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Abstract

A set of vertices S is called a geodetic-dominating set of G if every vertex outside S is adjacent to
a vertex in S, and also is located inside a shortest path between two vertices in S. The geodetic-
dominating number of G is the minimum cardinality of geodetic-dominating sets of G. In this
paper, we determine an exact value of the geodetic-dominating number of comb product graphs of
any connected graphs of order at least two.
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1. Introduction

In this paper, all graphs are assumed to be connected, finite, simple, and undirected. Let G be a
graph. For a vertex z ∈ V (G), we recall that the open neighborhood and the closed neighborhood
of z in G is defined as NG(z) = {w ∈ V (G) | zw ∈ E(G)} and NG[z] = NG(z) ∪ {z},
respectively. A set D ⊆ V (G) is called a dominating set if NG[D] = V (G). The domination
number of G is the minimum cardinality of dominating sets of G. This concept provides several
applications especially in protection strategies and business networking [10]. Interested readers
are referred to a number of relevant literature mentioned in the references, including [16, 24].
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There are several modifications on domination concept in graph. Some of them are locating-
dominating set [2, 6, 19, 23], independent dominating set [4, 14], Roman dominating set [9, 13].
In this paper, we are interested to study another variant of domination in graph, namely geodetic-
dominating set.

A walk inG is a finite non-empty sequenceW = v0e1v1e2v2...ekvk where for 1 ≤ j ≤ k, vj is a
vertex and for 1 ≤ i ≤ k, ei is an edge where vi−1 and vi are its end points. We can say that W is a
v0−vk walk. A walk W is called a trail in case all edges of W are different. If all vertices of a trail
W are also different, then W is called a path. The distance between vertices a, b ∈ V (G), denoted
by dG(a, b), is the minimum number of edges of a − b paths in G. An a − b path with dG(a, b)
edges is called an a− b geodesic. We denote IG[a, b] as the set of vertices which are located inside
some a − b geodesics of G. For a non-empty set B ⊆ V (G), we define IG[B] =

⋃
a,b∈B IG[a, b].

The set B then we called as a geodetic set of G in case IG[B] = V (G). The minimum cardinality
of geodetic sets of G is called as the geodetic number of G, denoted by g(G). For references on
geodetic number in graphs, see [3, 5].

In this paper, let a set B ⊆ V (G) be both geodetic and dominating in G. The set B then we
call as a geodetic-dominating set of G. The geodetic-dominating number of G, denoted by γg(G),
is the minimum cardinality of geodetic-dominating sets of G.

This topic was firstly introduced by Escuadro et al. [12]. They proved that for a connected
graph G or order at least n ≥ 2, max{g(G), γ(G)} ≤ γg(G) ≤ n. They also characterized all
graphs of order n ≥ 2 with geodetic-dominating number 2, n, and n − 1. Some authors consider
this topic to certain classes of graph. Hansberg and Volkmann [15] have shown that the geodetic-
dominating problem for chordal graphs is NP-complete. Meanwhile the geodetic-dominating num-
ber of tree graphs and triangle-free graphs, can be seen in [12]. Some other references on geodetic-
dominating number in graphs, see [7, 8, 18].

In this paper, we are interested to apply the geodetic-dominating concept to a product graphs.
In this paper, we consider the comb product of connected graphs G and H . In chemistry [1], some
classes of chemical graphs can be considered as the comb product graphs. The comb product of
connected graphs G and H at vertex o ∈ V (H), denoted by G.oH , is a graph obtained by taking
one copy of G and |V (G)| copies of H and identifying the i-th copy of H at the vertex o to the i-th
vertex of G. The vertex o ∈ V (H) then we call as the identifying vertex. This product graphs have
been widely investigated in many areas, including metric distance problems [11, 21, 22] and graph
labeling problems [17, 20].

In this paper, we use some definitions in order to determine the geodetic-dominating number
of G �o H . Let V (G) = {g1, g2, . . . , gn} and V (H) = {h1, h2, . . . , hm}. For the identifying
vertex o ∈ V (H), we also define Ko = G �o H , V (Ko) = {(gi, hj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m},
V0 = {(gl, o)|1 ≤ l ≤ n}, and for l ∈ {1, 2, . . . , n}, Vl = {(gl, hf )|1 ≤ f ≤ m}. For S ⊆ V (G),
we also use the notation G[S] which is a maximal subgraph of G induced by all vertices of S.

