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Abstract

Finding the partition dimension of a graph is one of the interesting (and uncompletely solved) prob-
lems of graph theory. For instance, the values of the partition dimensions for most kind of trees are
still unknown. Although for several classes of trees such as paths, stars, caterpillars, homogeneous
firecrackers and others, we do know their partition dimensions. In this paper, we determine the
partition dimension of a subdivision of a particular tree, namely homogeneous firecrackers. Let
G be any graph. For any positive integer k and e ∈ E(G), a subdivision of a graph G, denoted
by S(G(e; k)), is the graph obtained from G by replacing an edge e with a (k + 1)-path. We
show that the partition dimension of S(G(e; k)) is equal to the partition dimension of G if G is a
homogeneous firecracker.
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1. Introduction

Let u, v be two vertices of a connected graph G(V,E). We define the distance between vertices
u and v as the minimum length of a path connecting them. This distance is denoted by d(u, v).
For a set A ⊆ V , the distance from vertex u to set A, denoted by d(u,A), is min{d(u, x)|x ∈ A}.
Let Π = {A1, A2, · · · , Lt} is a partition with t partition classes of the vertex set of G. The
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representation of vertex u in G under Π is defined as the vector (d(v,A1), d(v, A2), · · · , d(v,At))
and it is denoted by r(v|Π). The partition Π will be called a resolving partition of graph G if the
representations of all vertices in G are different. We define the partition dimension of graph G,
denoted by pd(G), is the least number s such that G admits a resolving s-partition. Two distinct
vertices x and y are said to be distinguished by a subset S ⊆ V (G) if d(x, S) 6= d(y, S). In this
case, we also call that vertices u and v are distinguishable by the set L.

Chartrand et al. [9, 10] introduced the concept of partition dimension of a graph and gave a
very solid foundation of the concept, including deriving a lower bound of such a dimension for
any graph. In addition, Juan et al. (2015) derived an upper bound of the partition dimension of
any tree. From these lower and upper bounds, we still have a large interval for the value of the
partition dimension of a general tree. Several authors have published the partition dimensions of
certain classes of trees. Some of them have the values of smaller than this upper bound, namely
for caterpillars and windmills by Darmaji et al. [12], double stars Sm,n by Chartrand et al. [9],
and homogenous firecrackers by Amrullah et al.[6]. Several results propose some constructions of
the family of graphs having certain partition dimension, see for instance [14] and [3]. Recently,
Baskoro and Haryeni [8] gave the characterization of all graphs G of order n (≥ 11) with partition
dimension n − 3 and diameter 2. In earlier studies, the concept of graph metric dimension intro-
duced by Slater [18] and Harary & Melter [13] has been extensively developed. Some new results
on the metric dimension of graphs, see [1], [19], and [20].

Herein, we are going to determine the partition dimension of a graph obtained by a subdivision
operation on a given graph. Let G(V,E) be a connected graph, e ∈ E and e = uv. Let k be a
positive integer. The subdivision of a graph G on edge e in k times, denoted by S(G(e; k)), is
the graph obtained from the graph G by replacing edge e with a path u, a1, a2, · · · , ak, v of length
k+2. The new vertices in the graph S(G(e; k)) are called subdivision vertices of S(G(e; k)). Some
known results regarding the partition dimension of graphs obtained from a subdivision operation
can be found in [3, 5, 4, 2].

For integers m, r ≥ 2, define a homogeneous firecracker F (m; r) as the graph obtained by the
concatenation of m independent stars K1,r by linking one leaf from each star. Denote by vi and
xi for (i = 1, 2, · · · ,m) the centers and the linked leaves of above stars, respectively. Denote by
wi,1, wi,2, ...wi,r−1 all other leaves incident to vi. Later, all the edges viwij are called pendant and
the other edges are called non-pendant edges. In this paper, we determine the partition dimension
of the subdivision graph S(G(e; k)) if G is a homogeneous firecracker F (m; r).

2. Preliminaries

The following lemma is a useful in helping us to determine or estimate the value of pd(G) for
a connected graph G.

Lemma 2.1. [9] Let G be a connected graph. Let Π be a resolving partition of G, and u, v ∈
V (G). If d (u,w) = d(v, w) for all w ∈ V (G) − {u, v} then vertices u and v must be in distinct
partition classes of Π.

