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Abstract

For a simple graph G = (V,E), a mapping φ : V ∪ E → {1, 2, . . . , k} is defined as a vertex
irregular total k-labeling of G if for every two different vertices x and y, wt(x) 6= wt(y), where
wt(x) = φ(x)+

∑
xy∈E(G)

φ(xy). The minimum k for which the graphG has a vertex irregular total k-

labeling is called the total vertex irregularity strength of G. In this paper, we provide three possible
values of total vertex irregularity strength for trees with many vertices of degree two. For each
of the possible values, sufficient conditions for trees with corresponding total vertex irregularity
strength are presented.
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1. Introduction

The concept of total vertex irregularity strength of graphs was first introduced by Baca et.al
[2] in 2007. They defined a mapping φ : V ∪ E → {1, 2, 3, . . . , k} to be a vertex irregu-
lar total k-labeling of G if for every two different vertices x and y, wt(x) 6= wt(y), where
wt(x) = φ(x) +

∑
xy∈E(G)

φ(xy). The minimum k for which the graph G has a vertex irregular
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total k-labeling is called the total vertex irregularity strength of G, denoted by tvs(G). Baca et.al
determined the total vertex irregularity strength of some well-known classes of graphs, i.e. paths,
cycles, and stars. Other authors (for instance, [1], [3]) determined the total vertex irregularity
strength of some other classes of graphs, however results are still limited.

In the original paper of Baca et.al [2], it was proved that for a tree T with m pendant vertices
and no vertex of degree 2, dm+1

2
e ≤ tvs(T ) ≤ m. In 2010, Nurdin et.al [4] settled the total

vertex irregularity strength for a tree T with m pendant vertices and no vertices of degree 2, i.e.
tvs(T ) = dm+1

2
e. They also improved the lower bound of Baca et.al as in the following.

Theorem 1.1. [4] Let T be any tree having ni vertices of degree i(i = 1, 2, . . . ,∆), where ∆ is
the maximum degree in T . Then

tvs(T ) ≥ max

{⌈1 + n1

2

⌉
,
⌈1 + n1 + n2

3

⌉
, . . . ,

⌈1 + n1 + n2 + · · ·+ n∆

∆ + 1

⌉}
.

The lower bound in Theorem 1.1 remains the most general bound known for trees. However,
it was conjectured that the total vertex irregularity strength of a tree is only determined by the
number of vertices of degrees at most 3.

Conjecture 1.1. [4] Let T be a tree with maximum degree ∆. Let ni be the number of vertices of
degree i(i = 1, 2, . . . ,∆) and ti =

⌈1+
∑i

k=1 nk

(i+1)

⌉
(i = 1, 2, . . . ,∆). Then

tvs(T ) = max{t1, t2, t3}.

To date, the conjecture has been confirmed for some types of trees, i.e. paths and stars, trees
with maximum degree up to 5 [4, 6, 7] and subdivision of some classes of trees [5, 8].

In this paper, our aim is to determine the total vertex irregularity strength of trees with many
vertices of degree 2 which include subdivision of trees. This result could somewhat be viewed as
generalization of our result in [8], where we presented sufficient conditions for subdivision of trees
to admit total vertex irregularity strength of t2.

Throughout the paper, we consider T as a tree with maximum degree ∆. We denote by ni the
number of vertices of degree i(i = 1, 2, . . . ,∆) and ti =

⌈1+
∑i

k=1 nk

(i+1)

⌉
(i = 1, 2, . . . ,∆).

2. Basic Properties of Trees

In this section, we shall provide properties of trees, in term on n1, n2, and n3, having t1, t2 or
t3 as the maximum among all tis. We start by quoting a useful property proved in [2].

Lemma 2.1. [2]
n1 = 2 +

∑
i≥2

(i− 2)ni.
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Lemma 2.2. If n1 ≥ 2n2 − 1 and n2 = n3 then t1 ≥ max{t1, t2, . . . , t∆}.