2. Geodetic-domination number of comb product graphs

In two lemmas below, we provide some properties of a dominating set and a geodetic set in
two isomorphic graphs.
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Lemma 2.1. Let θ : V (A) → V (B) be an isomorphism between graphs A and B. The set S is a
dominating set of A if and only if {θ(x)|x ∈ S} is a dominating set of B.

Proof. Let x, y ∈ V (A). Thus by isomorphism θ(x), θ(y) ∈ V (B). We define T ⊆ V (B) such
that T = {θ(x)|x ∈ S}. Note that x and y are adjacent in A if and only if θ(x) and θ(y) are
adjacent in B. Therefore, NB[θ(x)] = {θ(y)|y ∈ NA[x]} and NA[x] = {y|θ(y) ∈ NB[θ(x)]}.

If S dominates A, then we obtain

NB[T ] =
⋃
t∈T

NB[t] =
⋃

t∈{θ(s):s∈S}

NB[t] =
⋃
s∈S

NB[θ(s)]

= {θ(s)|s ∈ NA[S]} = {θ(s)|s ∈ A} = B.

If T dominates B, then we obtain

NA[S] =
⋃
s∈S

NA[s] =
⋃

s∈{t|θ(t)∈T}

NA[s] =
⋃

θ(t)∈T

NA[t]

= {t|θ(t) ∈ NB[T ]} = {t|θ(t) ∈ B} = A.

Lemma 2.2. Let θ : V (A) → V (B) be an isomorphism between graphs A and B. The set S is a
geodetic set of A if and only if {θ(x)|x ∈ S} is a geodetic set of B.

Proof. Let x, y ∈ V (A). Thus by isomorphism θ(x), θ(y) ∈ V (B). We define T ⊆ V (B) such
that T = {θ(x)|x ∈ S}. Note that if z ∈ V (A) is contained in x− y path in A, then θ(z) ∈ V (B)
is also contained in θ(x)− θ(y) path in B, and vice versa. So, z belongs to x− y geodesic if and
only if θ(z) belongs to θ(x)− θ(y) geodesic. Therefore, IB[θ(x), θ(y)] = {θ(z)|z ∈ IA[x, y]} and
IA[x, y] = {z|θ(z) ∈ IB[θ(x), θ(y)]}

If S is a geodetic set of A, then we obtain

IB[T ] =
⋃
i,j∈T

IB[i, j] =
⋃

i,j∈{θ(s):s∈S}

IB[i, j] =
⋃
k,l∈S

IB[θ(k), θ(l)]

= {θ(s)|s ∈ IA[S]} = {θ(s)|s ∈ A} = B.

If T is a geodetic set of B, then we obtain

IA[S] =
⋃
k,l∈S

IA[k, l] =
⋃

k,l∈{t|θ(t)∈T}

IA[k, l] =
⋃

θ(j),θ(k)∈T

IA[j, k]

= {t|θ(t) ∈ IB[T ]} = {t|θ(t) ∈ B} = A

Therefore, we obtain a direct consequences of Lemmas 2.1 and 2.2 in corollary below.

Corollary 2.1. Let θ : V (A) → V (B) be an isomorphism between graphs A and B. The set S is
a geodetic-dominating set of A if and only if {θ(x)|x ∈ S} is a geodetic-dominating set of B.
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Now, we investigate the geodetic properties of a geodetic-dominating set of a comb graph Ko

with the identifying vertex o ∈ V (H).

Lemma 2.3. Let o ∈ V (H) be the identifying vertex and u, v be two distinct vertices of Ko. For
l ∈ {1, 2, ..., n}, if u ∈ Vl and v /∈ Vl, then every u− v path in Ko consists of (gl, o).

Proof. The only vertex in Vl which is adjacent to a vertex in V (Ko) \ Vl is (gl, o). So, (gl, o) must
belong to every u− v path in Ko.

Lemma 2.4. Let o ∈ V (H) be the identifying vertex and a, b, v be distinct vertices in Ko. For
l ∈ {1, 2, ..., n}, let Al = Vl\{(gl, o)}. If v ∈ Al and a, b /∈ Al, then v does not belong to any a− b
paths in Ko.

