Electronic Journal of Graph Theory and Applications

The geodetic-dominating number of comb product graphs

Dimas Agus Fahrudin, Suhadi Wido Saputro
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia

dmust95@gmail.com, suhadi@math.itb.ac.id

Abstract

A set of vertices S is called a geodetic-dominating set of G if every vertex outside S is adjacent to a vertex in S, and also is located inside a shortest path between two vertices in S. The geodeticdominating number of G is the minimum cardinality of geodetic-dominating sets of G. In this paper, we determine an exact value of the geodetic-dominating number of comb product graphs of any connected graphs of order at least two.


```
Keywords: comb product, domination number, geodetic-dominating number, geodetic number
Mathematics Subject Classification : 05C69, 05C38, 05C76
DOI: 10.5614/ejgta.2020.8.2.13
```


1. Introduction

In this paper, all graphs are assumed to be connected, finite, simple, and undirected. Let G be a graph. For a vertex $z \in V(G)$, we recall that the open neighborhood and the closed neighborhood of z in G is defined as $N_{G}(z)=\{w \in V(G) \mid z w \in E(G)\}$ and $N_{G}[z]=N_{G}(z) \cup\{z\}$, respectively. A set $D \subseteq V(G)$ is called a dominating set if $N_{G}[D]=V(G)$. The domination number of G is the minimum cardinality of dominating sets of G. This concept provides several applications especially in protection strategies and business networking [10]. Interested readers are referred to a number of relevant literature mentioned in the references, including [16, 24].

Received: 16 August 2019, Revised: 19 April 2020, Accepted: 2 May 2020.

There are several modifications on domination concept in graph. Some of them are locatingdominating set [2, 6, 19, 23], independent dominating set [4, 14], Roman dominating set [9, 13]. In this paper, we are interested to study another variant of domination in graph, namely geodeticdominating set.

A walk in G is a finite non-empty sequence $W=v_{0} e_{1} v_{1} e_{2} v_{2} \ldots e_{k} v_{k}$ where for $1 \leq j \leq k, v_{j}$ is a vertex and for $1 \leq i \leq k, e_{i}$ is an edge where v_{i-1} and v_{i} are its end points. We can say that W is a $v_{0}-v_{k}$ walk. A walk W is called a trail in case all edges of W are different. If all vertices of a trail W are also different, then W is called a path. The distance between vertices $a, b \in V(G)$, denoted by $d_{G}(a, b)$, is the minimum number of edges of $a-b$ paths in G. An $a-b$ path with $d_{G}(a, b)$ edges is called an $a-b$ geodesic. We denote $I_{G}[a, b]$ as the set of vertices which are located inside some $a-b$ geodesics of G. For a non-empty set $B \subseteq V(G)$, we define $I_{G}[B]=\bigcup_{a, b \in B} I_{G}[a, b]$. The set B then we called as a geodetic set of G in case $I_{G}[B]=V(G)$. The minimum cardinality of geodetic sets of G is called as the geodetic number of G, denoted by $g(G)$. For references on geodetic number in graphs, see [3,5].

In this paper, let a set $B \subseteq V(G)$ be both geodetic and dominating in G. The set B then we call as a geodetic-dominating set of G. The geodetic-dominating number of G, denoted by $\gamma_{g}(G)$, is the minimum cardinality of geodetic-dominating sets of G.

This topic was firstly introduced by Escuadro et al. [12]. They proved that for a connected graph G or order at least $n \geq 2, \max \{g(G), \gamma(G)\} \leq \gamma_{g}(G) \leq n$. They also characterized all graphs of order $n \geq 2$ with geodetic-dominating number 2 , n, and $n-1$. Some authors consider this topic to certain classes of graph. Hansberg and Volkmann [15] have shown that the geodeticdominating problem for chordal graphs is NP-complete. Meanwhile the geodetic-dominating number of tree graphs and triangle-free graphs, can be seen in [12]. Some other references on geodeticdominating number in graphs, see $[7,8,18]$.

