Electronic Journal of Graph Theory and Applications

A note on the Ramsey number for a cycle with respect to a disjoint union of wheels

I Wayan Sudarsana
Algebra and Combinatorics Research Group (ACRG), Department of Mathematics, Faculty of Mathematics and Natural Sciences, Tadulako University, Jalan Soekarno-Hatta Km. 9 No. 1 Palu 94118, Indonesia

sudarsanaiw1972@gmail.com

Abstract

Let K_{n} be a complete graph with n vertices. For graphs G and H, the Ramsey number $R(G, H)$ is the smallest positive integer n such that in every red-blue coloring on the edges of K_{n}, there is a red copy of graph G or a blue copy of graph H in K_{n}. Determining the Ramsey number $R\left(C_{n}, t W_{m}\right)$ for any integers $t \geq 1, n \geq 3$ and $m \geq 4$ in general is a challenging problem, but we conjecture that for any integers $t \geq 1$ and $m \geq 4$, there exists $n_{0}=f(t, m)$ such that cycle C_{n} is $t W_{m}$ - good for any $n \geq n_{0}$. In this paper, we provide some evidence for the conjecture in the case of $m=4$ that if $n \geq n_{0}$ then the Ramsey number $R\left(C_{n}, t W_{4}\right)=2 n+t-2$ with $n_{0}=15 t^{2}-4 t+2$ and $t \geq 1$. Furthermore, if G is a disjoint union of cycles then the Ramsey number $R\left(G, t W_{4}\right)$ is also derived.

Keywords: Ramsey number, cycle, wheel
Mathematics Subject Classification : 05C55
DOI: 10.5614/ejgta.2021.9.2.24

1. Introduction

A notation $G(V, E)$, in short denoted as G, is a graph with the vertex set V and the edge set E. In this paper, we mention that all graphs are simple, undirected and finite. For subgraph H of G, a subgraph $G-H$ of G is constructed from G by deleting the vertex set and the edge set of H including all edges incident to the vertex set of H. Let A be any subset of the vertex set V of G,

Received: 15 July 2020, Revised: 31 May 2021, Accepted: 15 August 2021.
then the induced subgraph $G[A]$ of G, is the graph with the vertex set A and the edge set consists of all of the edges in E having both endpoints in A. We follow that the complement of a graph G is a graph \bar{G} having the same vertex set V such that two any distinct vertices u, v in V of \bar{G} are adjacent if and only if u and v are not adjacent in G. On the disjoint union of graphs, we use the definition as follow: for positive integers t and i with $i=1,2, \ldots, t$; and note that V_{i} and E_{i} are respectively the vertex set and the edge set of connected graph G_{i}. The disjoint union of graphs, $\bigcup_{i=1}^{t} G_{i}$, is a graph with the vertex set $\bigcup_{i=1}^{t} V_{i}$ and the edge set $\bigcup_{i=1}^{t} E_{i}$; and if $G_{i} \simeq G$ for each i then $\bigcup_{i=1}^{t} G_{i}=t G$.

For the definition of Ramsey number, we cite the results proposed by Sudarsana [13], [11], [12]; that is, for graphs G and H, the Ramsey number $R(G, H)$ is the smallest natural number n such that in every red and blue colorings of the edges of the complete graph K_{n}, there is a graph G in K_{n} which is all edges are red or a graph H in K_{n} which is all edges are blue. In the other terminology, a graph F is called (G, H)-free, if F contains no G and \bar{F} contains no H. Furthermore, we have an equivalent definition of Ramsey number $R(G, H)$, that is, the smallest positive integer n such that there is no (G, H)-free graph on n vertices exists.

For graphs G and H with $|G|=n$, the chromatic number of H is χ and σ is the chromatic surplus of H, that is, the minimum cardinality of a color class taken over all proper colorings of H with χ colors. By using this basic terminology, in 1981 Burr [4] have been proposed the general lower bound of the Ramsey number $R(G, H)$, that is

$$
\begin{equation*}
R(G, H) \geq(n-1)(\chi-1)+\sigma \tag{1}
\end{equation*}
$$

and the graph G is called H-good when the inequality in equation (1) is equals. The colletion known values of classical Ramsey number $r(n, m)$ and Ramsey number of graph $R(G, H)$ can be found in the dynamic survey of Radziszowski [8], in the other hand its applications colleted by Rosta [9]. On this paper, we denote by W_{m} for a wheel on $m+1$ vertices. The notation $t W_{m}$ discribe a graph with t copies of wheels of order $m+1$. Surahmat et al. [14] proved that cycle C_{n} is W_{m}-good; Chen et al. [6] showed that P_{n} is W_{m}-good for even m and $n \geq m-1 \geq 3$; P_{n} is $t W_{4}-$ good for $n \geq 15 t^{2}-4 t+2, t \geq 1$ [13], and Sudarsana [12] recently proved that C_{n} is $t K_{m}$-good. Meanwhile, S_{n} is not $W_{6}-$ good for $n \geq 3$ [5].