Proof. By Lemma 2.3, the vertex (gl, o) in Ko always belongs to any a− v walks and b− v walks.
So, a−b walk always has the form a...(gl, ho)...v...(gl, ho)...b. In the other hand, v does not belong
to any a− b paths.

Lemma 2.5. Let o ∈ V (H) be the identifying vertex and S be a geodetic set of Ko. Then for
l ∈ {1, 2, ..., n}, (S ∩ Vl) ∪ {(gl, ho)} is a geodetic set of Ko[Vl].

Proof. Suppose that (S ∩ Vl)∪ {(gl, o)} is not a geodetic set of Ko[Vl]. Then, there exists a vertex
b ∈ Vl such that b /∈ IKo [(S ∩ Vl) ∪ {(gl, o)}]. Note that,

IKo [S] =
⋃
x,y∈S

IKo [x, y]

=
⋃

x,y∈S∩Vl

IKo [x, y] ∪
⋃

x,y∈S\Vl

IKo [x, y] ∪
⋃

x∈S∩Vl,y∈S\Vl

IKo [x, y].

By Lemma 2.3, we have⋃
x∈S∩Vl,y∈S\Vl

IKo [x, y] =
⋃

x∈S∩Vl

IKo [x, (gl, o)] ∪
⋃

y∈S\Vl

IKo [y, (gl, o)].

Since
⋃
x,y∈S∩Vl IKo [x, y]∪

⋃
x∈S∩Vl IKo [x, (gl, o)] =

⋃
x,y∈(S∩Vl)∪{(gl,o)} IKo [x, y] and

⋃
x,y∈S\Vl IKo [x, y]∪⋃

y∈S\Vl IKo [y, (gl, o)] =
⋃
x,y∈(S\Vl)∪{(gl,o)} IKo [x, y],we obtain IKo [S] =

⋃
x,y∈(S∩Vl)∪{(gl,o)} IKo [x, y]∪⋃

x,y∈(S\Vl)∪{(gl,o)} IKo [x, y].

Because b 6= (gl, o), then b /∈ IKo [(S \ Vl) ∪ {(gl, o)}]. By considering Lemma 2.4, we have
that S is not a geodetic set of Ko, a contradiction.

In some lemmas below, we consider some properties of the geodetic-dominating set of an
induced subgraph of Ko.

Lemma 2.6. Let o ∈ V (H) be the identifying vertex, S ⊆ V (H), and Γl = {(gl, x)|x ∈ S}
for l ∈ {1, 2, ..., n}. Then, S is a geodetic-dominating set of H if and only if Γl is a geodetic-
dominating set of Ko[Vl].
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Proof. By considering Corollary 2.1, we choose an isomorphism θ : V (H) → Vl between graphs
H and Ko[Vl]. Thus for h ∈ V (H), θ(h) = (gl, h). For l ∈ {1, 2, ..., n} then Γl = {(gl, x)|x ∈
S} = {θ(x)|x ∈ S}.

Lemma 2.7. Let o ∈ V (H) be the identifying vertex, and S be a dominating set of Ko. Then for
l ∈ {1, 2, ..., n}, S ∩ Vl is a dominating set of Ko[Vl\{(gl, o)}].

Proof. Suppose that S ∩ Vl is not a dominating set of Ko[Vl\{(gl, o)}]. Then, there exists a vertex
b ∈ Vl\{(gl, o)} such that b /∈ NKo [S ∩ Vl]. Note that, NKo [S] = NKo [S ∩ Vl]∪NKo [S \ Vl]. Since
b /∈ NKo [S \ Vl], then S is not a dominating set of Ko, a contradiction.

By Lemmas 2.5 and 2.7, we obtain a property of geodetic-dominating set of an induced sub-
graph of Ko, which can be seen in corollary below.

Corollary 2.2. Let o ∈ V (H) be the identifying vertex, and S be a geodetic-dominating set of Ko.
Then for l ∈ {1, 2, ..., n}, (S ∩ Vl) ∪ {(gl, ho)} is a geodetic-dominating set of Ko[Vl].