In this paper, we are interested to apply the geodetic-dominating concept to a product graphs. In this paper, we consider the comb product of connected graphs G and H. In chemistry [1], some classes of chemical graphs can be considered as the comb product graphs. The comb product of connected graphs G and H at vertex $o \in V(H)$, denoted by $G \triangleright_{o} H$, is a graph obtained by taking one copy of G and $|V(G)|$ copies of H and identifying the i-th copy of H at the vertex o to the i-th vertex of G. The vertex $o \in V(H)$ then we call as the identifying vertex. This product graphs have been widely investigated in many areas, including metric distance problems [11, 21, 22] and graph labeling problems [17, 20].

In this paper, we use some definitions in order to determine the geodetic-dominating number of $G \triangleright_{o} H$. Let $V(G)=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ and $V(H)=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$. For the identifying vertex $o \in V(H)$, we also define $K_{o}=G \triangleright_{o} H, V\left(K_{o}\right)=\left\{\left(g_{i}, h_{j}\right) \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$, $V_{0}=\left\{\left(g_{l}, o\right) \mid 1 \leq l \leq n\right\}$, and for $l \in\{1,2, \ldots, n\}, V_{l}=\left\{\left(g_{l}, h_{f}\right) \mid 1 \leq f \leq m\right\}$. For $S \subseteq V(G)$, we also use the notation $G[S]$ which is a maximal subgraph of G induced by all vertices of S.

2. Geodetic-domination number of comb product graphs

In two lemmas below, we provide some properties of a dominating set and a geodetic set in two isomorphic graphs.

Lemma 2.1. Let $\theta: V(A) \rightarrow V(B)$ be an isomorphism between graphs A and B. The set S is a dominating set of A if and only if $\{\theta(x) \mid x \in S\}$ is a dominating set of B.

Proof. Let $x, y \in V(A)$. Thus by isomorphism $\theta(x), \theta(y) \in V(B)$. We define $T \subseteq V(B)$ such that $T=\{\theta(x) \mid x \in S\}$. Note that x and y are adjacent in A if and only if $\theta(x)$ and $\theta(y)$ are adjacent in B. Therefore, $N_{B}[\theta(x)]=\left\{\theta(y) \mid y \in N_{A}[x]\right\}$ and $N_{A}[x]=\left\{y \mid \theta(y) \in N_{B}[\theta(x)]\right\}$.

If S dominates A, then we obtain

$$
\begin{aligned}
N_{B}[T] & =\bigcup_{t \in T} N_{B}[t]=\bigcup_{t \in\{\theta(s): s \in S\}} N_{B}[t]=\bigcup_{s \in S} N_{B}[\theta(s)] \\
& =\left\{\theta(s) \mid s \in N_{A}[S]\right\}=\{\theta(s) \mid s \in A\}=B .
\end{aligned}
$$

If T dominates B, then we obtain

$$
\begin{aligned}
N_{A}[S] & =\bigcup_{s \in S} N_{A}[s]=\bigcup_{s \in\{t \mid \theta(t) \in T\}} N_{A}[s]=\bigcup_{\theta(t) \in T} N_{A}[t] \\
& =\left\{t \mid \theta(t) \in N_{B}[T]\right\}=\{t \mid \theta(t) \in B\}=A .
\end{aligned}
$$

Lemma 2.2. Let $\theta: V(A) \rightarrow V(B)$ be an isomorphism between graphs A and B. The set S is a geodetic set of A if and only if $\{\theta(x) \mid x \in S\}$ is a geodetic set of B.

Proof. Let $x, y \in V(A)$. Thus by isomorphism $\theta(x), \theta(y) \in V(B)$. We define $T \subseteq V(B)$ such that $T=\{\theta(x) \mid x \in S\}$. Note that if $z \in V(A)$ is contained in $x-y$ path in A, then $\theta(z) \in V(B)$ is also contained in $\theta(x)-\theta(y)$ path in B, and vice versa. So, z belongs to $x-y$ geodesic if and only if $\theta(z)$ belongs to $\theta(x)-\theta(y)$ geodesic. Therefore, $I_{B}[\theta(x), \theta(y)]=\left\{\theta(z) \mid z \in I_{A}[x, y]\right\}$ and $I_{A}[x, y]=\left\{z \mid \theta(z) \in I_{B}[\theta(x), \theta(y)]\right\}$