Proof. Utilising Lemma 2.1 in the definition of ti, we have ti =
⌈3+

∑i
k=2(k−1)nk+

∑∆
j=i+1(j−2)nj

(i+1)

⌉
.

Consider t1 − t2 =
⌈

1+n1

2

⌉
−
⌈

1+n1+n2

3

⌉
=
⌈ (2n1+2n2+2)+(n1+1−2n2)

6

⌉
−
⌈

2+2n1+2n2

6

⌉
. Since

n1 ≥ 2n2 − 1, we have n1 + 1− 2n2 ≥ 0 and thus t1 ≥ t2.
On the other hand,

t1 − t3 =
⌈1 + n1

2

⌉
−
⌈1 + n1 + n2 + n3

4

⌉
=

⌈(2 + 2n1 + 2n2 + 2n3) + (2n1 + 2− 2n3 − 2n2)

8

⌉
−
⌈2 + 2n1 + 2n2 + 2n3

8

⌉
.

Since n1 ≥ 2n2 − 1 and n2 = n3 then 2n1 + 2− 2n3 − 2n2 ≥ 0, which yields t1 ≥ t3.
For i ≥ 4,

t1 − ti = d1 + n1

2
e − d

3 +
∑i

k=2(k − 1)nk +
∑∆

j=i+1(j − 2)nj

i+ 1
e

≥
⌈ 5 + 5n1

2(i+ 1)

⌉
−
⌈6 + 2n2 + 4n3 + 6n4 + 2

∑∆
j=5(j − 2)nj

2(i+ 1)

⌉
.

Since n1 ≥ 2n2−1 and n2 = n3, 9+n3+4n4+3
∑∆

i=5(i−2)ni−2n2 ≥ 6+2n4+2
∑∆

i=5(i−2) > 0,
which leads to t1 − ti ≥ 0.

Using similar proof of Lemma 2.2, we could prove the following lemmas.

Lemma 2.3. If n2 ≥ 1
2
(n1 + 1) and n1 ≥ 2n3 − 1 then t2 ≥ max{t1, t2, . . . , t∆}.

Lemma 2.4. If n2 = n1 and n3 ≥ 1
3
(2n2 + 1) then t3 ≥ max{t1, t2, . . . , t∆}.

3. Trees with Many Vertices of Degree 2

In this section, we provide sufficient conditions, in term on n1, n2, and n3, for a tree T with
many vertices of degree 2 admitting tvs(T ) = t1, t2 or t3.

We start by defining several notions that will be frequently utilized in our labeling algorithms.
Let v be a vertex of T . A branch of T at v is defined as maximal subtree of T containing v as an
end point. That is, a branch of T at v is the subgraph induced by v and one of the components
of T − v. If the degree of v is k, then v has k different branches. A branch of T at v which
isomorphic to a path will be called a branch path at v, provided that the degree of v is at least
3. The vertex v, in this case, will be called a stem of the branch path at v. We define an interior
path in T as a path whose both of end vertices are stem vertices. A vertex of degree one in T is
called a pendant vertex. A vertex incident to a pendant vertex in T is called an exterior vertex. The
vertices other than exterior and pendant vertices are called interior vertices. An edge incident with
a pendant vertex is called a pendant edge. We denote by Ep(v) the set of pendant edges incident
to an exterior vertex v.
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Theorem 3.1. If n1 ≥ 2n2 − 1 and n2 = n3 > 0 then tvs(T ) = t1.

Proof. By Lemma 2.2 and Theorema 1.1, tvs(T ) ≥ t1. We define a total labeling α : V (G) ∪
E(G)→ {1, 2, . . . , t1} according to the following algorithm.

Algorithm 1: Labeling α with tvs t1

1. Let W = {w1, w2, . . . , wk} be the set of exterior vertices in T such that either
d(wi) ≥ d(wi+1) or |Ep(wi)| ≥ |Ep(wi+1)|.