The following result is a direct consequence of Lemma 2.1.
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Corollary 2.1. [9] Let G be a connected graph. If G has a vertex adjacent to k leaves then
pd(G) ≥ k.

Lemma 2.2. [10] Let G be a connected graph of order n ≥ 2. Then, pd(G) = 2 if and only if
G = Pn.

The partition dimension of a homogeneous firecracker has been derived by Amrullah et al. [6]
as following theorem.

Theorem 2.1. [6] Let G ' F (m; r) for r ≥ 2 and m ≥ 2. Then

pd(G) =



2, if m = r and r = 2,
3, if m ≥ 3 and r = 2 or

2 ≤ m ≤ 9 and r = 3 or m = 2 and r = 4,
4, if m > 9 and r = 3 or m ≥ 3 and r = 4,
r − 1, if m < r and r ≥ 5,
r, if m ≥ r and r ≥ 5.

In the next lemma, we give a lower bound of the partition dimension of graph G whose three
distinct vertices in which each vertex is adjacent to three leaves.

Lemma 2.3. [5] Let G be a connected graph of order n ≥ 13. If G has three distinct vertices
x1, x2, x3 where each xi is adjacent to three leaves, then pd(G) ≥ 4.

Lemma 2.4. [5] Let G be a connected graph, e ∈ E and e = v1v2. Let vi be a vertex adjacent to
three leaves, for each i ∈ [1, 2]. If pd(G) = 3, then pd(S(G(e; 4))) ≥ 4.

Lemma 2.4 will be used to derive a lower bound of the partition dimension of the subdivision
graph S(G(e, 2)) where G = F (2; 4) and e is non-pendant edge of G.

3. Main Results

In this section, we determine the partition dimension of the subdivision graph of a homoge-
neous firecracker. The following lemma gives some condition of a graph G ∼= F (m; r) satisfying
pd(S(G(e; k))) ≤ pd(G).

Lemma 3.1. Let G ∼= F (m; r) with m ≥ 2, and r ≥ 4. Let e = vw be a pendant edge with w be
a leaf. If there is a minimum resolving partition Π of G so that v and w are in the same partition
class of Π, then pd(S(G(e; k))) ≤ pd(G) for any positive integer k.

Proof. Let Π = {L1, L2, · · · , Lp} be a minimum resolving partition of G. Let e = vw be a
pendant edge with w be a leaf. Let v and w be in the same partition class, say Li, of Π. Since
r ≥ 4, there are at least two leaves other than w adjacent to v, say w1 and w2. Since all these
leaves w,w1, and w2 must be in different partition classes, we may assume w1 ∈ L2 and w2 ∈ L3.
Let a1, a2, · · · , ak be the subdivision vertices in S(G(e; k)). Now, we define a partition Π′ =
{L′1, L2, · · · , L′p} of S(G(e; k)), where L′1 = L1 ∪ {a1, a2, · · · , ak} and L′i = Li for all i ∈ [2, p].
Let B = {w, a2, a3, · · · , ak}. Now, consider any vertices a and b in Li for some i. If i ≥ 2 then
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d(v, L′i) = d(v, Li) and since Π is a resolving partition of G, then we have r(a|Π′) = r(a|Π) 6=
r(b|Π) = r(b|Π′). If a and b in L1, then a and b will be distinguished by L′2 provided a and b
are in B. Now, If a ∈ B and b /∈ B then d(a, L′2) ≥ 3 and d(a, L′3) ≥ 3 but d(b, L′i) ≤ 2 for
all i ∈ [1, p − 1] (because each vi is adjacent to p − 1 leaves). So we have r(a|Π′) 6= r(b|Π′).
This implies that r(a|Π′) 6= r(b|Π′) for all pairs of different vertices a and b in S(G(e; k)). Thus,
pd(S(G(e; k))) ≤ pd(G).

Lemma 3.2. Let G ∼= F (m; r), m ≥ 2, r ≥ 5, m ≤ r. Let e = uv be a non pendant edge and
u be adjacent to other vertex w, v ∈ Lb, u ∈ Lc and w ∈ Ld with c 6= d 6= b. If v is adjacent to
w1 ∈ Lc and w2 ∈ Ld, then pd(S(G(e; k))) ≤ pd(G).