If S is a geodetic set of A, then we obtain

$$
\begin{aligned}
I_{B}[T] & =\bigcup_{i, j \in T} I_{B}[i, j]=\bigcup_{i, j \in\{\theta(s): s \in S\}} I_{B}[i, j]=\bigcup_{k, l \in S} I_{B}[\theta(k), \theta(l)] \\
& =\left\{\theta(s) \mid s \in I_{A}[S]\right\}=\{\theta(s) \mid s \in A\}=B .
\end{aligned}
$$

If T is a geodetic set of B, then we obtain

$$
\begin{aligned}
I_{A}[S] & =\bigcup_{k, l \in S} I_{A}[k, l]=\bigcup_{k, l \in\{t \mid \theta(t) \in T\}} I_{A}[k, l]=\bigcup_{\theta(j), \theta(k) \in T} I_{A}[j, k] \\
& =\left\{t \mid \theta(t) \in I_{B}[T]\right\}=\{t \mid \theta(t) \in B\}=A
\end{aligned}
$$

Therefore, we obtain a direct consequences of Lemmas 2.1 and 2.2 in corollary below.
Corollary 2.1. Let $\theta: V(A) \rightarrow V(B)$ be an isomorphism between graphs A and B. The set S is a geodetic-dominating set of A if and only if $\{\theta(x) \mid x \in S\}$ is a geodetic-dominating set of B.

Now, we investigate the geodetic properties of a geodetic-dominating set of a comb graph K_{o} with the identifying vertex $o \in V(H)$.

Lemma 2.3. Let $o \in V(H)$ be the identifying vertex and u, v be two distinct vertices of K_{o}. For $l \in\{1,2, \ldots, n\}$, if $u \in V_{l}$ and $v \notin V_{l}$, then every $u-v$ path in K_{o} consists of $\left(g_{l}, o\right)$.

Proof. The only vertex in V_{l} which is adjacent to a vertex in $V\left(K_{o}\right) \backslash V_{l}$ is $\left(g_{l}, o\right)$. So, $\left(g_{l}, o\right)$ must belong to every $u-v$ path in K_{o}.

Lemma 2.4. Let $o \in V(H)$ be the identifying vertex and a, b, v be distinct vertices in K_{o}. For $l \in\{1,2, \ldots, n\}$, let $A_{l}=V_{l} \backslash\left\{\left(g_{l}, o\right)\right\}$. If $v \in A_{l}$ and $a, b \notin A_{l}$, then v does not belong to any $a-b$ paths in K_{o}.

Proof. By Lemma 2.3, the vertex $\left(g_{l}, o\right)$ in K_{o} always belongs to any $a-v$ walks and $b-v$ walks. So, $a-b$ walk always has the form $a \ldots\left(g_{l}, h_{o}\right) \ldots v \ldots\left(g_{l}, h_{o}\right) \ldots b$. In the other hand, v does not belong to any $a-b$ paths.

Lemma 2.5. Let $o \in V(H)$ be the identifying vertex and S be a geodetic set of K_{o}. Then for $l \in\{1,2, \ldots, n\},\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, h_{o}\right)\right\}$ is a geodetic set of $K_{o}\left[V_{l}\right]$.

Proof. Suppose that $\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}$ is not a geodetic set of $K_{o}\left[V_{l}\right]$. Then, there exists a vertex $b \in V_{l}$ such that $b \notin I_{K_{o}}\left[\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}\right]$. Note that,

$$
\begin{aligned}
I_{K_{o}}[S] & =\bigcup_{x, y \in S} I_{K_{o}}[x, y] \\
& =\bigcup_{x, y \in S \cap V_{l}} I_{K_{o}}[x, y] \cup \bigcup_{x, y \in S \backslash V_{l}} I_{K_{o}}[x, y] \cup \bigcup_{x \in S \cap V_{l}, y \in S \backslash V_{l}} I_{K_{o}}[x, y] .
\end{aligned}
$$

