Electronic Journal of Graph Theory and Applications

The partition dimension for a subdivision of a homogeneous firecracker

Amrullah
Mathematics Education Department, FKIP, Mataram University
Jalan Majapahit no. 62 Mataram, Indonesia
amrullah@unram.ac.id

Abstract

Finding the partition dimension of a graph is one of the interesting (and uncompletely solved) problems of graph theory. For instance, the values of the partition dimensions for most kind of trees are still unknown. Although for several classes of trees such as paths, stars, caterpillars, homogeneous firecrackers and others, we do know their partition dimensions. In this paper, we determine the partition dimension of a subdivision of a particular tree, namely homogeneous firecrackers. Let G be any graph. For any positive integer k and $e \in E(G)$, a subdivision of a graph G, denoted by $S(G(e ; k))$, is the graph obtained from G by replacing an edge e with a $(k+1)$-path. We show that the partition dimension of $S(G(e ; k))$ is equal to the partition dimension of G if G is a homogeneous firecracker.


```
Keywords: partition dimension, resolving partition, subdivision, homogeneous firecracker

\section*{1. Introduction}

Let \(u, v\) be two vertices of a connected graph \(G(V, E)\). We define the distance between vertices \(u\) and \(v\) as the minimum length of a path connecting them. This distance is denoted by \(d(u, v)\). For a set \(A \subseteq V\), the distance from vertex \(u\) to set \(A\), denoted by \(d(u, A)\), is \(\min \{d(u, x) \mid x \in A\}\). Let \(\Pi=\left\{A_{1}, A_{2}, \cdots, L_{t}\right\}\) is a partition with \(t\) partition classes of the vertex set of \(G\). The

Received: 15 June 2019, Revised: 19 April 2020, Accepted: 14 June 2020.
representation of vertex \(u\) in \(G\) under \(\Pi\) is defined as the vector \(\left(d\left(v, A_{1}\right), d\left(v, A_{2}\right), \cdots, d\left(v, A_{t}\right)\right)\) and it is denoted by \(r(v \mid \Pi)\). The partition \(\Pi\) will be called a resolving partition of graph \(G\) if the representations of all vertices in \(G\) are different. We define the partition dimension of graph \(G\), denoted by \(p d(G)\), is the least number \(s\) such that \(G\) admits a resolving \(s\)-partition. Two distinct vertices \(x\) and \(y\) are said to be distinguished by a subset \(S \subseteq V(G)\) if \(d(x, S) \neq d(y, S)\). In this case, we also call that vertices \(u\) and \(v\) are distinguishable by the set \(L\).

Chartrand et al. [9, 10] introduced the concept of partition dimension of a graph and gave a very solid foundation of the concept, including deriving a lower bound of such a dimension for any graph. In addition, Juan et al. (2015) derived an upper bound of the partition dimension of any tree. From these lower and upper bounds, we still have a large interval for the value of the partition dimension of a general tree. Several authors have published the partition dimensions of certain classes of trees. Some of them have the values of smaller than this upper bound, namely for caterpillars and windmills by Darmaji et al. [12], double stars \(S_{m, n}\) by Chartrand et al. [9], and homogenous firecrackers by Amrullah et al.[6]. Several results propose some constructions of the family of graphs having certain partition dimension, see for instance [14] and [3]. Recently, Baskoro and Haryeni [8] gave the characterization of all graphs \(G\) of order \(n(\geq 11)\) with partition dimension \(n-3\) and diameter 2. In earlier studies, the concept of graph metric dimension introduced by Slater [18] and Harary \& Melter [13] has been extensively developed. Some new results on the metric dimension of graphs, see [1], [19], and [20].

Herein, we are going to determine the partition dimension of a graph obtained by a subdivision operation on a given graph. Let \(G(V, E)\) be a connected graph, \(e \in E\) and \(e=u v\). Let \(k\) be a positive integer. The subdivision of a graph \(G\) on edge \(e\) in \(k\) times, denoted by \(S(G(e ; k))\), is the graph obtained from the graph \(G\) by replacing edge \(e\) with a path \(u, a_{1}, a_{2}, \cdots, a_{k}, v\) of length \(k+2\). The new vertices in the graph \(S(G(e ; k))\) are called subdivision vertices of \(S(G(e ; k))\). Some known results regarding the partition dimension of graphs obtained from a subdivision operation can be found in [3, 5, 4, 2].

For integers \(m, r \geq 2\), define a homogeneous firecracker \(F(m ; r)\) as the graph obtained by the concatenation of \(m\) independent stars \(K_{1, r}\) by linking one leaf from each star. Denote by \(v_{i}\) and \(x_{i}\) for \((i=1,2, \cdots, m)\) the centers and the linked leaves of above stars, respectively. Denote by \(w_{i, 1}, w_{i, 2}, \ldots w_{i, r-1}\) all other leaves incident to \(v_{i}\). Later, all the edges \(v_{i} w_{i j}\) are called pendant and the other edges are called non-pendant edges. In this paper, we determine the partition dimension of the subdivision graph \(S(G(e ; k))\) if \(G\) is a homogeneous firecracker \(F(m ; r)\).

\section*{2. Preliminaries}

The following lemma is a useful in helping us to determine or estimate the value of \(\operatorname{pd}(G)\) for a connected graph \(G\).

Lemma 2.1. [9] Let \(G\) be a connected graph. Let \(\Pi\) be a resolving partition of \(G\), and \(u, v \in\) \(V(G)\). If \(d(u, w)=d(v, w)\) for all \(w \in V(G)-\{u, v\}\) then vertices \(u\) and \(v\) must be in distinct partition classes of \(\Pi\).

The following result is a direct consequence of Lemma 2.1.

Corollary 2.1. [9] Let \(G\) be a connected graph. If \(G\) has a vertex adjacent to \(k\) leaves then \(p d(G) \geq k\).

Lemma 2.2. [10] Let \(G\) be a connected graph of order \(n \geq 2\). Then, \(p d(G)=2\) if and only if \(G=P_{n}\).

The partition dimension of a homogeneous firecracker has been derived by Amrullah et al. [6] as following theorem.

Theorem 2.1. [6] Let \(G \simeq F(m ; r)\) for \(r \geq 2\) and \(m \geq 2\). Then
\(p d(G)= \begin{cases}2, & \text { if } m=r \text { and } r=2, \\ 3, & \text { if } m \geq 3 \text { and } r=2 \text { or } \\ & 2 \leq m \leq 9 \text { and } r=3 \text { or } m=2 \text { and } r=4, \\ 4, & \text { if } m>9 \text { and } r=3 \text { or } m \geq 3 \text { and } r=4, \\ r-1, & \text { if } m<r \text { and } r \geq 5, \\ r, & \text { if } m \geq r \text { and } r \geq 5 .\end{cases}\)
In the next lemma, we give a lower bound of the partition dimension of graph \(G\) whose three distinct vertices in which each vertex is adjacent to three leaves.