In the case of $H \simeq t W_{m}$, the chromatic surplus $\sigma(H)$ equals t. In general, determining Ramsey number $R\left(C_{n}, t W_{m}\right)$ for any $m \geq 4$ is a notoriously hard problem. The following theorem shows that if $n \geq n_{0}$ then the cycle C_{n} is $t W_{4}-\operatorname{good}$ with $n_{0}=15 t^{2}-4 t+2$ and $t \geq 1$.

Theorem 1.1. For $t \geq 1$ and $f(t)=15 t^{2}-4 t+2$. If $n \geq f(t)$ then $R\left(C_{n}, t W_{4}\right)=2 n+t-2$.
In proving of Theorem 1.1, we use the result of Bondy [3] stated below and the above mentioned result of Surahmat et al. [14].

Lemma 1.1. [3] Let G be a graph of order n. If the minimum degree of G satisfies $\delta(G) \geq \frac{n}{2}$ then either G is pancyclic or n is even and $G \simeq K_{\frac{n}{2}, \frac{n}{2}}$.

Theorem 1.2. [14] Let n and m be positive integers. If m is even and $n \geq \frac{5 m}{2}-1$ then $R\left(C_{n}, W_{m}\right)=2 n-1$.

Let G be a graph containing all H-good components, the general formula for finding the exact value of Ramsey number $R(G, H)$ have been found by Bielak [2] and Sudarsana et al. [11]. In some particular graphs, showed by Stahl [10] and Baskoro et al. [1]. Hence, these results give a motivation to study the families of graphs which have H-good properties.

In particular, when G is a disjoint union of cycles then by using the results of Sudarsana et al. [11] and Theorem 1.1 we obtain the Corollary 1.1 below for finding the exact value of Ramsey number $R\left(G, t W_{4}\right)$.
Corollary 1.1. Let t and k be positive integers and $f(t)=15 t^{2}-4 t+2$. Let $G \simeq \bigcup_{i=1}^{k} l_{i} C_{n_{i}}$, where $l_{i} \geq 1$ and each $C_{n_{i}}$ is a cycle of order n_{i}. If $n_{1} \geq n_{2} \geq \cdots \geq n_{k} \geq f(t)$ then

$$
\begin{equation*}
R\left(G, t W_{4}\right)=\max _{1 \leq i \leq k}\left\{n_{1}+\sum_{j=i}^{k} l_{j} n_{j}\right\}+t-2 \tag{2}
\end{equation*}
$$

2. The Proof of Theorem

We first show the following lemma which is used to prove Theorem 1.1.
Lemma 2.1. For positive integers n and t with $t \leq \frac{1}{2}\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)$. Then, $R\left(C_{n}, t P_{3}\right)=n+t-1$.
Proof. The graph $K_{n-1} \cup K_{t-1}$ is $\left(C_{n}, t P_{3}\right)$-free with $n+t-2$ vertices which is concludes the lower bound $R\left(C_{n}, t P_{3}\right) \geq n+t-1$.

To obtain the upper bound $R\left(C_{n}, t P_{3}\right) \leq n+t-1$, we use induction technique on t. The Result of Faudree et al. [7], $R\left(P_{l}, P_{3}\right)=l$ for $l \geq 4$, implies that the assertion holds for $t=1$. Let F be a graph with $|F|=n+t-1$ containing no C_{n} and then by induction on t, we have $(t-1) P_{3}$ in \bar{F}. Let $B=\left\{x_{1}, y_{1}, z_{1}, \ldots, x_{t-1}, y_{t-1}, z_{t-1}\right\}$ be the vertex set of $(t-1)$ copies of P_{3} in \bar{F} and each of path P_{3}^{i} has edges $x_{i} y_{i}$ and $y_{i} z_{i}$ for $i=1,2, \ldots,(t-1)$. Let us now consider the subgraph $F[A]$ of F induced by $A=V(F) \backslash B$, where $V(F)$ is the vertex set of graph F. It is clear that the induced subgraph $F[A]$ has order $n-2 t+2$. Suppose on the contrary that \bar{F} contains no $t P_{3}$ and hence the subgraph $F[A]$ has minimum degree at least $n-2 t$ since otherwise the subgraph $\bar{F}[A]$ contains P_{3} which together with B produce a copy of $t P_{3}$ in \bar{F}.