By Lemma 2.3, we have

$$
\bigcup_{x \in S \cap V_{l}, y \in S \backslash V_{l}} I_{K_{o}}[x, y]=\bigcup_{x \in S \cap V_{l}} I_{K_{o}}\left[x,\left(g_{l}, o\right)\right] \cup \bigcup_{y \in S \backslash V_{l}} I_{K_{o}}\left[y,\left(g_{l}, o\right)\right] .
$$

Since $\bigcup_{x, y \in S \cap V_{l}} I_{K_{o}}[x, y] \cup \bigcup_{x \in S \cap V_{l}} I_{K_{o}}\left[x,\left(g_{l}, o\right)\right]=\bigcup_{x, y \in\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}} I_{K_{o}}[x, y]$ and $\bigcup_{x, y \in S \backslash V_{l}} I_{K_{o}}[x, y] \cup$ $\bigcup_{y \in S \backslash V_{l}} I_{K_{o}}\left[y,\left(g_{l}, o\right)\right]=\bigcup_{x, y \in\left(S \backslash V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}} I_{K_{o}}[x, y]$, we obtain $I_{K_{o}}[S]=\bigcup_{x, y \in\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}} I_{K_{o}}[x, y] \cup$ $\bigcup_{x, y \in\left(S \backslash V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}} I_{K_{o}}[x, y]$.

Because $b \neq\left(g_{l}, o\right)$, then $b \notin I_{K_{o}}\left[\left(S \backslash V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}\right]$. By considering Lemma 2.4, we have that S is not a geodetic set of K_{o}, a contradiction.

In some lemmas below, we consider some properties of the geodetic-dominating set of an induced subgraph of K_{o}.

Lemma 2.6. Let $o \in V(H)$ be the identifying vertex, $S \subseteq V(H)$, and $\Gamma_{l}=\left\{\left(g_{l}, x\right) \mid x \in S\right\}$ for $l \in\{1,2, \ldots, n\}$. Then, S is a geodetic-dominating set of H if and only if Γ_{l} is a geodeticdominating set of $K_{o}\left[V_{l}\right]$.

Proof. By considering Corollary 2.1, we choose an isomorphism $\theta: V(H) \rightarrow V_{l}$ between graphs H and $K_{o}\left[V_{l}\right]$. Thus for $h \in V(H), \theta(h)=\left(g_{l}, h\right)$. For $l \in\{1,2, \ldots, n\}$ then $\Gamma_{l}=\left\{\left(g_{l}, x\right) \mid x \in\right.$ $S\}=\{\theta(x) \mid x \in S\}$.

Lemma 2.7. Let $o \in V(H)$ be the identifying vertex, and S be a dominating set of K_{o}. Then for $l \in\{1,2, \ldots, n\}, S \cap V_{l}$ is a dominating set of $K_{o}\left[V_{l} \backslash\left\{\left(g_{l}, o\right)\right\}\right]$.

Proof. Suppose that $S \cap V_{l}$ is not a dominating set of $K_{o}\left[V_{l} \backslash\left\{\left(g_{l}, o\right)\right\}\right]$. Then, there exists a vertex $b \in V_{l} \backslash\left\{\left(g_{l}, o\right)\right\}$ such that $b \notin N_{K_{o}}\left[S \cap V_{l}\right]$. Note that, $N_{K_{o}}[S]=N_{K_{o}}\left[S \cap V_{l}\right] \cup N_{K_{o}}\left[S \backslash V_{l}\right]$. Since $b \notin N_{K_{o}}\left[S \backslash V_{l}\right]$, then S is not a dominating set of K_{o}, a contradiction.

By Lemmas 2.5 and 2.7, we obtain a property of geodetic-dominating set of an induced subgraph of K_{o}, which can be seen in corollary below.

Corollary 2.2. Let $o \in V(H)$ be the identifying vertex, and S be a geodetic-dominating set of K_{o}. Then for $l \in\{1,2, \ldots, n\},\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, h_{o}\right)\right\}$ is a geodetic-dominating set of $K_{o}\left[V_{l}\right]$.