Lemma 2.3. [5] Let \(G\) be a connected graph of order \(n \geq 13\). If \(G\) has three distinct vertices \(x_{1}, x_{2}, x_{3}\) where each \(x_{i}\) is adjacent to three leaves, then \(\operatorname{pd}(G) \geq 4\).

Lemma 2.4. [5] Let \(G\) be a connected graph, \(e \in E\) and \(e=v_{1} v_{2}\). Let \(v_{i}\) be a vertex adjacent to three leaves, for each \(i \in[1,2]\). If \(p d(G)=3\), then \(p d(S(G(e ; 4))) \geq 4\).

Lemma 2.4 will be used to derive a lower bound of the partition dimension of the subdivision graph \(S(G(e, 2))\) where \(G=F(2 ; 4)\) and \(e\) is non-pendant edge of \(G\).

\section*{3. Main Results}

In this section, we determine the partition dimension of the subdivision graph of a homogeneous firecracker. The following lemma gives some condition of a graph \(G \cong F(m ; r)\) satisfying \(p d(S(G(e ; k))) \leq p d(G)\).

Lemma 3.1. Let \(G \cong F(m ; r)\) with \(m \geq 2\), and \(r \geq 4\). Let \(e=v w\) be a pendant edge with \(w\) be a leaf. If there is a minimum resolving partition \(\Pi\) of \(G\) so that \(v\) and \(w\) are in the same partition class of \(\Pi\), then \(p d(S(G(e ; k))) \leq p d(G)\) for any positive integer \(k\).

Proof. Let \(\Pi=\left\{L_{1}, L_{2}, \cdots, L_{p}\right\}\) be a minimum resolving partition of \(G\). Let \(e=v w\) be a pendant edge with \(w\) be a leaf. Let \(v\) and \(w\) be in the same partition class, say \(L_{i}\), of \(\Pi\). Since \(r \geq 4\), there are at least two leaves other than \(w\) adjacent to \(v\), say \(w_{1}\) and \(w_{2}\). Since all these leaves \(w, w_{1}\), and \(w_{2}\) must be in different partition classes, we may assume \(w_{1} \in L_{2}\) and \(w_{2} \in L_{3}\). Let \(a_{1}, a_{2}, \cdots, a_{k}\) be the subdivision vertices in \(S(G(e ; k))\). Now, we define a partition \(\Pi^{\prime}=\) \(\left\{L_{1}^{\prime}, L_{2}, \cdots, L_{p}^{\prime}\right\}\) of \(S(G(e ; k))\), where \(L_{1}^{\prime}=L_{1} \cup\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}\) and \(L_{i}^{\prime}=L_{i}\) for all \(i \in[2, p]\). Let \(B=\left\{w, a_{2}, a_{3}, \cdots, a_{k}\right\}\). Now, consider any vertices \(a\) and \(b\) in \(L_{i}\) for some \(i\). If \(i \geq 2\) then
\(d\left(v, L_{i}^{\prime}\right)=d\left(v, L_{i}\right)\) and since \(\Pi\) is a resolving partition of \(G\), then we have \(r\left(a \mid \Pi^{\prime}\right)=r(a \mid \Pi) \neq\) \(r(b \mid \Pi)=r\left(b \mid \Pi^{\prime}\right)\). If \(a\) and \(b\) in \(L_{1}\), then \(a\) and \(b\) will be distinguished by \(L_{2}^{\prime}\) provided \(a\) and \(b\) are in \(B\). Now, If \(a \in B\) and \(b \notin B\) then \(d\left(a, L_{2}^{\prime}\right) \geq 3\) and \(d\left(a, L_{3}^{\prime}\right) \geq 3\) but \(d\left(b, L_{i}^{\prime}\right) \leq 2\) for all \(i \in[1, p-1]\) (because each \(v_{i}\) is adjacent to \(p-1\) leaves). So we have \(r\left(a \mid \Pi^{\prime}\right) \neq r\left(b \mid \Pi^{\prime}\right)\). This implies that \(r\left(a \mid \Pi^{\prime}\right) \neq r\left(b \mid \Pi^{\prime}\right)\) for all pairs of different vertices \(a\) and \(b\) in \(S(G(e ; k))\). Thus, \(p d(S(G(e ; k))) \leq p d(G)\).

Lemma 3.2. Let \(G \cong F(m ; r), m \geq 2, r \geq 5, m \leq r\). Let \(e=u v\) be a non pendant edge and \(u\) be adjacent to other vertex \(w, v \in L_{b}, u \in L_{c}\) and \(w \in L_{d}\) with \(c \neq d \neq b\). If \(v\) is adjacent to \(w_{1} \in L_{c}\) and \(w_{2} \in L_{d}\), then \(p d(S(G(e ; k))) \leq p d(G)\).

Proof. Since \(r \geq 5\), we have \(p d(G)=p \geq 4\). Let \(\Pi=\left\{L_{1}, L_{2}, \cdots, L_{p}\right\}\) be a resolving partition of \(G\). We define a new partition \(\Pi^{\prime}\) of \(V(S(G(e ; k)))\), \(\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, \cdots, L_{p}^{\prime}\right\}\) where \(L_{i}^{\prime}=L_{i}\) for \(i \notin\{c, d\}, L_{c}^{\prime}=L_{c} \cup\left\{a_{2}, a_{3}, \cdots, a_{k}\right\}\) and \(L_{d}^{\prime}=L_{d} \cup\left\{a_{1}\right\}\).