Proof. Since r ≥ 5, we have pd(G) = p ≥ 4. Let Π = {L1, L2, · · · , Lp} be a resolving partition
of G. We define a new partition Π′ of V (S(G(e; k))), Π′ = {L′1, L′2, · · · , L′p} where L′i = Li for
i /∈ {c, d}, L′c = Lc ∪ {a2, a3, · · · , ak} and L′d = Ld ∪ {a1}.

Let B = {u, a1, a2, · · · , ak}. Since each xi has d(x,wi,j) = 2, j ∈ [1, r−1], then r(xi|Π) is not
affected by subdivision edge. So, we have r(x|Π′) 6= r(y|Π′) for any pair of x, y ∈ V (S(G(e; k))\
B. So, we consider vertices x or y in B. If x, y ∈ B then x, y ∈ L′c. So, the class partition L′d
or L′b can be distinguishing of vertices x, y. If x ∈ B and y /∈ B then consider x, y ∈ L′d or
x, y ∈ L′c. For x, y ∈ L′c, there are at least one component of r(x|Π′) have value at least ’3’ but
all components of r(y|Π′) have value at most ’2’. For x, y ∈ L′d, we consider k = 1 or k > 1. If
k > 1, then there are at least one component of r(x|Π′) have value at least ’3’ but all components
of r(y|Π′) have value at most ’2’. If k = 1, then d(x, L′b) = 1 but d(y, L′b) = 2. So we have
r(x|Π′) 6= r(y|Π′). This implies r(x|Π′) 6= r(y|Π′) for all pair distinct x, y ∈ S(G(e; k)). Thus,
pd(S(G(e; k))) ≤ pd(G).

Lemma 3.3. Let G ∼= F (m; r) with r ≥ 5 and m > r. Then, pd(S(G(e; k))) = pd(G), for any
non pendant edge e and positive integer k.

Proof. We consider the following two cases.

Case 1. e = xtvt, for some t ∈ [1,m].
Since e is non pendant edge then we have pd(S(G(e; k))) ≥ r. Let Π = {L1, L2, · · · , Lr} be a
partition of V (S(G(e; k))) where Lr = {xt, vt, a1, a2, · · · , ak}, L1 = {wi,1|1 ≤ i ≤ m} ∪ {xi|i =
t+ 2j− 1 ≤ m, j ∈ N+}∪{xi|1 ≤ i = t− 2j + 1, j ∈ N+}, L2 = {wi,2|1 ≤ i ≤ m}∪{xi, vi|i =
t + 2j ≤ m, j ∈ N+} ∪ {vi, xi|i ≤ i = t − 2j + 1, j ∈ N+}, L3 = {wi,3|1 ≤ i ≤ m} ∪ {vi|i =
t + 2j − 1 ≤ m, j ∈ N+} ∪ {vi|1 ≤ i = t − 2j − 1, j ∈ N+}, and Li = {wi,1|1 ≤ i ≤ m} for
i /∈ {1, 2, 3, · · · , r}. We use the N+ as the positive integer set.

Let u and z be any two distinct vertices in the same partition class of Π. If u, z ∈ Lr, then
the class partition L1 or L3 will distinguish u and z. If u, z /∈ Lr, then consider d(u, Lr) and
d(z, Lr). If d(u, Lr) 6= d(z, Lr), then u, z will be distinguished by Lr. If d(u, Lr) = d(z, Lr), then
consider these four cases. i). Let u = xk and z = vi, By definition the Π, since u, z are in same
partition class, we have u, z ∈ L2. So, the vertices u, z can be distinguished by L3. ii.) Let u = xk

and z = wi,j , by definition Π, this means u, z ∈ L2 or u, z ∈ L1. If u, z ∈ L2, then u, z can be
distinguished by L1 or L3. If u, z ∈ L1, then u, z can be distinguished by L2 or L3. iii). Let u = vk
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and z = wi,j , Since u, z are in the same partition class, we obtain that the vertices u, z ∈ L2 or
u, z ∈ L3. If u, z ∈ L2, then u, z can be distinguished by L1 or L3. If u, z ∈ L3, then u, z can be
distinguished by L1 or L2. iv.) Let u = wk,j and z = wi,j , we have that u, z can be distinguished
by L2 or L3.