Proof. By Lemma 2.5, $\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}$ is a geodetic set of $K_{o}\left[V_{l}\right]$. By considering Lemma 2.7, note that $N_{K_{o}}\left[\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}\right]=N_{K_{o}}\left[S \cap V_{l}\right] \cup N\left[\left(g_{l}, o\right)\right] \supseteq N_{K_{o}}\left(V_{l} \backslash\left\{\left(g_{l}, o\right)\right\}\right) \cup\left\{\left(g_{l}, o\right)\right\}=V_{l}$. So, $\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}$ is also a dominating set of $K_{o}\left[V_{l}\right]$.

Now, let us consider a connected graph H of order at least 2. Let o be vertex in H. We define \mathcal{B} as a collection of geodetic-dominating sets of graph H with cardinality $\gamma_{g}(H)$ containing o. The collection \mathcal{B} can be written as

$$
\mathcal{B}=\left\{B\left|B \subseteq V(H), N_{H}[B]=I_{H}[B]=V(H), o \in B,|B|=\gamma_{g}(H)\right\}\right.
$$

We say that the graph H is of:

- type A_{o} if there exists a set $S \in \mathcal{B}$ such that $N_{H}[S \backslash\{o\}]=V(H)$.
- type B_{o} if there exists a set $S \in \mathcal{B}$ such that $N_{H}[S \backslash\{o\}]=V(H)-\{o\}$.

By above definitions, note that a graph H with the identifying vertex $o \in V(H)$ can be both of type A_{o} and B_{o}. Now, we are ready to determine the geodetic-dominating number of $G \triangleright_{o} H$.

Theorem 2.1. Let G and H be connected graphs of order at least 2. Let $o \in V(H)$. Then

$$
\gamma_{g}\left(G \triangleright_{o} H\right)= \begin{cases}\gamma_{g}(H) \cdot|V(G)|, & \text { if } H \text { is neither of type } A_{o} \text { nor } B_{o}, \\ \left(\gamma_{g}(H)-1\right) \cdot|V(G)|, & \text { if } H \text { is of type } A_{o}, \\ \gamma(G)+\left(\gamma_{g}(H)-1\right) \cdot|V(G)|, & \text { otherwise. }\end{cases}
$$

Proof. For the identifying vertex $o \in V(H)$, we recall the notation $K_{o}=G \triangleright_{o} H$. We distinguish three cases.
Case 1. H is neither of type A_{o} nor B_{o}
Let C be a geodetic-dominating set of H with $|C|=\gamma_{g}(H)$. We define $\Lambda=\{(g, h) \mid g \in$ $V(G), h \in C\}$. By considering Lemma 2.6, we obtain that Λ is a geodetic-dominating set of K_{o}. Therefore, $\gamma_{g}\left(K_{o}\right) \leq|\Lambda|=|C| \cdot|V(G)|=\gamma_{g}(H) \cdot|V(G)|$.

For the lower bound, let us consider Corollary 2.2. Let S be a geodetic-dominating set of K_{o}. Then for $l \in\{1,2, \ldots, n\},\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}$ is a geodetic-dominating set of $K_{o}\left[V_{l}\right]$. Let $B \in \mathcal{B}$. For $l \in\{1,2, \ldots, n\}$, we define $T_{l, B}=\left\{\left(g_{l}, b\right) \mid b \in B\right\}$ and $\mathcal{B}_{l}=\left\{T_{l, B} \mid B \in \mathcal{B}\right\}$. Note that $\left|T_{l, B}\right|=\gamma_{g}(H)$.

If $\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\} \in \mathcal{B}_{l}$, then by considering Corollary 2.2, we have

$$
\left|S \cap V_{l}\right|=\left|\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}\right| \geq \gamma_{g}\left(K_{o}\left[V_{l}\right]\right)=\gamma_{g}(H)
$$

Otherwise, we have

$$
\left|\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}\right| \geq \gamma_{g}\left(K_{o}\left[V_{l}\right]\right)+1=\gamma_{g}(H)+1
$$