Proof. By Lemma 2.5, (S ∩Vl)∪{(gl, o)} is a geodetic set of Ko[Vl]. By considering Lemma 2.7,
note thatNKo [(S∩Vl)∪{(gl, o)}] = NKo [S∩Vl]∪N [(gl, o)] ⊇ NKo(Vl\{(gl, o)})∪{(gl, o)} = Vl.
So, (S ∩ Vl) ∪ {(gl, o)} is also a dominating set of Ko[Vl].

Now, let us consider a connected graph H of order at least 2. Let o be vertex in H . We define
B as a collection of geodetic-dominating sets of graph H with cardinality γg(H) containing o. The
collection B can be written as

B = {B|B ⊆ V (H), NH [B] = IH [B] = V (H), o ∈ B, |B| = γg(H)}.

We say that the graph H is of:

• type Ao if there exists a set S ∈ B such that NH [S \ {o}] = V (H).

• type Bo if there exists a set S ∈ B such that NH [S \ {o}] = V (H)− {o}.

By above definitions, note that a graph H with the identifying vertex o ∈ V (H) can be both of
type Ao and Bo. Now, we are ready to determine the geodetic-dominating number of G�o H .

Theorem 2.1. Let G and H be connected graphs of order at least 2. Let o ∈ V (H). Then

γg(G .o H) =


γg(H) · |V (G)|, if H is neither of type Ao nor Bo,
(γg(H)− 1) · |V (G)|, if H is of type Ao,
γ(G) + (γg(H)− 1) · |V (G)|, otherwise.

Proof. For the identifying vertex o ∈ V (H), we recall the notation Ko = G .o H . We distinguish
three cases.
Case 1. H is neither of type Ao nor Bo

Let C be a geodetic-dominating set of H with |C| = γg(H). We define Λ = {(g, h)|g ∈
V (G), h ∈ C}. By considering Lemma 2.6, we obtain that Λ is a geodetic-dominating set of Ko.
Therefore, γg(Ko) ≤ |Λ| = |C| · |V (G)| = γg(H) · |V (G)|.
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For the lower bound, let us consider Corollary 2.2. Let S be a geodetic-dominating set of Ko.
Then for l ∈ {1, 2, . . . , n}, (S ∩ Vl)∪ {(gl, o)} is a geodetic-dominating set of Ko[Vl]. Let B ∈ B.
For l ∈ {1, 2, . . . , n}, we define Tl,B = {(gl, b)|b ∈ B} and Bl = {Tl,B|B ∈ B}. Note that
|Tl,B| = γg(H).

If (S ∩ Vl) ∪ {(gl, o)} ∈ Bl, then by considering Corollary 2.2, we have

|S ∩ Vl| = |(S ∩ Vl) ∪ {(gl, o)}| ≥ γg(Ko[Vl]) = γg(H).

Otherwise, we have

|(S ∩ Vl) ∪ {(gl, o)}| ≥ γg(Ko[Vl]) + 1 = γg(H) + 1.

It follows that
|S ∩ Vl| ≥ γg(H).

Therefore, |S ∩ Vl| ≥ γg(H) for 1 ≤ l ≤ n.
Since S =

⋃n
l=1 S ∩ Vl and Vi ∩ Vj = ∅ for i, j ∈ {1, 2, . . . , n} and i 6= j, we obtain that

|S| ≥ n · |S ∩ Vl| ≥ n · γg(H) = |V (G)| · γg(H).

Case 2. H is of type Ao
Let C ∈ B such that NH [C \ {o}] = V (H). We define Λ = {(g, h)|g ∈ V (G), h ∈ C \ {o}}.

Since NKo [Λ] = IKo [A] = V (Ko), we obtain that Λ is a geodetic-dominating set ofKo. Therefore,
γg(Ko) ≤ |Λ| = (|C| − 1) · |V (G)| = (γg(H)− 1) · |V (G)|.

For the lower bound, let us consider Corollary 2.2. Let S be a geodetic-dominating set of Ko.
Then for l ∈ {1, 2, . . . , n}, (S ∩ Vl) ∪ {(gl, o)} is a geodetic-dominating set of Ko[Vl]. Then we
have that,

|(S ∩ Vl) ∪ {(gl, o)}| ≥ γg(Ko[Vl]) = γg(H).

It follows that
|S ∩ Vl| ≥ γg(H)− 1.