Let \(B=\left\{u, a_{1}, a_{2}, \cdots, a_{k}\right\}\). Since each \(x_{i}\) has \(d\left(x, w_{i, j}\right)=2, j \in[1, r-1]\), then \(r\left(x_{i} \mid \Pi\right)\) is not affected by subdivision edge. So, we have \(r\left(x \mid \Pi^{\prime}\right) \neq r\left(y \mid \Pi^{\prime}\right)\) for any pair of \(x, y \in V(S(G(e ; k)) \backslash\) \(B\). So, we consider vertices \(x\) or \(y\) in \(B\). If \(x, y \in B\) then \(x, y \in L_{c}^{\prime}\). So, the class partition \(L_{d}^{\prime}\) or \(L_{b}^{\prime}\) can be distinguishing of vertices \(x, y\). If \(x \in B\) and \(y \notin B\) then consider \(x, y \in L_{d}^{\prime}\) or \(x, y \in L^{\prime} c\). For \(x, y \in L_{c}^{\prime}\), there are at least one component of \(r\left(x \mid \Pi^{\prime}\right)\) have value at least ' 3 ' but all components of \(r\left(y \mid \Pi^{\prime}\right)\) have value at most ' 2 '. For \(x, y \in L_{d}^{\prime}\), we consider \(k=1\) or \(k>1\). If \(k>1\), then there are at least one component of \(r\left(x \mid \Pi^{\prime}\right)\) have value at least ' 3 ' but all components of \(r\left(y \mid \Pi^{\prime}\right)\) have value at most ' 2 '. If \(k=1\), then \(d\left(x, L_{b}^{\prime}\right)=1\) but \(d\left(y, L_{b}^{\prime}\right)=2\). So we have \(r\left(x \mid \Pi^{\prime}\right) \neq r\left(y \mid \Pi^{\prime}\right)\). This implies \(r\left(x \mid \Pi^{\prime}\right) \neq r\left(y \mid \Pi^{\prime}\right)\) for all pair distinct \(x, y \in S(G(e ; k))\). Thus, \(p d(S(G(e ; k))) \leq p d(G)\).

Lemma 3.3. Let \(G \cong F(m ; r)\) with \(r \geq 5\) and \(m>r\). Then, \(p d(S(G(e ; k)))=p d(G)\), for any non pendant edge \(e\) and positive integer \(k\).

Proof. We consider the following two cases.
Case 1. \(e=x_{t} v_{t}\), for some \(t \in[1, m]\).
Since \(e\) is non pendant edge then we have \(p d(S(G(e ; k))) \geq r\). Let \(\Pi=\left\{L_{1}, L_{2}, \cdots, L_{r}\right\}\) be a partition of \(V(S(G(e ; k)))\) where \(L_{r}=\left\{x_{t}, v_{t}, a_{1}, a_{2}, \cdots, a_{k}\right\}, L_{1}=\left\{w_{i, 1} \mid 1 \leq i \leq m\right\} \cup\left\{x_{i} \mid i=\right.\) \(\left.t+2 j-1 \leq m, j \in \mathbb{N}^{+}\right\} \cup\left\{x_{i} \mid 1 \leq i=t-2 j+1, j \in \mathbb{N}^{+}\right\}, L_{2}=\left\{w_{i, 2} \mid 1 \leq i \leq m\right\} \cup\left\{x_{i}, v_{i} \mid i=\right.\) \(\left.t+2 j \leq m, j \in \mathbb{N}^{+}\right\} \cup\left\{v_{i}, x_{i} \mid i \leq i=t-2 j+1, j \in \mathbb{N}^{+}\right\}, L_{3}=\left\{w_{i, 3} \mid 1 \leq i \leq m\right\} \cup\left\{v_{i} \mid i=\right.\) \(\left.t+2 j-1 \leq m, j \in \mathbb{N}^{+}\right\} \cup\left\{v_{i} \mid 1 \leq i=t-2 j-1, j \in \mathbb{N}^{+}\right\}\), and \(L_{i}=\left\{w_{i, 1} \mid 1 \leq i \leq m\right\}\) for \(i \notin\{1,2,3, \cdots, r\}\). We use the \(\mathbb{N}^{+}\)as the positive integer set.

Let \(u\) and \(z\) be any two distinct vertices in the same partition class of \(\Pi\). If \(u, z \in L_{r}\), then the class partition \(L_{1}\) or \(L_{3}\) will distinguish \(u\) and \(z\). If \(u, z \notin L_{r}\), then consider \(d\left(u, L_{r}\right)\) and \(d\left(z, L_{r}\right)\). If \(d\left(u, L_{r}\right) \neq d\left(z, L_{r}\right)\), then \(u, z\) will be distinguished by \(L_{r}\). If \(d\left(u, L_{r}\right)=d\left(z, L_{r}\right)\), then consider these four cases. i). Let \(u=x_{k}\) and \(z=v_{i}\), By definition the \(\Pi\), since \(u, z\) are in same partition class, we have \(u, z \in L_{2}\). So, the vertices \(u, z\) can be distinguished by \(L_{3}\). ii.) Let \(u=x_{k}\) and \(z=w_{i, j}\), by definition \(\Pi\), this means \(u, z \in L_{2}\) or \(u, z \in L_{1}\). If \(u, z \in L_{2}\), then \(u, z\) can be distinguished by \(L_{1}\) or \(L_{3}\). If \(u, z \in L_{1}\), then \(u, z\) can be distinguished by \(L_{2}\) or \(L_{3}\). iii). Let \(u=v_{k}\)
and \(z=w_{i, j}\), Since \(u, z\) are in the same partition class, we obtain that the vertices \(u, z \in L_{2}\) or \(u, z \in L_{3}\). If \(u, z \in L_{2}\), then \(u, z\) can be distinguished by \(L_{1}\) or \(L_{3}\). If \(u, z \in L_{3}\), then \(u, z\) can be distinguished by \(L_{1}\) or \(L_{2}\). iv.) Let \(u=w_{k, j}\) and \(z=w_{i, j}\), we have that \(u, z\) can be distinguished by \(L_{2}\) or \(L_{3}\).

Case 2. Let \(e=x_{t} x_{t-1}\) with \(t \in[2, m]\). Let \(\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, \cdots, L_{r}^{\prime}\right\}\) be a partition of \(V(S(G(e ; k)))\) where \(L_{r}^{\prime}=\left\{x_{1}, v_{1}\right\}, L_{2}^{\prime}=\left\{w_{i, 2} \mid 1 \leq i \leq m\right\} \cup\left\{x_{i}, v_{i} \mid i=2 j \leq m, j \in \mathbb{N}^{+}\right\}, L_{3}^{\prime}=\left\{w_{i, 3} \mid 1 \leq\right.\) \(i \leq m\} \cup\left\{x_{i}, v_{i} \mid i=2 j+1 \leq m, j \in \mathbb{N}^{+}\right\} \cup a_{1}, a_{2}, \cdots, x_{k}\), dan \(L_{i}^{\prime}=\left\{w_{k, i} \mid 1 \leq k \leq m\right\}\) for \(i \notin\{2,3, r\}\). Let \(u, z\) be two different vertices in the same partition class of \(\Pi^{\prime}\). If \(u, z \in\) \(L_{r}^{\prime}\), then \(u, z\) can be distinguished by \(L_{3}^{\prime}\). If \(u, z \notin L_{r}^{\prime}\), then consider \(d\left(u, L_{r}^{\prime}\right)\) and \(d\left(z, L_{r}^{\prime}\right)\). If \(d\left(u, L_{r}^{\prime}\right) \neq d\left(z, L_{r}^{\prime}\right)\), then \(u, z\) can be distinguished by \(L_{r}^{\prime}\). If \(d\left(u, L_{r}^{\prime}\right)=d\left(z, L_{r}^{\prime}\right)\), then consider \(u, z\) in two conditions. i). For \(u=w_{i, j}\) and \(z=v_{i+2}\), vertices \(u, z\) can be distinguished by \(L_{2}^{\prime}\) or \(L_{3}^{\prime}\). ii.) For \(u=w_{i, j}\) and \(z=v_{i+1}\), vertices \(u, z\) can be distinguished by \(L_{1}^{\prime}\). This implies \(p d(S(G(e ; k))=p d(G)\).