It follows that

$$
\left|S \cap V_{l}\right| \geq \gamma_{g}(H)
$$

Therefore, $\left|S \cap V_{l}\right| \geq \gamma_{g}(H)$ for $1 \leq l \leq n$.
Since $S=\bigcup_{l=1}^{n} S \cap V_{l}$ and $V_{i} \cap V_{j}=\emptyset$ for $i, j \in\{1,2, \ldots, n\}$ and $i \neq j$, we obtain that

$$
|S| \geq n \cdot\left|S \cap V_{l}\right| \geq n \cdot \gamma_{g}(H)=|V(G)| \cdot \gamma_{g}(H)
$$

Case 2. H is of type A_{o}
Let $C \in \mathcal{B}$ such that $N_{H}[C \backslash\{o\}]=V(H)$. We define $\Lambda=\{(g, h) \mid g \in V(G), h \in C \backslash\{o\}\}$. Since $N_{K_{o}}[\Lambda]=I_{K_{o}}[A]=V\left(K_{o}\right)$, we obtain that Λ is a geodetic-dominating set of K_{o}. Therefore, $\gamma_{g}\left(K_{o}\right) \leq|\Lambda|=(|C|-1) \cdot|V(G)|=\left(\gamma_{g}(H)-1\right) \cdot|V(G)|$.

For the lower bound, let us consider Corollary 2.2. Let S be a geodetic-dominating set of K_{o}. Then for $l \in\{1,2, \ldots, n\},\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}$ is a geodetic-dominating set of $K_{o}\left[V_{l}\right]$. Then we have that,

$$
\left|\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}\right| \geq \gamma_{g}\left(K_{o}\left[V_{l}\right]\right)=\gamma_{g}(H)
$$

It follows that

$$
\left|S \cap V_{l}\right| \geq \gamma_{g}(H)-1
$$

Since $S=\bigcup_{l=1}^{n} S \cap V_{l}$ and $V_{i} \cap V_{j}=\emptyset$ for $i, j \in\{1,2, \ldots, n\}$ and $i \neq j$, we obtain that

$$
|S| \geq n \cdot\left|S \cap V_{l}\right| \geq n \cdot\left(\gamma_{g}(H)-1\right)=|V(G)| \cdot\left(\gamma_{g}(H)-1\right) .
$$

Case 3. H is of type B_{o} and is not of type A_{o}
Let $C \in \mathcal{B}$ such that $N_{H}[C \backslash\{o\}]=V(H)$ and D be a dominating set of G with $|D|=\gamma(G)$. We define $\Lambda=\{(g, h) \mid g \in V(G), h \in C \backslash\{o\}\} \cup\{(g, o) \mid g \in D\}$. Since $N_{K_{o}}[\Lambda]=I_{K_{o}}[A]=$ $V\left(K_{o}\right)$, we obtain that Λ is a geodetic-dominating set of K_{o}. Therefore, $\gamma_{g}\left(K_{o}\right) \leq|\Lambda|=(|C|-$ 1) $\cdot|V(G)|+|D|=\left(\gamma_{g}(H)-1\right) \cdot|V(G)|+\gamma(G)$.

For the lower bound, suppose that $\gamma_{g}\left(K_{o}\right)<\left(\gamma_{g}(H)-1\right) \cdot|V(G)|+\gamma(G)$. Let S be a geodeticdominating set of K_{o} with $|S|=\gamma_{g}\left(K_{o}\right)$. By Corollary 2.2, for $l \in\{1,2, \ldots, n\},\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}$
is a geodetic-dominating set of $K_{o}\left[V_{l}\right]$. Note that

$$
\begin{aligned}
S & =\bigcup_{1 \leq l \leq n} S \cap V_{l} \\
& =\bigcup_{1 \leq l \leq n} S \cap\left\{\left(g_{l}, o\right)\right\} \cup \bigcup_{1 \leq l \leq n} S \cap\left(V_{l} \backslash\left\{\left(g_{l}, o\right)\right\}\right) \\
& =\left(S \cap V_{0}\right) \cup \bigcup_{1 \leq l \leq n} S \cap\left(V_{l} \backslash\left\{\left(g_{l}, o\right)\right\}\right) .
\end{aligned}
$$