Since S =
⋃n
l=1 S ∩ Vl and Vi ∩ Vj = ∅ for i, j ∈ {1, 2, . . . , n} and i 6= j, we obtain that

|S| ≥ n · |S ∩ Vl| ≥ n · (γg(H)− 1) = |V (G)| · (γg(H)− 1).

Case 3. H is of type Bo and is not of type Ao
Let C ∈ B such that NH [C \ {o}] = V (H) and D be a dominating set of G with |D| = γ(G).

We define Λ = {(g, h)|g ∈ V (G), h ∈ C \ {o}} ∪ {(g, o)|g ∈ D}. Since NKo [Λ] = IKo [A] =
V (Ko), we obtain that Λ is a geodetic-dominating set of Ko. Therefore, γg(Ko) ≤ |Λ| = (|C| −
1) · |V (G)|+ |D| = (γg(H)− 1) · |V (G)|+ γ(G).

For the lower bound, suppose that γg(Ko) < (γg(H)−1) · |V (G)|+γ(G). Let S be a geodetic-
dominating set ofKo with |S| = γg(Ko). By Corollary 2.2, for l ∈ {1, 2, . . . , n}, (S∩Vl)∪{(gl, o)}
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is a geodetic-dominating set of Ko[Vl]. Note that

S =
⋃

1≤l≤n

S ∩ Vl

=
⋃

1≤l≤n

S ∩ {(gl, o)} ∪
⋃

1≤l≤n

S ∩ (Vl \ {(gl, o)})

= (S ∩ V0) ∪
⋃

1≤l≤n

S ∩ (Vl \ {(gl, o)}).

So, we obtain that there exists l ∈ {1, 2, . . . , n} such that |S ∩ (Vl \ {(gl, o)})| < γg(H) − 1 or
|S ∩ V0| < γ(G). However,

|(S ∩ (Vl \ {(gl, o)})) ∪ {(gl, o)}| = |(S ∩ Vl) ∪ {(gl, o)}|
≥ γg(Ko[Vl]) = γg(H),

which implies
|S ∩ (Vl \ {(gl, o)})| ≥ γg(H)− 1.

Therefore, |S ∩ V0| < γ(G). By considering that Ko[V0] = G, there exists a vertex x ∈ V0 such
that x /∈ NKo [S ∩ V0]. It is clear that x /∈ S.

If x /∈ NKo [S ∩ (Vl \ {(gl, o)})] for 1 ≤ l ≤ n, then we have a contradiction with S is
a geodetic-dominating set of Ko. So, we assume that there exists l ∈ {1, 2, . . . , n} such that
x ∈ NKo [S ∩ (Vl \ {(gl, o)})]. Since x ∈ V0, thus x = (gl, o).

Let B ∈ B. For l ∈ {1, 2, . . . , n}, we define Tl,B = {(gl, b)|b ∈ B} and Bl = {Tl,B|B ∈ B}.
Note that |Tl,B| = γg(H).

If (S ∩ Vl) ∪ {(gl, o)} = (S ∩ Vl) ∪ {x} ∈ Bl, then

|NKo [S ∩ Vl]| = |NKo [S ∩ (Vl \ {x})]| ≤ |V (Ko[Vl])| − 1

So, there is at least one vertex z inKo[Vl] such that z /∈ NKo [S∩Vl]. If z = x then it will contradict
to x ∈ N [S ∩ (Vl \ (gl, o))]. Otherwise, we have a contradiction to Lemma 2.7.

If (S ∩ Vl) ∪ {(gl, o)} = (S ∩ Vl) ∪ {x} /∈ Bl, then

|(S ∩ Vl) ∪ {x}| ≥ γg(Ko[Vl]) + 1 = γg(H) + 1,

which implies |S ∩ Vl| ≥ γg(H). Since S =
⋃n
l=1 S ∩ Vl, Vi ∩ Vj = ∅ for i, j ∈ {1, 2, . . . , n} and

i 6= j, and γ(G) ≤ |V (G)|, we obtain that

|S| ≥ n · |S ∩ Vl| ≥ n · γg(H) = |V (G)| · γg(H)

≥ |V (G)| · γg(H)− |V (G)|+ γ(G)

= (γg(H)− 1) · |V (G)|+ γ(G).

A contradiction.
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