Case 2. Let e = xtxt−1 with t ∈ [2,m]. Let Π′ = {L′1, L′2, · · · , L′r}be a partition of V (S(G(e; k)))
where L′r = {x1, v1}, L′2 = {wi,2|1 ≤ i ≤ m} ∪ {xi, vi|i = 2j ≤ m, j ∈ N+}, L′3 = {wi,3|1 ≤
i ≤ m} ∪ {xi, vi|i = 2j + 1 ≤ m, j ∈ N+} ∪ a1, a2, · · · , xk, dan L′i = {wk,i|1 ≤ k ≤ m}
for i /∈ {2, 3, r}. Let u, z be two different vertices in the same partition class of Π′. If u, z ∈
L′r, then u, z can be distinguished by L′3. If u, z /∈ L′r, then consider d(u, L′r) and d(z, L′r). If
d(u, L′r) 6= d(z, L′r), then u, z can be distinguished by L′r. If d(u, L′r) = d(z, L′r), then consider
u, z in two conditions. i). For u = wi,j and z = vi+2, vertices u, z can be distinguished by L′2
or L′3. ii.) For u = wi,j and z = vi+1, vertices u, z can be distinguished by L′1. This implies
pd(S(G(e; k)) = pd(G).

Lemma 3.4. Let G ∼= F (m; r) with m ≥ 2 and r ≥ 5. If m < r, then pd(S(G(e; k))) = pd(G).

Proof. If e is a pendant edge, then pd(G) = r−1 by Theorem 2.1. Since there is a vertex vi which
is adjacent to r − 1 leaves, pd(S(G(e; k))) ≥ pd(G). By Lemma 3.1, we have pd(S(G(e; k))) ≤
pd(G). Thus, pd(S(G(e; k))) = pd(G). If e is a non pendant edge, then we have pd(G) = r − 1,
by Theorem 2.1. Since a vertex vi is adjacent to r−1 leaves, pd(S(G(e; k))) ≥ pd(G). By Lemma
3.2, pd(S(G (e; k))) ≤ pd(G). Thus, pd(S(G(e; k))) = pd(G).

Lemma 3.5. Let G ∼= F (m; r) with m ≥ 2, r ≥ 5, and e be a pendant edge of G. If pd(G) = r
and m = r then pd(S(G(e; k))) = pd(G)− 1.

Proof. Let e = vjwj,1 for some j ∈ [1,m]. Since S(G(e; k)) has a vertex vt which is adjacent
to r − 1 leaves, then pd(S(G(e; k))) ≥ r − 1. Let Π′ = {L′1, L′2, ..., L′r−1} be a partition of
V (S(G(e; k))). We define L′i in two conditions of e = vjwj,1.
For j = 1 (we can use the same reason for i = m), we define L′1 = {v1, v2, a1, w1,2, xm−2} ∪
{wt,1|t 6= j}, L′2 = {a2, ..., ak, w1,1, w1,3, xm−1, v3} ∪ {wt,2|t 6= 1}, L′3 = {x1, xm, w1,4, v4} ∪
{wt,3|t 6= j} and L′i = {xi−2, vi+1} ∪ {wt,i|t 6= j} ∪ {wj,i+1|i < r − 1}, for 4 ≤ i ≤ r − 1.
For 2 ≤ j ≤ m − 1, we define L′1 = {v1, vj, a1, wj,2, xj} ∪ {wt,1|t 6= j}, L′2 = {a2, ..., ak, wj,1,
wj,3, xj+1}∪{wt,2|t 6= 1}∪{v2|j 6= 2}∪{v2|j = 2}∪{x1|j = m−1}, and L′i = {wj,i+1}∪{wt,i|t 6=
j}∪{vi|j < i}∪{vi+1|j > i}∪{xj−1+i|j−1+i < m}∪{xj−1+i, x1|m = j−1+i}∪{xj+i−m|j−
1 + i > m}, for 3 ≤ i ≤ r − 1.