Lemma 3.4. Let \(G \cong F(m ; r)\) with \(m \geq 2\) and \(r \geq 5\). If \(m<r\), then \(p d(S(G(e ; k)))=p d(G)\).

Proof. If \(e\) is a pendant edge, then \(p d(G)=r-1\) by Theorem 2.1. Since there is a vertex \(v_{i}\) which is adjacent to \(r-1\) leaves, \(p d(S(G(e ; k))) \geq p d(G)\). By Lemma 3.1, we have \(p d(S(G(e ; k))) \leq\) \(p d(G)\). Thus, \(p d(S(G(e ; k)))=p d(G)\). If \(e\) is a non pendant edge, then we have \(p d(G)=r-1\), by Theorem 2.1. Since a vertex \(v_{i}\) is adjacent to \(r-1\) leaves, \(p d(S(G(e ; k))) \geq p d(G)\). By Lemma 3.2, \(p d(S(G(e ; k))) \leq p d(G)\). Thus, \(p d(S(G(e ; k)))=p d(G)\).

Lemma 3.5. Let \(G \cong F(m ; r)\) with \(m \geq 2, r \geq 5\), and e be a pendant edge of \(G\). If \(p d(G)=r\) and \(m=r\) then \(p d(S(G(e ; k)))=p d(G)-1\).

Proof. Let \(e=v_{j} w_{j, 1}\) for some \(j \in[1, m]\). Since \(S(G(e ; k))\) has a vertex \(v_{t}\) which is adjacent to \(r-1\) leaves, then \(p d(S(G(e ; k))) \geq r-1\). Let \(\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, \ldots, L_{r-1}^{\prime}\right\}\) be a partition of \(V(S(G(e ; k)))\). We define \(L_{i}^{\prime}\) in two conditions of \(e=v_{j} w_{j, 1}\).
For \(j=1\) (we can use the same reason for \(i=m\) ), we define \(L_{1}^{\prime}=\left\{v_{1}, v_{2}, a_{1}, w_{1,2}, x_{m-2}\right\} \cup\) \(\left\{w_{t, 1} \mid t \neq j\right\}, L_{2}^{\prime}=\left\{a_{2}, \ldots, a_{k}, w_{1,1}, w_{1,3}, x_{m-1}, v_{3}\right\} \cup\left\{w_{t, 2} \mid t \neq 1\right\}, L_{3}^{\prime}=\left\{x_{1}, x_{m}, w_{1,4}, v_{4}\right\} \cup\) \(\left\{w_{t, 3} \mid t \neq j\right\}\) and \(L_{i}^{\prime}=\left\{x_{i-2}, v_{i+1}\right\} \cup\left\{w_{t, i} \mid t \neq j\right\} \cup\left\{w_{j, i+1} \mid i<r-1\right\}\), for \(4 \leq i \leq r-1\).
For \(2 \leq j \leq m-1\), we define \(L_{1}^{\prime}=\left\{v_{1}, v_{j}, a_{1}, w_{j, 2}, x_{j}\right\} \cup\left\{w_{t, 1} \mid t \neq j\right\}, L_{2}^{\prime}=\left\{a_{2}, \ldots, a_{k}, w_{j, 1}\right.\), \(\left.w_{j, 3}, x_{j+1}\right\} \cup\left\{w_{t, 2} \mid t \neq 1\right\} \cup\left\{v_{2} \mid j \neq 2\right\} \cup\left\{v_{2} \mid j=2\right\} \cup\left\{x_{1} \mid j=m-1\right\}\), and \(L_{i}^{\prime}=\left\{w_{j, i+1}\right\} \cup\left\{w_{t, i} \mid t \neq\right.\) \(j\} \cup\left\{v_{i} \mid j<i\right\} \cup\left\{v_{i+1} \mid j>i\right\} \cup\left\{x_{j-1+i} \mid j-1+i<m\right\} \cup\left\{x_{j-1+i}, x_{1} \mid m=j-1+i\right\} \cup\left\{x_{j+i-m} \mid j-\right.\) \(1+i>m\}\), for \(3 \leq i \leq r-1\).

Let \(u, z\) be two distinct vertices in the same partition class \(L_{t}^{\prime}\) of \(\Pi^{\prime}\). If \(u\) is a leaf and \(z\) is a non-leaf, then the components of \(r\left(u \mid \Pi^{\prime}\right)\) appear at most one value ' \(1^{\prime}\), but the \(r\left(z \mid \Pi^{\prime}\right)\) appear at least two value ' 1 '. This implies that \(r\left(u \mid \Pi^{\prime}\right) \neq r\left(z \mid \Pi^{\prime}\right)\). If \(u, z\) are two leaves, \(u=w_{a, i_{1}}\) and \(z=w_{b, i_{2}}\) with \(a \neq b\), then they can be distinguished by \(v_{a}\) or \(v_{b}\) for \(a \neq 1\) and \(b \neq 1\).If the same condition of \(u, z\) and \(a=b=1\) then they can be distinguished by \(L_{r-1}^{\prime}\). This implies that \(r\left(u \mid \Pi^{\prime}\right) \neq r\left(z \mid \Pi^{\prime}\right)\).

If \(u, z\) are two non-leaves then we have three cases: (i) \(u=v_{i_{1}}\) and \(z=v_{i_{2}}\). So, we have \(u, z \in L_{1}^{\prime}\). They can be distinguished by \(L_{r-1}^{\prime}\). This implies that \(r\left(u \mid \Pi^{\prime}\right) \neq r\left(z \mid \Pi^{\prime}\right)\). (ii) \(u=x_{i_{1}}\) and \(z=x_{i_{2}}\). So, we have \(u, z \in L_{3}^{\prime}\). They can be distinguished by \(L_{2}^{\prime}\) or \(L_{4}^{\prime}\). This implies that \(r\left(u \mid \Pi^{\prime}\right) \neq r\left(z \mid \Pi^{\prime}\right)\). (iii) \(u=x_{i_{1}}\) and \(z=v_{i_{2}}\). The components of \(r\left(u \mid \Pi^{\prime}\right)\) appear twice component having value ' 1 ' but in the \(r\left(z \mid \Pi^{\prime}\right)\) appear at least three component having value ' 1 '. This implies that \(r\left(u \mid \Pi^{\prime}\right) \neq r\left(z \mid \Pi^{\prime}\right)\). Therefore, \(p d(S(G(e ; k)))=r-1=p d(G)-1\).