We next consider the relation between the vertices in A and in B. Note that \bar{F} does not contain $t P_{3}$. Thus there are at least two vertices of each $\left\{x_{i}, y_{i}, z_{i}\right\}$ adjacent to all but at most three vertices in A since otherwise we have two copies of P_{3} between the vertices in $\left\{x_{i}, y_{i}, z_{i}\right\}$ and in A which together with $B \backslash\left\{x_{i}, y_{i}, z_{i}\right\}$ forms a copy of $t P_{3}$ in \bar{F}. Now without loss of generality, we may assume that each x_{i} and z_{i} are adjacent to all but at most three vertices in A. Let $F[D]$ be the subgraph of F induced by the set $D=A \cup\left\{x_{1}, z_{1}, x_{2}, z_{2}, \ldots, x_{t-1}, z_{t-1}\right\}$. Immediatelly, we obtain that $F[D]$ has order n with minimum degree $\delta(F[D]) \geq n-2 t-1$. Since $t \leq \frac{1}{2}\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)$, it follows that $\delta(F[D]) \geq \frac{n}{2}$. By the result of Bondy's in Lemma 1.1 implies that $F[D]$ contains cycle of order n in F, contradicting with our assumption on F. Hence \bar{F} contains a copy of $t P_{3}$ as claimed. This concludes the proof.

In the following lemma is the weaker form of Theorem 1.1.

Lemma 2.2. Let $t \geq 1$ be an integer and $f(t)=15 t^{2}-4 t+2$. If F is a graph with order $2 n+t-2$ containing C_{n-1} and $n \geq f(t)$ then F contains C_{n} or \bar{F} contains $t W_{4}$.

Proof. Let F be a graph with $|F|=2 n+t-2$ containing C_{n-1}. We will show that F contains C_{n} or \bar{F} contains $t W_{4}$.

Since F contains C_{n-1}, we have that the order of $F-C_{n-1}$ is $n+t-1$. Note that if $t \geq 1$ then $n \geq f(t)>4 t+2$ (this fact is equivalent with condition in Lemma 2.1), and hence Lemma 2.1 give an implication that there is C_{n} in $F-C_{n-1}$ or $t P_{3}$ is in the complement of $F-C_{n-1}$. If $F-C_{n-1}$ contains C_{n} then we are done. Therefore, we have cycle C_{n-1} in F and \bar{F} contains t disjoint copies $P_{3}^{1}, P_{3}^{2}, \ldots, P_{3}^{t}$ of path with three vertices. It can be verified that there is no common vertex between C_{n-1} and $t P_{3}$.

Assume that there is no C_{n} in F, we will find $t W_{4}$ in \bar{F}. Let us consider the relation between the vertices in $A=\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ and in $B=V\left(P_{3}^{1}\right) \cup V\left(P_{3}^{2}\right) \cup \cdots \cup V\left(P_{3}^{t}\right)$. Suppose that the neighborhood $N_{A}(u)$ in A of a vertex $u \in B$ satisfies $\left|N_{A}(u) \cap V\left(C_{n-1}\right)\right| \geq 5 t-1$. Let $x_{i}, x_{j} \in N_{A}(u) \cap V\left(C_{n-1}\right)$ with $i<j$. Note that $j-i>1$ since otherwise we can see that the cycle C_{n-1} including the vertex u extend to a cycle of order n. Meanwhile, if x_{i+1} and x_{j+1} are adjacent in F then we also obtain the cycle $C_{n}^{\prime}=x_{i} u x_{j} x_{j-1} \ldots x_{i+1} x_{j+1} x_{j+2} \ldots x_{n-1} x_{1} x_{2} \ldots x_{i}$ of length n in F. If $x_{i+1} x_{j+1}$ is not an edge in F for every pair $x_{i}, x_{j} \in N_{A}(u) \cap V\left(C_{n-1}\right)$ then the set $\left\{x_{i+1}, x_{j+1} \in N_{A}(u) \cap V\left(C_{n-1}\right)\right\} \cup\{u\}$ is $5 t$ independent vertices in F forming $t W_{4}$ in \bar{F}. Therefore, we obtain $\left|N_{A}(u) \cap V\left(C_{n-1}\right)\right| \leq 5 t-2$ for each u in B. Thus,

$$
\begin{equation*}
\left|A \backslash \bigcup_{u \in B} N_{A}(u)\right| \geq n-1-3 t(5 t-2) \tag{3}
\end{equation*}
$$

Note that $n \geq f(t)$, and so the equation (3) implies that the set A contains at least $2 t+1$ vertices which are not adjacent to all vertices in B and then will form $t W_{4}$ in \bar{F}. This completes the proof of Lemma 2.2.