Let u, z be two distinct vertices in the same partition class L′t of Π′. If u is a leaf and z is a
non-leaf, then the components of r(u|Π′) appear at most one value ’1’, but the r(z|Π′) appear at
least two value ’1’. This implies that r(u|Π′) 6= r(z|Π′). If u, z are two leaves, u = wa,i1 and
z = wb,i2 with a 6= b, then they can be distinguished by va or vb for a 6= 1 and b 6= 1.If the
same condition of u, z and a = b = 1 then they can be distinguished by L′r−1. This implies that
r(u|Π′) 6= r(z|Π′).
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If u, z are two non-leaves then we have three cases: (i) u = vi1 and z = vi2 . So, we have
u, z ∈ L′1. They can be distinguished by L′r−1. This implies that r(u|Π′) 6= r(z|Π′). (ii) u = xi1

and z = xi2 . So, we have u, z ∈ L′3. They can be distinguished by L′2 or L′4 . This implies that
r(u|Π′) 6= r(z|Π′). (iii) u = xi1 and z = vi2 . The components of r(u|Π′) appear twice component
having value ’1’ but in the r(z|Π′) appear at least three component having value ’1’. This implies
that r(u|Π′) 6= r(z|Π′). Therefore, pd(S(G(e; k))) = r − 1 = pd(G)− 1.

Lemma 3.6. Let G ∼= F (m; r) with r ≥ 4, and e be a non pendant edge of G. If pd(G) = r, then
pd(S(G(e; k))) = pd(G).

Proof. According Theorem 2.1, we know that pd(G) = r if (r = 4 and m ≥ 3) or (r > 4 and
m ≥ r). First, we show that pd(S(G(e; k))) ≥ r. For r = 4, since e is non pendant edge of G, then
by Lemma 2.3 pd(S(G(e; k))) ≥ 4 = r. For r > 4 and m ≥ r, since e is a non pendant edge, then
there are at least r vertices vi where each vi is adjacent to r − 1 leaves. So, pd(S(G(e; k))) ≥ r.
By Lemma 3.2, we have pd(S(G(e; k))) ≤ pd(G). Thus, pd(S(G(e; k))) = pd(G).

By Lemmas 3.7-3.9, we determine the partition dimension of the subdivision of G = F (m; 4)
with m ≥ 2. Lemma 3.7 gives the partition dimension of the subdivision of F (2; 4).

Lemma 3.7. Let G ∼= F (2; 4). Then

pd(S(G(e; k))) =


pd(G) + 1, if e is a non pendant edge and

k = 2,
pd(G), otherwise.

Proof. First, by [6] we have that pd(G) = 3. If e is a non-pendant edge and k = 2, then we have
that pd(S(G(e; 2))) ≥ 4 by Lemma 2.4. In the Figure 1(b) we give a resolving 4-partition for
S(G(e; 2)). So, we have that pd(S(G(e; 2))) = pd(G) + 1.

Figure 1. (a.) a resolving partition of G = F (2; 4), (b-e.) a resolving partition of S(G(e; k)) where G = F (2; k), e is
a non pendant edge and (b.) k = 2, (c.) k = 1, (d.) k ≥ 3, (e.) e is a pendant edge and k ≥ 1.

Second, we know that S(G(e; k)) is not a path, then pd(S(G(e; k))) ≥ 3. If e is a non-pendant
edge and k = 1 or k ≥ 3, then we give a resolving 3-partition for S(G(e; k)) in Figures 1(c-d). If
e is a pendant edge, then we have a resolving 3-partition for S(G(e; k)) in Figure 1(e). Therefore,
pd(S(G(e; k))) = pd(G).
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Lemma 3.8. If G ∼= F (3; 4), then

pd(S(G(e; k))) =

{
pd(G)− 1, if e is a pendant edge,
pd(G), otherwise.

Proof. By [6], we obtain pd(G) = 4. Let e be a pendant edge and let e = v2w2,1. Since
S(G(e; k)) is not a path, pd(S(G(e; k)) ≥ 3. We have a resolving partition Π = {L1, L2, L3}
of V (S(G(e; k))) where L1 = {v3, w1,1, w3,1}, L2 = {v1, v2, x1, x2, w1,2, w2,2, w3,2, a1}, L3 =
{x3, w1,3, w2,1, w2,3, w3,3} ∪ {ai|2 ≤ i ≤ k}. Thus, we obtain pd(S(G(e; k))) = 3. This implies
that pd(S(G(e; k))) = pd(G)− 1.