Lemma 3.6. Let \(G \cong F(m ; r)\) with \(r \geq 4\), and \(e\) be a non pendant edge of \(G\). If \(p d(G)=r\), then \(p d(S(G(e ; k)))=p d(G)\).

Proof. According Theorem 2.1, we know that \(p d(G)=r\) if ( \(r=4\) and \(m \geq 3\) ) or ( \(r>4\) and \(m \geq r)\). First, we show that \(p d(S(G(e ; k))) \geq r\). For \(r=4\), since \(e\) is non pendant edge of \(G\), then by Lemma \(2.3 \operatorname{pd}(S(G(e ; k))) \geq 4=r\). For \(r>4\) and \(m \geq r\), since \(e\) is a non pendant edge, then there are at least \(r\) vertices \(v_{i}\) where each \(v_{i}\) is adjacent to \(r-1\) leaves. So, \(p d(S(G(e ; k))) \geq r\). By Lemma 3.2, we have \(p d(S(G(e ; k))) \leq p d(G)\). Thus, \(p d(S(G(e ; k)))=p d(G)\).

By Lemmas 3.7-3.9, we determine the partition dimension of the subdivision of \(G=F(m ; 4)\) with \(m \geq 2\). Lemma 3.7 gives the partition dimension of the subdivision of \(F(2 ; 4)\).

Lemma 3.7. Let \(G \cong F(2 ; 4)\). Then
\(\operatorname{pd}(S(G(e ; k)))= \begin{cases}p d(G)+1, & \text { if e is a non pendant edge and } \\ \operatorname{pd}(G), & k=2, \\ \text { otherwise. }\end{cases}\)
Proof. First, by [6] we have that \(p d(G)=3\). If \(e\) is a non-pendant edge and \(k=2\), then we have that \(p d(S(G(e ; 2))) \geq 4\) by Lemma 2.4. In the Figure 1(b) we give a resolving 4 -partition for \(S(G(e ; 2))\). So, we have that \(p d(S(G(e ; 2)))=p d(G)+1\).


Figure 1. (a.) a resolving partition of \(G=F(2 ; 4)\), (b-e.) a resolving partition of \(S(G(e ; k))\) where \(G=F(2 ; k), e\) is a non pendant edge and (b.) \(k=2\), (c.) \(k=1\), (d.) \(k \geq 3\), (e.) \(e\) is a pendant edge and \(k \geq 1\).

Second, we know that \(S(G(e ; k))\) is not a path, then \(\operatorname{pd}(S(G(e ; k))) \geq 3\). If \(e\) is a non-pendant edge and \(k=1\) or \(k \geq 3\), then we give a resolving 3-partition for \(S(G(e ; k))\) in Figures 1(c-d). If \(e\) is a pendant edge, then we have a resolving 3-partition for \(S(G(e ; k))\) in Figure 1(e). Therefore, \(p d(S(G(e ; k)))=p d(G)\).

Lemma 3.8. If \(G \cong F(3 ; 4)\), then
\(p d(S(G(e ; k)))=\left\{\begin{array}{cl}p d(G)-1, & \text { if e is a pendant edge, } \\ p d(G), & \text { otherwise } .\end{array}\right.\)
Proof. By [6], we obtain \(p d(G)=4\). Let \(e\) be a pendant edge and let \(e=v_{2} w_{2,1}\). Since \(S(G(e ; k))\) is not a path, \(\operatorname{pd}\left(S(G(e ; k)) \geq 3\right.\). We have a resolving partition \(\Pi=\left\{L_{1}, L_{2}, L_{3}\right\}\) of \(V(S(G(e ; k)))\) where \(L_{1}=\left\{v_{3}, w_{1,1}, w_{3,1}\right\}, L_{2}=\left\{v_{1}, v_{2}, x_{1}, x_{2}, w_{1,2}, w_{2,2}, w_{3,2}, a_{1}\right\}, L_{3}=\) \(\left\{x_{3}, w_{1,3}, w_{2,1}, w_{2,3}, w_{3,3}\right\} \cup\left\{a_{i} \mid 2 \leq i \leq k\right\}\). Thus, we obtain \(\operatorname{pd}(S(G(e ; k)))=3\). This implies that \(\operatorname{pd}(S(G(e ; k)))=p d(G)-1\).

Now consider if \(e\) is a non-pendant edge of \(G\). Then, by Lemma 2.3 we obtain \(p d(S(G(e ; k))) \geq\) 4. Next, let \(e=u v, u \in L_{t}, u \in L_{q}\) and \(t \geq q\). We have a resolving partition \(\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, L_{4}^{\prime}\right\}\) of \(S(G(e ; k))\) where \(L_{i}^{\prime}=L_{i}\) for \(i \neq t\) and \(L_{t}^{\prime}=L_{t} \cup\left\{a_{1}, a_{2} \cdots, a_{k}\right\}\). Thus, \(p d(S(G(e ; k))) \leq 4\). Hence, we have \(p d(S(G(e ; k)))=p d(G)\).

Lemma 3.9. Let \(G \cong F(m ; 4)\) where \(m \geq 4\). Then, \(p d(S(G(e ; k)))=p d(G)\).

Proof. By [6], we have \(p d(G)=4\). Let \(\Pi=\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}\) be a resolving partition of \(G\) where \(L_{1}=\left\{x_{1}, v_{1}, v_{2}, \cdots, v_{m}, w_{2,1}, w_{3,1}, \cdots, w_{m, 1}\right\}, \quad L_{2}=\left\{x_{2 i} \left\lvert\, 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor\right.\right\} \cup\left\{w_{1,2}, w_{2,2}, \cdots\right.\), \(\left.w_{m, 2}\right\}, L_{3}=\left\{x_{2 i+1} \left\lvert\, 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor\right.\right\} \cup\left\{w_{1,3}, w_{2,3}, \cdots, w_{m, 3}\right\}\), and \(L_{4}=\left\{w_{1,1}\right\}\).

Since \(S(G(e ; k))\) has the condition satisfying Lemma 2.3, then \(p d(S(G(e ; k))) \geq 4=p d(G)\). Since \(G\) satisfies the condition of Lemma 3.2, then \(\operatorname{pd}(S(G(e ; k))) \leq p d(G)\). This implies that \(p d(S(G(e ; k)))=p d(G)\).