In the rest, we are now ready to give the proof of Theorem 1.1 as the main result.
Proof of Theorem 1.1. Immediately we can verified that the graph $2 K_{n-1} \cup K_{t-1}$ is ($C_{n}, t W_{4}$)-free on $2 n+t-3$ vertices to give the lower bound $R\left(C_{n}, t W_{4}\right) \geq 2 n+t-2$.

By using induction on t, we will show the upper bound $R\left(C_{n}, t W_{4}\right) \leq 2 n+t-2$. From Theorem 1.2, we have $R\left(C_{n}, W_{4}\right)=2 n-1$ for $n \geq 3$. Note that if $t=1$ then $n \geq f(1)>$ 3. Therefore, Theorem 1.1 is true for $n \geq f(1) \geq 3$. In what follows we assume $t \geq 2$ and Theorem 1.1 is also holds for $n \geq f(t-1)$, that is $R\left(C_{n},(t-1) W_{4}\right) \leq 2 n+t-3$.

We are now show that Theorem 1.1 is also valid for $n \geq f(t)$. Let F be a graph with $|F|=$ $2 n+t-2$. We shall show that there is a C_{n} in F or $t W_{4}$ is in \bar{F}. Note that if $t \geq 1$ then $n \geq f(t)>3$ and then by Theorem 1.2 in Surahmat et al. [14] we have that there is a C_{n} in F or \bar{F} contains W_{4}. Then the proof is end, if we have C_{n} in F. Thus we have W_{4} in \bar{F}. Hence, $\left|F-W_{4}\right|=2(n-2)+(t-1)-2$ and by induction on t note that $n-1 \geq f(t)-1>f(t-1)$, we obtain C_{n-2} in $F-W_{4}$ or $(t-1) W_{4}$ in the complement of $F-W_{4}$. Meanwhile, if there is a graph $(t-1) W_{4}$ in the complement of $F-W_{4}$ then together with the first one will forms $t W_{4}$ in \bar{F} and we are done. Thus F has a cycle C_{n-2} and $\left|F-C_{n-2}\right|=n+t$. Note that if $t \geq 1$ then
$n \geq f(t)>4 t+2$, and by Lemma 2.1 we obtain C_{n} in $F-C_{n-2}$ or $t P_{3}$ is in the complement of $F-C_{n-2}$. If $F-C_{n-2}$ contains C_{n} then we are done.

Thus, we have C_{n-2} in F and \bar{F} contains t disjoint copies $P_{3}^{1}, P_{3}^{2}, \ldots, P_{3}^{t}$ of path with three vertices. It is clear that the subgraphs C_{n-2} and $t P_{3}$ has no vertices in common.

Assume that there is no C_{n-1} in F. We will show that \bar{F} contains $t W_{4}$. Let us now focus to see the relation between the vertices in A and in B; where $A=\left\{x_{1}, x_{2}, \ldots, x_{n-2}\right\}$ is the vertex set of cycle C_{n-2} and $B=V\left(P_{3}^{1}\right) \cup V\left(P_{3}^{2}\right) \cup \cdots \cup V\left(P_{3}^{t}\right)$. Suppose that the neighborhood $N_{A}(u)$ in A of a vertex $u \in B$ satisfies $\left|N_{A}(u) \cap V\left(C_{n-2}\right)\right| \geq 5 t-1$. Let $x_{i}, x_{j} \in N_{A}(u) \cap V\left(C_{n-2}\right)$ with $i<j$. Note that $j-i>1$ since otherwise C_{n-2} together with the vertex u forms a cycle of order $n-1$. Therefore, Lemma 2.2 implies that \bar{F} contains $t W_{4}$. If x_{i+1} and x_{j+1} are adjacent in F then we get the cycle $C_{n-1}^{\prime}=x_{i} u x_{j} x_{j-1} \ldots x_{i+1} x_{j+1} x_{j+2} \ldots x_{n-2} x_{1} x_{2} \ldots x_{i}$ of length $n-1$ in F, and then by Lemma 2.2 we obtain a copy of $t W_{4}$ in \bar{F}. If $x_{i+1} x_{j+1}$ is not an edge in F for every pair $x_{i}, x_{j} \in N_{A}(u) \cap V\left(C_{n-2}\right)$ then the set $\left\{x_{i+1}, x_{j+1} \in N_{A}(u) \cap V\left(C_{n-2}\right)\right\} \cup\{u\}$ contains $5 t$ vertices which is independent in F and so forms $t W_{4}$ in \bar{F}. Hence, we find $\left|N_{A}(u) \cap V\left(C_{n-2}\right)\right| \leq 5 t-2$ for each u in B. Therefore,

$$
\begin{equation*}
\left|A \backslash \bigcup_{u \in B} N_{A}(u)\right| \geq n-2-3 t(5 t-2) \tag{4}
\end{equation*}
$$