Now consider if e is a non-pendant edge of G. Then, by Lemma 2.3 we obtain pd(S(G(e; k))) ≥
4. Next, let e = uv, u ∈ Lt, u ∈ Lq and t ≥ q. We have a resolving partition Π′ = {L′1, L′2, L′3, L′4}
of S(G(e; k)) where L′i = Li for i 6= t and L′t = Lt ∪ {a1, a2 · · · , ak}. Thus, pd(S(G(e; k))) ≤ 4.
Hence, we have pd(S(G(e; k))) = pd(G).

Lemma 3.9. Let G ∼= F (m; 4) where m ≥ 4. Then, pd(S(G(e; k))) = pd(G).

Proof. By [6], we have pd(G) = 4. Let Π = {L1, L2, L3, L4} be a resolving partition of G where
L1 = {x1, v1, v2, · · · , vm, w2,1, w3,1, · · · , wm,1}, L2 = {x2i|1 ≤ i ≤ bm

2
c} ∪{w1,2, w2,2, · · · ,

wm,2}, L3 = {x2i+1|1 ≤ i ≤ bm
2
c} ∪{w1,3, w2,3, · · · , wm,3}, and L4 = {w1,1}.

Since S(G(e; k)) has the condition satisfying Lemma 2.3, then pd(S( G(e; k))) ≥ 4 = pd(G).
Since G satisfies the condition of Lemma 3.2, then pd(S(G(e; k))) ≤ pd(G). This implies that
pd(S(G(e; k))) = pd(G).

In the use of Lemma 3.10, let consider G = F (9; 3) and S(G(e; k)). Define a notation 4i =
{xi, vi, wi,1, wi,2} if e 6= xivi, and 4i = {xi, vi, wi,1, wi,2, a1, a2, · · · ak} if e = xivi for i ∈ [1, 9].
Let Π = {L1, L2, · · · , Lp} be a resolving partition of S(G(e; k)). For i ∈ {1, 2, · · · , 9}, define
Π{i} as Π|∆i

. For simple notation, use Π{i, j} = Π|∆i∪∆j
. So, we have Π{1, 2, · · · ,m} = Π.

In Figure 2, for i = 1, 2, · · · , 5, by symmetry, we provide a resolving 3-partition Π for Gi =
S(G(e; k)) if G = F (9; 3) and e = xivi.

Now for any m ∈ [2, 8] and j ∈ [1, 8], we will construct a resolving 3-partition of S(G(e; k))
with G = F (m; 3) and e = xjvj by using the restriction of the partition Πi of Gi to some A ⊆
[2, 9], for some i. For example, Π1{1, 2} is a resolving 3-partition of S(G(e; k)) with G = F (2; 3)
and j = 1; Π1{1, 2, 3} is a resolving 3-partition of S(G(e; k)) with G = F (3; 3) and j = 1; and
Π1{1, 2, 4} is a resolving 3-partition of S(G(e; k)) with G = F (3; 3) and j = 2 as in Figure 3.

Lemma 3.10. Let G ∼= F (m; 3) for m ≥ 2. Then, pd(S(G(e; k))) = pd(G).

Proof. Let G ∼= F (m; 3). According to Theorem 2.1, we have pd(G) = 3 for 2 ≤ m ≤ 9
and pd(G) = 4 for m ≥ 9. If e is a non-pendant edge of G, then pd(S(G(e; k))) ≥ 3. The
resolving partitions in Figure 2 show that pd(S(G(e; k))) ≤ 3, if G = F (9; 3). So, we obtain
pd(S(G(e; k))) = 3.

For 2 ≤ m ≤ 8, consider the graph S(G(e; k)) with G = F (m; 3) and e = xivi. Now, define a
resolving 3-partition of S(G(e; k)) as the restriction of the partition Πj of Gj to some A ⊆ [2, 9],
for some j as shown in Table 1. For an illustration, in Figure 3, we present a resolving 3-partition
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Figure 2. Graph Gi = S(G(e; k)) where G = F (9; 3) and e = xivi, and Hi = S(G(e; k)) where G = F (9; 3) and
e = xixi+1

Figure 3. (a) Graph G′
1(1, 2) = S(G(x1v1; k)) with G = F (2; 3) (b) G′

2(1, 2, 4) = S(G(x2v2, k) with G = F (3; 3).

of S(G(e; k)) with G = F (2; 3) and e = x1v1, and a resolving 3-partition of S(G(e; k)) with
G = F (3; 3) and e = x2v2.