In the use of Lemma 3.10, let consider \(G=F(9 ; 3)\) and \(S(G(e ; k))\). Define a notation \(\triangle_{i}=\) \(\left\{x_{i}, v_{i}, w_{i, 1}, w_{i, 2}\right\}\) if \(e \neq x_{i} v_{i}\), and \(\triangle_{i}=\left\{x_{i}, v_{i}, w_{i, 1}, w_{i, 2}, a_{1}, a_{2}, \cdots a_{k}\right\}\) if \(e=x_{i} v_{i}\) for \(i \in[1,9]\). Let \(\Pi=\left\{L_{1}, L_{2}, \cdots, L_{p}\right\}\) be a resolving partition of \(S(G(e ; k))\). For \(i \in\{1,2, \cdots, 9\}\), define \(\Pi\{i\}\) as \(\left.\Pi\right|_{\Delta_{i}}\). For simple notation, use \(\Pi\{i, j\}=\left.\Pi\right|_{\Delta_{i} \cup \Delta_{j}}\). So, we have \(\Pi\{1,2, \cdots, m\}=\Pi\). In Figure 2, for \(i=1,2, \cdots, 5\), by symmetry, we provide a resolving 3-partition \(\Pi\) for \(G_{i}=\) \(S(G(e ; k))\) if \(G=F(9 ; 3)\) and \(e=x_{i} v_{i}\).

Now for any \(m \in[2,8]\) and \(j \in[1,8]\), we will construct a resolving 3-partition of \(S(G(e ; k))\) with \(G=F(m ; 3)\) and \(e=x_{j} v_{j}\) by using the restriction of the partition \(\Pi_{i}\) of \(G_{i}\) to some \(A \subseteq\) \([2,9]\), for some \(i\). For example, \(\Pi_{1}\{1,2\}\) is a resolving 3-partition of \(S(G(e ; k))\) with \(G=F(2 ; 3)\) and \(j=1 ; \Pi_{1}\{1,2,3\}\) is a resolving 3-partition of \(S(G(e ; k))\) with \(G=F(3 ; 3)\) and \(j=1\); and \(\Pi_{1}\{1,2,4\}\) is a resolving 3-partition of \(S(G(e ; k))\) with \(G=F(3 ; 3)\) and \(j=2\) as in Figure 3.

Lemma 3.10. Let \(G \cong F(m ; 3)\) for \(m \geq 2\). Then, \(p d(S(G(e ; k)))=p d(G)\).

Proof. Let \(G \cong F(m ; 3)\). According to Theorem 2.1, we have \(p d(G)=3\) for \(2 \leq m \leq 9\) and \(p d(G)=4\) for \(m \geq 9\). If \(e\) is a non-pendant edge of \(G\), then \(\operatorname{pd}(S(G(e ; k))) \geq 3\). The resolving partitions in Figure 2 show that \(p d(S(G(e ; k))) \leq 3\), if \(G=F(9 ; 3)\). So, we obtain \(p d(S(G(e ; k)))=3\).

For \(2 \leq m \leq 8\), consider the graph \(S(G(e ; k))\) with \(G=F(m ; 3)\) and \(e=x_{i} v_{i}\). Now, define a resolving 3-partition of \(S(G(e ; k))\) as the restriction of the partition \(\Pi_{j}\) of \(G_{j}\) to some \(A \subseteq[2,9]\), for some \(j\) as shown in Table 1. For an illustration, in Figure 3, we present a resolving 3-partition


Figure 2. Graph \(G_{i}=S(G(e ; k))\) where \(G=F(9 ; 3)\) and \(e=x_{i} v_{i}\), and \(H_{i}=S(G(e ; k))\) where \(G=F(9 ; 3)\) and \(e=x_{i} x_{i+1}\)

(a)


Figure 3. (a) Graph \(G_{1}^{\prime}(1,2)=S\left(G\left(x_{1} v_{1} ; k\right)\right)\) with \(G=F(2 ; 3)\) (b) \(G_{2}^{\prime}(1,2,4)=S\left(G\left(x_{2} v_{2}, k\right)\right.\) with \(G=F(3 ; 3)\).
of \(S(G(e ; k))\) with \(G=F(2 ; 3)\) and \(e=x_{1} v_{1}\), and a resolving 3-partition of \(S(G(e ; k))\) with \(G=F(3 ; 3)\) and \(e=x_{2} v_{2}\).

Now, for \(j=1,2,3,4\) (by symmetry), define the graph \(H_{j}=S(G(e ; k)\) with \(G=F(9 ; 3)\) and \(e=x_{i} x_{i+1}\). The resolving 3-partitions of \(H_{j}\) are provided in Figure 2. For \(2 \leq m \leq 8\), consider the graph \(S(G(e ; k))\) with \(G=F(m ; 3)\) and \(e=x_{i} x_{i+1}\). Similarly, define a resolving 3-partition of \(S(G(e ; k))\) as the restriction of the partition \(\Pi_{j}^{\prime}\) of \(H_{j}\) to some \(A \subseteq[2,9]\), for some \(j\) as shown in Table 2.

For \(e\) is a pendant edge, by Lemma 3.4, we obtain \(p d(S(G(e ; k))=p d(G)\). This implies \(p d(S(G(e ; k))=p d(G)\) for \(G=F(m ; 3), 2 \leq m \leq 9\).

Next, for \(m \geq 10\), by [6], we have \(p d(G)=4\). We will show \(p d(S(G(e ; k))) \geq 4\). For a contradiction, let \(\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}\right\}\) be a resolving partition of \(S(G(e ; k))\). For \(m \geq 10\), since there are

Table 1. The resolving partitions of \(S(G(e ; k))\) with \(G=F(m ; 3)\) and \(e=x_{i} v_{i}\).
\begin{tabular}{|c|l|}
\hline\(m\) & \(e=x_{i} v_{i}\) \\
\hline 2 & \(\Pi_{1}\{1,2\}, \mathrm{i}=1\) \\
3 & \(\Pi_{1}\{1,2,3\}, \Pi_{2}\{1,2,4\}, \mathrm{i}=1,2\) \\
4 & \(\Pi_{1}\{1,2,3,4\}, \Pi_{2}\{1,2,3,4\}, \mathrm{i}=1,2\) \\
5 & \(\Pi_{1}\{1, \cdots, 5\}, \Pi_{2}\{1, \cdots, 5\}, \Pi_{3}\{1, \cdots, 5\}, \mathrm{i}=1,2,3\) \\
6 & \(\Pi_{1}\{1, \cdots, 6\}, \Pi_{4}\{3, \cdots, 7,9\}, \Pi_{5}\{3, \cdots, 7,9\}, \mathrm{i}=1,2,3\) \\
7 & \(\Pi_{1}\{1, \ldots, 6,8\}, \Pi_{2}\{1, \ldots, 6,8\}, \Pi_{3}\{1, \ldots, 6,8\}, \Pi_{4}\{1, \ldots, 7\}, i \in[1,4]\) \\
8 & \(\Pi_{1}\{1, \ldots, 8\}, \Pi_{2}\{1, \ldots, 8\}, \Pi_{3}\{1, \ldots, 8\}, \Pi_{5}\{1, \ldots, 8\}, i \in[1,4]\) \\
\hline
\end{tabular}

Table 2. The resolving partitions of \(S(G(e ; k))\) with \(G=F(m ; 3)\) and \(e=x_{i} x_{i+1}\).