So, we obtain that there exists $l \in\{1,2, \ldots, n\}$ such that $\left|S \cap\left(V_{l} \backslash\left\{\left(g_{l}, o\right)\right\}\right)\right|<\gamma_{g}(H)-1$ or $\left|S \cap V_{0}\right|<\gamma(G)$. However,

$$
\begin{aligned}
\left|\left(S \cap\left(V_{l} \backslash\left\{\left(g_{l}, o\right)\right\}\right)\right) \cup\left\{\left(g_{l}, o\right)\right\}\right| & =\left|\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}\right| \\
& \geq \gamma_{g}\left(K_{o}\left[V_{l}\right]\right)=\gamma_{g}(H),
\end{aligned}
$$

which implies

$$
\left|S \cap\left(V_{l} \backslash\left\{\left(g_{l}, o\right)\right\}\right)\right| \geq \gamma_{g}(H)-1
$$

Therefore, $\left|S \cap V_{0}\right|<\gamma(G)$. By considering that $K_{o}\left[V_{0}\right]=G$, there exists a vertex $x \in V_{0}$ such that $x \notin N_{K_{o}}\left[S \cap V_{0}\right]$. It is clear that $x \notin S$.

If $x \notin N_{K_{o}}\left[S \cap\left(V_{l} \backslash\left\{\left(g_{l}, o\right)\right\}\right)\right]$ for $1 \leq l \leq n$, then we have a contradiction with S is a geodetic-dominating set of K_{o}. So, we assume that there exists $l \in\{1,2, \ldots, n\}$ such that $x \in N_{K_{o}}\left[S \cap\left(V_{l} \backslash\left\{\left(g_{l}, o\right)\right\}\right)\right]$. Since $x \in V_{0}$, thus $x=\left(g_{l}, o\right)$.

Let $B \in \mathcal{B}$. For $l \in\{1,2, \ldots, n\}$, we define $T_{l, B}=\left\{\left(g_{l}, b\right) \mid b \in B\right\}$ and $\mathcal{B}_{l}=\left\{T_{l, B} \mid B \in \mathcal{B}\right\}$. Note that $\left|T_{l, B}\right|=\gamma_{g}(H)$.

If $\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}=\left(S \cap V_{l}\right) \cup\{x\} \in \mathcal{B}_{l}$, then

$$
\left|N_{K_{o}}\left[S \cap V_{l}\right]\right|=\left|N_{K_{o}}\left[S \cap\left(V_{l} \backslash\{x\}\right)\right]\right| \leq\left|V\left(K_{o}\left[V_{l}\right]\right)\right|-1
$$

So, there is at least one vertex z in $K_{o}\left[V_{l}\right]$ such that $z \notin N_{K_{o}}\left[S \cap V_{l}\right]$. If $z=x$ then it will contradict to $x \in N\left[S \cap\left(V_{l} \backslash\left(g_{l}, o\right)\right)\right]$. Otherwise, we have a contradiction to Lemma 2.7.

If $\left(S \cap V_{l}\right) \cup\left\{\left(g_{l}, o\right)\right\}=\left(S \cap V_{l}\right) \cup\{x\} \notin \mathcal{B}_{l}$, then

$$
\left|\left(S \cap V_{l}\right) \cup\{x\}\right| \geq \gamma_{g}\left(K_{o}\left[V_{l}\right]\right)+1=\gamma_{g}(H)+1
$$

which implies $\left|S \cap V_{l}\right| \geq \gamma_{g}(H)$. Since $S=\bigcup_{l=1}^{n} S \cap V_{l}, V_{i} \cap V_{j}=\emptyset$ for $i, j \in\{1,2, \ldots, n\}$ and $i \neq j$, and $\gamma(G) \leq|V(G)|$, we obtain that

$$
\begin{aligned}
|S| & \geq n \cdot\left|S \cap V_{l}\right| \geq n \cdot \gamma_{g}(H)=|V(G)| \cdot \gamma_{g}(H) \\
& \geq|V(G)| \cdot \gamma_{g}(H)-|V(G)|+\gamma(G) \\
& =\left(\gamma_{g}(H)-1\right) \cdot|V(G)|+\gamma(G) .
\end{aligned}
$$

A contradiction.