Now, for j = 1, 2, 3, 4 (by symmetry), define the graph Hj = S(G(e; k) with G = F (9; 3) and
e = xixi+1. The resolving 3-partitions of Hj are provided in Figure 2. For 2 ≤ m ≤ 8, consider
the graph S(G(e; k)) with G = F (m; 3) and e = xixi+1. Similarly, define a resolving 3-partition
of S(G(e; k)) as the restriction of the partition Π′j of Hj to some A ⊆ [2, 9], for some j as shown
in Table 2.

For e is a pendant edge, by Lemma 3.4, we obtain pd(S(G(e; k)) = pd(G). This implies
pd(S(G(e; k)) = pd(G) for G = F (m; 3), 2 ≤ m ≤ 9.

Next, for m ≥ 10, by [6], we have pd(G) = 4. We will show pd(S(G(e; k))) ≥ 4. For a contra-
diction, let Π′ = {L′1, L′2, L′3} be a resolving partition of S(G(e; k)). For m ≥ 10, since there are
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Table 1. The resolving partitions of S(G(e; k)) with G = F (m; 3) and e = xivi.
m e = xivi
2 Π1{1, 2},i=1
3 Π1{1, 2, 3},Π2{1, 2, 4} ,i=1,2
4 Π1{1, 2, 3, 4}, Π2{1, 2, 3, 4},i=1,2
5 Π1{1, · · · , 5},Π2{1, · · · , 5}, Π3{1, · · · , 5}, i=1,2,3
6 Π1{1, · · · , 6}, Π4{3, · · · , 7, 9}, Π5{3, · · · , 7, 9}, i=1,2,3
7 Π1{1, ..., 6, 8}, Π2{1, ..., 6, 8}, Π3{1, ..., 6, 8}, Π4{1, ..., 7} ,i ∈ [1, 4]
8 Π1{1, . . . , 8}, Π2{1, . . . , 8}, Π3{1, . . . , 8}, Π5{1, . . . , 8} , i ∈ [1, 4]

Table 2. The resolving partitions of S(G(e; k)) with G = F (m; 3) and e = xixi+1.
m e = xixi+1

2 Π′1{1, 2},i=1
3 Π′2{1, 2, 3} ,i=1
4 Π′1{1, 2, 3, 4}, Π′2{1, 2, 3, 4},i=1,2
5 Π′1{1, · · · , 5},Π′2{1, · · · , 5}, i=1,2
6 Π′2{2, · · · , 6, 8}, Π′2{1, · · · , 6}, Π′3{1, · · · , 6}, i=1,2,3
7 Π′1{1, · · · , 7}, Π′4{3, · · · , 9}, Π′3{1, · · · , 7}, i=1,2,3
8 Π′2{2, . . . , 9}, Π′2{1, ..., 8}, Π′3{1, ..., 7, 9}, Π′4{1, ..., 8} , i=1,2,3,4

at least nine4is that do not have an edge subdivision and there are at most tree4a,4b,4c which
are covered by one 2-subset C = {L1, L2} ⊆ Π. Let va, vb ∈ L1 and vc ∈ L2. So, we obtain than
there are tree vertices in L1 which are adjacent to vertex in L2, namely va, vb, wc,1. Therefore, the
representation of va, vb or wc,1 is one of {(0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 1, 5)}, but the co-
ordinate of (0, 1, 5) cannot be used for the representation of any non-leaf vertex. As a consequence,
we have only 8 possible pairs of the coordinates for vertices va, vb, wc,1. If r(va|Π) = (0, 1, 1),
r(vb|Π) = (0, 1, 2) and r(wc,1|Π) = (0, 1, 3), then we will obtain r(wc,2|Π) = r(vc|Π), a con-
tradiction. For the seven remaining possibilities, we will also obtain two vertices with the same
coordinate as summarized in Table 3, a contradiction. This implies that pd(S(G, e, k)) ≥ 4.