\begin{tabular}{|c|l|}
\hline\(m\) & \(e=x_{i} x_{i+1}\) \\
\hline 2 & \(\Pi_{1}^{\prime}\{1,2\}, \mathrm{i}=1\) \\
3 & \(\Pi_{2}^{\prime}\{1,2,3\}, \mathrm{i}=1\) \\
4 & \(\Pi_{1}^{\prime}\{1,2,3,4\}, \Pi_{2}^{\prime}\{1,2,3,4\}, \mathrm{i}=1,2\) \\
5 & \(\Pi_{1}^{\prime}\{1, \cdots, 5\}, \Pi_{2}^{\prime}\{1, \cdots, 5\}, \mathrm{i}=1,2\) \\
6 & \(\Pi_{2}^{\prime}\{2, \cdots, 6,8\}, \Pi_{2}^{\prime}\{1, \cdots, 6\}, \Pi_{3}^{\prime}\{1, \cdots, 6\}, \mathrm{i}=1,2,3\) \\
7 & \(\Pi_{1}^{\prime}\{1, \cdots, 7\}, \Pi_{4}^{\prime}\{3, \cdots, 9\}, \Pi_{3}^{\prime}\{1, \cdots, 7\}, \mathrm{i}=1,2,3\) \\
8 & \(\Pi_{2}^{\prime}\{2, \ldots, 9\}, \Pi_{2}^{\prime}\{1, \ldots, 8\}, \Pi_{3}^{\prime}\{1, \ldots, 7,9\}, \Pi_{4}^{\prime}\{1, \ldots, 8\}, \mathrm{i}=1,2,3,4\) \\
\hline
\end{tabular}
at least nine \(\triangle_{i} s\) that do not have an edge subdivision and there are at most tree \(\triangle_{a}, \triangle_{b}, \triangle_{c}\) which are covered by one 2 -subset \(C=\left\{L_{1}, L_{2}\right\} \subseteq \Pi\). Let \(v_{a}, v_{b} \in L_{1}\) and \(v_{c} \in L_{2}\). So, we obtain than there are tree vertices in \(L_{1}\) which are adjacent to vertex in \(L_{2}\), namely \(v_{a}, v_{b}, w_{c, 1}\). Therefore, the representation of \(v_{a}, v_{b}\) or \(w_{c, 1}\) is one of \(\{(0,1,1),(0,1,2),(0,1,3),(0,1,4),(0,1,5)\}\), but the coordinate of \((0,1,5)\) cannot be used for the representation of any non-leaf vertex. As a consequence, we have only 8 possible pairs of the coordinates for vertices \(v_{a}, v_{b}, w_{c, 1}\). If \(r\left(v_{a} \mid \Pi\right)=(0,1,1)\), \(r\left(v_{b} \mid \Pi\right)=(0,1,2)\) and \(r\left(w_{c, 1} \mid \Pi\right)=(0,1,3)\), then we will obtain \(r\left(w_{c, 2} \mid \Pi\right)=r\left(v_{c} \mid \Pi\right)\), a contradiction. For the seven remaining possibilities, we will also obtain two vertices with the same coordinate as summarized in Table 3, a contradiction. This implies that \(p d(S(G, e, k)) \geq 4\).

Table 3. Two vertices with the same coordinate
\begin{tabular}{|l|l|l|}
\hline No & \(\left(r\left(v_{a} \mid \Pi\right), r\left(v_{b} \Pi\right), r\left(w_{c, 1} \Pi\right)\right)\) & the same coordinate \\
\hline 1 & \(((0,1,1),(0,1,2),(0,1,3))\) & \(r\left(w_{a, 2} \mid \Pi\right)=r\left(v_{c} \mid \Pi\right)\) \\
2 & \(((0,1,1),(0,1,2),(0,1,4))\) & \(r\left(w_{b, 2} \mid \Pi\right)=r\left(v_{c} \mid \Pi\right)\) \\
3 & \(((0,1,2),(0,1,3),(0,1,4))\) & \(r\left(w_{a, 2} \mid \Pi\right)=r\left(v_{c} \mid \Pi\right)\) \\
4 & \(((0,1,2),(0,1,3),(0,1,5))\) & \(r\left(w_{b, 2} \mid \Pi\right)=r\left(v_{c} \mid \Pi\right)\) \\
5 & \(((0,1,3),(0,1,4),(0,1,5))\) & \(r\left(w_{a, 2} \mid \Pi\right)=r\left(v_{c} \mid \Pi\right)\) \\
6 & \(((0,1,1),(0,1,3),(0,1,5))\) & \(r\left(w_{a, 2} \mid \Pi\right)=r\left(v_{c} \mid \Pi\right)\) \\
7 & \(((0,1,1),(0,1,2),(0,1,4))\) & \(r\left(x_{b} \mid \Pi\right)=r\left(x_{a} \mid \Pi\right)\) \\
8 & \(((0,1,1),(0,1,4),(0,1,5))\) & \(r\left(v_{b-1} \mid \Pi\right)=r\left(v_{c} \mid \Pi\right)\) \\
\hline
\end{tabular}

Next, we show \(p d(S(G(e ; k))) \leq 4\). Let \(\Pi=\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}\) be a partition of \(S(G, e, k)\) for \(G=F(m, 3)\) where \(m \geq 10\). If \(e=x_{i} x_{i+1}\) or \(e=v_{i} w_{i, 1}\), then define \(L_{1}=\left\{w_{1,1}, w_{2,1}, \cdots\right.\), \(\left.w_{m, 1}, a_{1}, a_{2}, \cdots, a_{k}\right\} \cup\left\{x_{2 i} \left\lvert\, 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor\right.\right\}, L_{2}=\left\{w_{1,2}, w_{2,2}, \cdots, w_{m, 2}\right\} \cup\left\{x_{2 i+1} \mid 1 \leq i \leq\right.\) \(\left.\left\lfloor\frac{m}{2}\right\rfloor\right\}, L_{3}=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}\), and \(L_{4}=\left\{x_{1}\right\}\). If \(e=x_{i} v_{i}\), then we define \(L_{1}=\left\{v_{i}\right\} \cup\) \(\left\{w_{1,1}, w_{2,1}, \cdots, w_{m, 1}, a_{1}, a_{2}, \cdots, a_{k}\right\} \cup\left\{x_{2 i} \left\lvert\, 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor\right.\right\}, L_{2}=\left\{w_{1,2}, w_{2,2}, \cdots, w_{m, 2}\right\} \cup\) \(\left\{x_{2 i+1} \left\lvert\, 1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor\right.\right\}, L_{3}=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}-\left\{v_{i}\right\}\), and \(L_{4}=\left\{x_{1}\right\}\). It is easy to show that \(\Pi\) is a resolving partition of \(S(G(e, k))\). Thus, \(p d(S(G(e, k)))=p d(G)\).