By subtitution of condition $n \geq f(t)$ to the equation (4) give an implication that the set A contains at least $2 t$ vertices which are not adjacent to all vertices in B and hence \bar{F} contains $t W_{4}$. This concludes that F has C_{n-1} or \bar{F} has $t W_{4}$. If we have $t W_{4}$ in \bar{F} then the proof is done. Therefore, we have a copy of cycle C_{n-1} in F. Now, by Lemma 2.2 we obtain a copy of C_{n} in F or a copy of $t W_{4}$ in \bar{F}. The proof of Theorem 1.1 is now complete.

To the rest of this paper, let us present the conjecture as an open problem to further work on to the readers. By regarding Theorem 1.1, we believe that the following conjecture is true.

Conjecture 1. For $t \geq 1$ and $m \geq 4$, there exists $n_{0}=f(t, m)$ such that if $n \geq n_{0}$ then the cycle C_{n} is $t W_{m}$-good.

3. Remark and Conclusion

In the rest of paper, we state the new result corresponding to the goodness of cycle C_{n} with respect to $t W_{4}$. In addition, if G is a disjoint union of cycles then we also obtain the exact value of Ramsey number $R\left(G, t W_{4}\right)$. This work is an effort to have a result of the Ramsey numbers $R\left(C_{n}, t W_{m}\right)$ and $R\left(G, t W_{m}\right)$ for any positive integers t, n and m. In future, it is not only possible obtaining the new technic to prove the clasical Ramsey number in two colors but also a wide multi colors Ramsey number in general as well.

Acknowledgement

The author would like to thank the reviewers for valueable comments of this manuscript.

References

[1] E.T. Baskoro, Hasmawati, and H. Assiyatun, Note. The Ramsey Number for Disjoint Unions of Trees, Discrete Math., 306 (2006), 3297-3301.
[2] H. Bielak, Ramsey numbers for a disjoint union of good graphs, Discrete Math., $\mathbf{3 1 0}$ (2010), 1501-1505.
[3] J.A. Bondy, Pancyclic graph, J. Combin. Theory Ser. B, 11 (1974), 80-84.
[4] S.A. Burr, Ramsey numbers involving long suspended paths, J. Lond. Math. Soc., 24 (2) (1981), 405-413.
[5] Y. Chen, Y. Zhang, and K. Zhang, The Ramsey number of stars versus wheels, European J. Combin., 25 (2004), 1067-1075.
[6] Y. Chen, Y. Zhang and K. Zhang, The Ramsey number paths versus wheels, Discrete Math., 290 (2005), 85-87.
[7] R.J. Faudree, S.L. Lawrence, T.D. Parsons, and R.H. Schelp, Path-Cycle Ramsey numbers, Discrete Math., 10 (1974), 269-277.
[8] S.P. Radziszowski, Small Ramsey Numbers, Electron. J. Combin., DS1.12 (2019), http://www.combinatorics.org.
[9] V. Rosta, Ramsey theory applications, Electron. J. Combin., DS1.13 (2019), http://www.combinatorics.org.
[10] S. Stahl, On the Ramsey number $r\left(F, K_{m}\right)$ Where F is a Forest, Canad. J. Math., 27 (1975), 585-589.
[11] I W. Sudarsana, On the Ramsey number for cycle with respect to identical copies of complete graphs, J. Combin. Math. Combin. Comput., 99 (2016), 61-68.
[12] I W. Sudarsana, The goodness of long path with respect to multiple copies of small wheel, Far East Journal of Mathematical Sciences, 59 (1) (2011), 47-54.
[13] I W. Sudarsana, E.T. Baskoro, H. Assiyatun, and S. Uttunggadewa, On the union of graphs Ramsey numbers, Appl. Math. Sci., 8 (16) (2014), 767-773.
[14] Surahmat, E.T. Baskoro, and I. Tomescu, The Ramsey numbers of large cycles versus wheels, Discrete Math., 306 (2006), 3334-3337.