Table 3. Two vertices with the same coordinate
No (r(va|Π), r(vbΠ), r(wc,1Π)) the same coordinate
1 ((0, 1, 1), (0, 1, 2), (0, 1, 3)) r(wa,2|Π) = r(vc|Π)
2 ((0, 1, 1), (0, 1, 2), (0, 1, 4)) r(wb,2|Π) = r(vc|Π)
3 ((0, 1, 2), (0, 1, 3), (0, 1, 4)) r(wa,2|Π) = r(vc|Π)
4 ((0, 1, 2), (0, 1, 3), (0, 1, 5)) r(wb,2|Π) = r(vc|Π)
5 ((0, 1, 3), (0, 1, 4), (0, 1, 5)) r(wa,2|Π) = r(vc|Π)
6 ((0, 1, 1), (0, 1, 3), (0, 1, 5)) r(wa,2|Π) = r(vc|Π)
7 ((0, 1, 1), (0, 1, 2), (0, 1, 4)) r(xb|Π) = r(xa|Π)
8 ((0, 1, 1), (0, 1, 4), (0, 1, 5)) r(vb−1|Π) = r(vc|Π)

453



www.ejgta.org

The partition dimension for a subdivision of a homogeneous firecracker | Amrullah

Next, we show pd(S(G(e; k))) ≤ 4. Let Π = {L1, L2, L3, L4} be a partition of S(G, e, k) for
G = F (m, 3) where m ≥ 10. If e = xixi+1 or e = viwi,1, then define L1 = {w1,1, w2,1, · · · ,
wm,1, a1, a2, · · · , ak} ∪ {x2i|1 ≤ i ≤ bm

2
c}, L2 = {w1,2, w2,2, · · · , wm,2} ∪ {x2i+1|1 ≤ i ≤

bm
2
c}, L3 = {v1, v2, · · · , vm}, and L4 = {x1}. If e = xivi, then we define L1 = {vi} ∪

{w1,1, w2,1, · · · , wm,1, a1, a2, · · · , ak} ∪ {x2i|1 ≤ i ≤ bm
2
c}, L2 = {w1,2, w2,2, · · · , wm,2} ∪

{x2i+1|1 ≤ i ≤ bm
2
c}, L3 = {v1, v2, · · · , vm} − {vi}, and L4 = {x1}. It is easy to show that

Π is a resolving partition of S(G(e, k)). Thus, pd(S(G(e, k))) = pd(G).

If G = F (m; 2), then the partition dimension of the subdivision graph S(G(e; k)) is given in
the following lemma.

Lemma 3.11. Let G ∼= F (m; 2) for m ≥ 3. Then, pd(S(G(e; k))) = pd(G).

Proof. By Theorem 2.1, we have pd(G) = 3. Since S(G(e; k) is not a path, then pd(S(G(e; k)) ≥
3. Let Π = {L1, L2, L3} be a partition of V (S(G(e; k))) defined as follows.
For edge e = viwi,1 where 1 ≤ i ≤ m − 1, we define L1 = {w1,1, w2,1, · · · , wm−1,1} ∪
{a1, a2, · · · , ak}, L2 = {xi, v1|1 ≤ i ≤ m}, and L3 = {wm,1}. For edge e 6= viwi,1 where
1 ≤ i ≤ m − 1, we define L1 = {w1,1, w2,1, · · · , wm−1,1}, L2 = {xi, vi|1 ≤ i ≤ m} ∪
{a1, a2, · · · , ak}, and L3 = {wm,1}. It is easy to verify that Π is a resolving partition of S(G(e, k)).
So, pd(S(G(e; k))) = pd(G).

We summarize all the above results in the following theorem.

Theorem 3.1. Let G ∼= F (m; r) with m, r ≥ 2, e ∈ V (G) and k ≥ 1. Then,

pd(S(G(e; k))) =


pd(G) + 1 if e is a non pendant edge and

k = 2,m = 2 and r = 4,
pd(G)− 1 if e is a pendant edge and

(m = r and r ≥ 5) or (m=3 and r=4),
pd(G) otherwise.
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