If \(G=F(m ; 2)\), then the partition dimension of the subdivision graph \(S(G(e ; k))\) is given in the following lemma.

Lemma 3.11. Let \(G \cong F(m ; 2)\) for \(m \geq 3\). Then, \(p d(S(G(e ; k)))=p d(G)\).
Proof. By Theorem 2.1, we have \(p d(G)=3\). Since \(S(G(e ; k)\) is not a path, then \(p d(S(G(e ; k)) \geq\) 3. Let \(\Pi=\left\{L_{1}, L_{2}, L_{3}\right\}\) be a partition of \(V(S(G(e ; k)))\) defined as follows.

For edge \(e=v_{i} w_{i, 1}\) where \(1 \leq i \leq m-1\), we define \(L_{1}=\left\{w_{1,1}, w_{2,1}, \cdots, w_{m-1,1}\right\} \cup\) \(\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}, L_{2}=\left\{x_{i}, v_{1} \mid 1 \leq i \leq m\right\}\), and \(L_{3}=\left\{w_{m, 1}\right\}\). For edge \(e \neq v_{i} w_{i, 1}\) where \(1 \leq i \leq m-1\), we define \(L_{1}=\left\{w_{1,1}, w_{2,1}, \cdots, w_{m-1,1}\right\}, L_{2}=\left\{x_{i}, v_{i} \mid 1 \leq i \leq m\right\} \cup\) \(\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}\), and \(L_{3}=\left\{w_{m, 1}\right\}\). It is easy to verify that \(\Pi\) is a resolving partition of \(S(G(e, k))\). So, \(p d(S(G(e ; k)))=p d(G)\).

We summarize all the above results in the following theorem.
Theorem 3.1. Let \(G \cong F(m ; r)\) with \(m, r \geq 2, e \in V(G)\) and \(k \geq 1\). Then, \(p d(S(G(e ; k)))= \begin{cases}p d(G)+1 & \text { if e is a non pendant edge and } \\ & k=2, m=2 \text { and } r=4, \\ \operatorname{pd}(G)-1 & \text { if e is a pendant edge and } \\ & (m=r \text { and } r \geq 5) \text { or }(m=3 \text { and } r=4), \\ \operatorname{pd}(G) & \text { otherwise. }\end{cases}\)

\section*{Acknowledgement}

I would like to thank the anonymous referee for his/her valuable comments, suggestions, and attentive reading of the manuscript.

\section*{References}
[1] S. Akhter and R. Farooq. (2019). Metric dimension of fullerene graphs, Electron. J. Graph Theory Appl. 7 (1) (2019), 91-103.
[2] Amrullah, H. Assiyatun, E.T. Baskoro, S. Uttunggadewa, R. Simanjuntak, The partition dimension for a subdivision of homogeneous caterpillars, AKCE Int. J. Graphs Comb. 10 (3) (2013), 309-315.
[3] Amrullah, S. Azmi, H. Soeprianto, M. Turmuzi, and Y.S. Anwar, The partition dimension of subdivision graph on the star, J. Phys. Conf. Ser. 1280 (2) (2019), 022037.
[4] Amrullah, E.T. Baskoro, S. Rinovia and S. Uttunggadewa. The partition dimension of a subdivision of a complete graph, Procedia Comput. Sci. 74 (2015), 53-59.
[5] Amrullah, E.T. Baskoro, S. Uttunggadewa, and R. Simanjuntak. The partition dimension of subdivision of a graph. AIP Conf. Proc. 1707 (2016), (1) 020001.
[6] Amrullah, Darmaji and E.T. Baskoro, The partition dimension for homogeneous firecrackers, Far East J. Appl. Math., 90 (2015), 77-98.
[7] E.T. Baskoro and Darmaji, The partition dimension of the corona product of two graphs, Far East J. Math. Sci. 66 (2012), 181-196.
[8] E.T. Baskoro and D.O. Haryeni, All graphs of order \(n \geq 11\) and diameter 2 with partition dimension \(n-3\), Heliyon 6 (2020) e03694.
[9] G. Chartrand, E. Salehi, and P. Zhang, On the partition dimension of graph, Congr. Numer. 131 (1998), 55-66.
[10] G. Chartrand, E. Salehi, and P. Zhang, The partition dimension of graph, Aequationes Math., 59 (2000), 45-54.
[11] G. Chartrand P. Zhang, The theory and applications of resolvability in graphs: a survey, Congr. Numer. 160 (2003), 47-68.
[12] Darmaji, S. Uttunggadewa, R. Simanjuntak, E.T. Baskoro, The partition dimension of a complete multipartite graph, a special caterpillar and a windmill, J. Comb. Math. Comb. Comput. 71 (2009), 209-215.
[13] F. Harary and R. Melter, On the metric dimension of a graph, Ars Comb. 2 (1976), 191-195.
[14] D.O. Haryeni, E.T. Baskoro, and S.W. Saputro. A method to construct graphs with certain partition dimension, Electron. J. Graph Theory Appl., 7 (2), (2019), 251-263.
[15] R.A. Juan, I.G. Yero, and M. Lemanska. On the partition dimension of trees. Discrete Appl. Math. 166 (2014), 204-209.
[16] M.A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Statist. 3 (1993), 203-236.
[17] R.A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Vis., Graph. Im. Proc. 25 (1984), 113-121.
[18] P. Slater, Leaves of trees, Congr. Numer. 14 (1975), 549-559.
[19] R.A. Solekhah and T.A. Kusmayadi, On the local metric dimension of \(t\)-fold wheel, \(P_{n} \odot K_{m}\), and generalized fan, Indonesian Journal of Combinatorics 2 (2) (2018), 88-96.
[20] L. Yulianti, Narwen and S. Hariyani, On the subdivided thorn graph and its metric dimension, Indonesian Journal of Combinatorics 3 (1) (2019), 34-40.```

