 2 to v1 and v2 and color 1 to v3 and v4.

(a212), (b1) Let G = K̂3(H1, H2, H3)∪K2. If K̂3(H1, H2, H3) is a complete graph, then K̂3(H1, H2, H3)∪
K̂3(H1, H2, H3) is not distinguished by χD(G) colors. In this case, one can check that
χD(G ∪G) = χD(G) + 1. If K̂3(H1, H2, H3) is not a complete graph, by Theorem 5.4, the
result in (a212) is immediate.
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(a213), (b2), (c) Let G = K̂2(H1, H2) ∪K2. If |K̂2(H1, H2)| ≤ 3, then for distinguishing the vertices K4 in
G∪G, we need at least 4 colors. For result in (c), let |K̂2(H1, H2)| = 2. Then K̂2(H1, H2) is
isomorphic with K2 and χD(G) = 2. If |K̂2(H1, H2)| = 3, then K̂2(H1, H2) is isomorphic
with K3 or P3. In both cases, χD(G∪G) = χD(G)+1. If |K̂2(H1, H2)| ≥ 4 and K̂2(H1, H2)
is a complete graph by Theorem 5.4, then χD(G ∪G) = χD(G) + 1 and the result in (b2) is
obtained. Otherwise, we have the results in (a213).

(a214), (b4) In this case, if H1 = H2 = K1, then Ĝ5(H1, H2, K1, K1) = P4 and clearly χD(G ∪ G) =
χD(G) + 1. This is the result in (b4). If H1 ̸= K1 or H2 ̸= K1, let v1 ∈ V (K1) = {v3}, v3 ∈
V (K1) = {v4}, v2 ∈ V (H1) and v4 ∈ V (H2) in both components of G ∪G. Assign color 1
to v1 and v2 and color 2 to v3 and v4 in a component. For the other component, assign color
2 to v1 and v2 and color 1 to v3 and v4.

(a215), (b4) Similarly to the case (a214), (b4), if H1 = H2 = K1, then we have the result in (b4). So,
let H1 ̸= K1 or H2 ̸= K1. For both components of G ∪ G, let v1 ∈ V (K1) = {v1}, v3 ∈
V (K1) = {v4}, v2 ∈ V (H2) and v4 ∈ V (H1). Assign color 1 to v1 and v2 and color 2 to v3
and v4 in a component. For the other component, assign color 2 to v1 and v2 and color 3 to
v3 and v4.

(b3) In this case, there are four copies of K2 in G ∪G. For distinguishing those copies, we need
four colors. Also the copies K1 are colored by the colors used in K2. Hence, χD(G ∪G) =
n− 1 = χD(G) + 1.

(d) Since G∪G = K2r ∪ 2K2 and r ≥ 2, we can color the vertices of 2K2 by the colors used in
K2r. So, χD(G ∪G) = χD(K2r) = 2r.

6. Conclusions and Future Research

The study of the number of colorings of a graph has been a subject of interest in the literature
on graph colorings. Meanwhile, the study of graphs that have only one coloring is of particular
importance. In this paper, the focus is on graphs that have only one proper distinguishing coloring.
As the two main results of this paper, the disconnected UPDC graphs and UPDC trees has been
determined. The concept of the UPDC has considerable potential for further study in certain graph
families. We end the paper with the following problem.

Problem 6.1. Find the family of connected graphs that are UPDC or not.
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