2. Let V1 = {wij|i = 1, 2, . . . , k and j = 1, 2, . . . , |Ep(wi)|} be the ordered set of pendant
vertices adjacent to all exterior vertices. Label the first t1 pendant vertices in V1 with 1 and
the remaining (n1 − t1) pendant vertices with 2, 3, . . . , n1 − t1 + 1, respectively.

3. Let E1 = {eij|i = 1, 2, . . . , k, j = 1, 2, . . . , |Ep(wi)|} be the ordered set of pendant edges
incident to wij . Label the first t1 pendant edges in E1 with {1, 2, . . . , t1} and the remaining
edges with t1.

4. Let y1, y2, . . . , yN be vertices in V \V1. For all y ∈ V \V1, define
wt′(y) = α(y) +

∑
yz∈E(T ) α(yz), as a temporary weight of a vertex y, where

wt′(yi) ≤ wt(yi+1). Label y1 with n1 + 2− wt′(y1). For 2 ≤ i ≤ N , label yi with
max{1, wt(yi−1) + 1− wt′(yi)}.

We observe that α is a labeling from V (T ) ∪ E(T ) into {1, 2, . . . , t1} where the weights of
n1 pendant vertices are 2, 3, . . . , n1 + 1 and the weights of all remaining vertices are n1 + 2 =
wt(y1) < wt(y2) < wt(y3) < · · · < wt(yN) where N =

∑∆
i=2 ni. Therefore, tvs(T ) ≤ t1.

Theorem 3.2. If n2 ≥ 1
2
(n1 + 1) and n1 ≥ 2n3 − 1 then tvs(T ) = t2.

Proof. By Lemma 2.3 and Theorem 1.1, tvs(T ) ≥ t2. We show that tvs(T ) ≤ t2 through a total
labeling β : V (T ) ∪ E(T )→ {1, 2, . . . , t2} according to the following algorithm.

418



www.ejgta.org

Total vertex irregularity strength for trees with many vertices of degree two | R. Simanjuntak, et al.

Algorithm 2: Labeling β with tvs t2

1. If T has more interior paths than branch paths then

(a) Let W = {w1, w2, . . . , wk} be the set of stem vertices where d(wi) ≥ d(wi+1).

(b) Let V1 = {wij|i = 1, 2, . . . , k, j = 1, 2, . . . , ji} be the set of all pendant vertices wij in
the branch path of wi. Label n1 pendant vertices in V1 with d i

2
e.

(c) Let E1 = {eij} be the set of all pendant edges eij incident to wij . Label n1 pendant
edges e ∈ E1 with d i+1

2
e.

(d) Label all edges incident to stem vertices with t2.

(e) Let E2 = {e1, e2, . . . , ek} be the set of edges where both of end vertices of ei are of
degree two. Label ei with dn1+1+i

3
e.

else

(a) Let P = {P 1, P 2, . . . , P k} be the ordered set of branch paths, where |P i| ≥ |P i+1|.
(b) Let W = {w1, w2, . . . , wk} be the set of stem vertices where d(wi) ≥ d(wi+1).

(c) Let E1 =
⋃

i=1E(wi) be an ordered set of all pendant edges in the path P i. Label n1

pendant edges in E1 with d i+1
2
e.

(d) Label n1 pendant vertices incident to ei with d i
2
e.

(e) Label all edges incident to stem vertices with t2.

(f) Let E2 = {e1, e2, . . . , ek} be the ordered set of edges in P 1 ∪ P 2 ∪ · · · ∪ P k. Label
ei ∈ E2 with β(ei) = d1+n1+i

3
e.

(g) Let L = {L1, L2, . . . , Lk} be the set of interior paths where |Li| ≥ |Li+1|.
(h) Let E3 = {f1, f2, . . . , fk} be the ordered set of edges in path L1 ∪ L2 ∪ · · · ∪ Lk.

Label fi ∈ E3 with dn1+1+i
3
e.