The geodetic-dominating number of comb product graphs | D.A. Fahrudin and S.W. Saputro

Acknowledgement

This paper is supported by Program Hibah Desentralisasi, Penelitian Unggulan Perguruan Tinggi 586r/I1.C01/PL/2016.

References

[1] M. Azari and A. Iranmanesh, Chemical graphs constructed from rooted product and their Zagreb indices, MATCH Commun. Math. Comput. Chem. 70 (2013), 901-919.
[2] M. Blidia, M. Chellali, F. Maffray, J. Moncel, and A. Semri, Locating-domination and identifying codes in trees, Australas. J. Combin. 39 (2007), 219--232.
[3] B. Bresar, S. Klavzar, and A.T. Horvat, On the geodetic number and related metrics sets in Cartesian product graphs, Discrete Math. 308 (2008), 5555-5561.
[4] L.F. Casinillo, A note on Fibonacci and Lucas number of domination in path, Electron. J. Graph Theory Appl. 6 (2) (2018), 317-325.
[5] G. Chartrand, F. Harary, and P. Zhang, On the geodetic number of a graph, Networks 39 (2002), 1-6.
[6] M. Chellali, N.J. Rad, S.J. Seo, and P.J. Slater, On Open Neighborhood Locating-dominating in Graphs, Electron. J. Graph Theory Appl. 2 (2014), 87--98.
[7] S.R. Chellathurai and S.P. Vijaya, Geodetic domination in the corona and join of graphs, J. Discrete Math. Sci. Cryptogr. 17 (1) (2014), 81-90.
[8] S.R. Chellathurai and S.P. Vijaya, The geodetic domination number for the product of graphs, Trans. Combin. 3 (4) (2014), 19-30.
[9] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), 11-22.
[10] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (3) (1977), 247-261.
[11] Darmaji and R. Alfarisi, On the partition dimension of comb of path and complete graph, AIP Conf. Proc. 1867 (2017), 020038.
[12] H. Escuadro, R. Gera, A. Hansberg, N. Jafari Rad, and L. Volkman, Geodetic domination in graphs, J. Combin. Math. Combin. Comput. 77 (2011), 89-101.
[13] X. Fu, Y. Yang, and B. Jiang, Roman domination in regular graphs, Discrete Math. 309 (2009), 1528-1537.
[14] W. Goddard and M.A. Henning, Independent domination in graphs: A survey and recent results, Discrete Math. 313 (2013), 839-854.
[15] A. Hansberg and L. Volkman, On the geodetic and geodetic domination numbers of a graph, Discrete Math. 310 (2010), 2140-2146.
[16] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, (1998).
[17] C.C. Marzuki, F. Aryani, R. Yendra, and A. Fudholi, Total vertex irregularity strength of comb product graph of P_{m} and C_{m}, Res. J. Appl. Sci., 13 (1) (2018), 83-86.
[18] H.M. Nuenay and F.P. Jamil, On minimal geodetic domination in graphs, Discuss. Math. Graph Theory, 35 (3) (2015), 403-418.
[19] A.A. Pribadi and S.W. Saputro, On locating-dominating number of comb product graphs, Indones. J. Combin., 4 (1) (2020), 27-33.
[20] R. Ramdani, On the total vertex irregularity strength of comb product of two cycles and two stars, Indones. J. Combin. 3 (2) (2019), 79-94.
[21] S.W. Saputro, N. Mardiana, and I.A. Purwasih, The metric dimension of comb product graphs, Mat. Vesnik 69 (4) (2017), 248-258.
[22] S.W. Saputro, A. Semaničová-Feňovčíková, M. Bača, and M. Lascsáková, On fractional metric dimension of comb product graphs, Stat. Optim. Inf. Comput. 6 (2018), 150-158.
[23] S.J. Seo and P.J. Slater, Open-independent, open-locating-dominating sets, Electron. J. Graph Theory Appl. 5 (2) (2017), 179-193.
[24] E. Vatandoost and F. Ramezani, On the domination and signed domination numbers of zerodivisor graph, Electron. J. Graph Theory Appl. 4 (2) (2016), 148-156.