2. Denote all vertices not in V1 by y1, y2, . . . , yN such that wt′(y1) ≤ wt′(y2) ≤ · · · ≤ wt′(yN),
where wt′(y) =

∑
yz∈E β(yz) can be considered as a temporary weight of y. Label y1 with

n1 + 2− s(y1). For 2 ≤ i ≤ N , label yi with max{1, wt(yi + 1− s(yi))}.

We observe that β is a labeling from V (T )∪E(T ) into {1, 2, . . . , t2}, the weight of all pendant
vertices form a sequence 1, 2, 3, . . . , n1 + 1, and the weight of all remaining vertices are n1 + 2 =
wt(y1) < wt(y2) < · · · < wt(yN). Therefore, tvs(T ) ≤ t2.

Examples of families of trees admitting total vertex irregularity strength of t2 are special cases
of subdivision of tress that could be found in [8].

Theorem 3.3. If n2 = n1 > 0 and n3 ≥ 1
3
(2n2 + 1) then tvs(T ) = t3.
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Proof. By Lemma 2.4 and Theorem 1.1, tvs(T ) ≥ t3. A total labeling γ : V (T ) ∪ E(T ) →
{1, 2, 3, . . . , t3} is defined according to the following algorithm.

Algorithm 3: Labeling γ with tvs t3

1. Let W = {w1, w2, w3, . . . , wk} be the set of all exterior vertices in T such that either
d(wi) ≥ d(wi+1) or |Ep(wi)| ≥ |Ep(wi+1)|.

2. Let V1 = {wij|i = 1, 2, . . . , k, j = 1, 2, . . . , |Ep(wi)|} be the ordered set of pendant
vertices adjacent to wi. Label the first t3 pendant vertices in V1 with 1 and the remaining
pendant vertices with 2, 3, . . . , n1 − t3 + 1, respectively.

3. Let E1 = {eij|i = 1, 2, . . . , k, j = 1, 2, . . . , |Ep(wi)|} be the ordered set of pendant edges.
Label the first t3 pendant edges in E1 with {1, 2, 3, . . . , t3} and the remaining pendant
edges with t3.

4. If T has at least t3 interior vertices of degree 2 then

(a) Let Y = {y1, y2, . . . , yN} be the set of exterior and interior vertices where either
wt′(yi) ≤ wt(yi+1) (wt′(y) = γ(y) +

∑
yz∈E(T ) γ(yz) is the temporary weight of y) or

deg(yi) ≤ deg(yi+1). Then y1, y2, . . . , yn2 are the interior vertices of degree 2 where
wt′(y) = 0.

(b) for i = 1, 2, . . . , N do label yi and all its adjacent edges (almost) evenly such that
wt(yi) = n1 + i+ 1 and the labels of edges are at least the label of yi.

(c) Let S = {s1, s2, . . . , sk} be the set of exterior and interior vertices where wt′(s) 6= 0
and wt′(si) ≤ wt′(si+1).

(d) for i = 1, 2, . . . , k do label si and all its adjacent edges (almost) evenly such that
wt(si) = n1 + 1/2n2 + i+ 1 and the labels of edges are at least the label of si.

else

(a) Label all edges not in E1 with t3.

(b) Let y1, y2, . . . , yN be the vertices in V/V1. For all y ∈ V/V1, define
wt′(y) = γ(y) +

∑
yz∈E(T ) γ(yz) as the temporary weight y. Label y1 with

n1 + 2− wt′(y1). For 2 ≤ i ≤ N , label yi with max{1, wt(yi−1) + 1− wt′(yi)}.

We observe that γ is a labeling from V (T ) ∪ E(T ) into {1, 2, . . . , t3} where the weights of n1

pendant vertices are {2, 3, 4, . . . , n1 +1} and the weights of all the remaining vertices are n1 +2 =
wt(y1) < wt(y2) < · · · < wt(yN). This yields t3 ≤ tvs(T ).
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4. Conclusion

Our results provide sufficient conditions for trees containing many vertices of degree 2 where
the total vertex irregularity strength is either t1, t2 or t3. These results strengthens the conjecture
Nurdin et.al.
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