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Abstract

A communication network can be considered to be highly vulnerable to disruption if the failure
of few members (nodes or links) can result in no members being able to communicate with very
many others. These communication networks can be modeled through graphs, and we have several
graph-theoretic parameters (viz., connectivity, edge-connectivity, tenacity etc.,) to describe the
stability of graphs. But, these parameters are not sufficient to study stability of graphs. This leads
to the concept of integrity of a graph. The integrity of a graph will consider both the damage and
the maximum possible capacity of communication corresponding to the maximum damage to the
network. Therefore, we discuss the integrity of total transformation graphs which can help us to
reconstruct the given network in such a way that it is more stable than the earlier one. If the network
is modeled through total transformation graphs, then there will be increase in the number of nodes
and links between the nodes in the obtained network which automatically cause the increase in
the stability of the network. In this paper, we obtain the integrity of total transformation graphs of
some special class of graphs. Further, we present bounds of integrity of some total transformation
graphs of a graph in terms of number of vertices, number of edges and integrity of some derived
graph appears as induced subgraph. The expression for integrity of total graph of cycle which was
given by Qingfang Ye contained an error. We give correct version of it. In addition, we compute
integrity of book graphs.
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1. Introduction

The vulnerability measures resistance of the network to disruption in operation after the failure
of certain stations or communication links. The stability of communication network is of prime
importance to designers. As network starts losing links or nodes, ultimately there is a loss in its
efficiency. Thus, communication networks must be assembled to be as stable as possible, not only
with respect to the initial interruption, but also with respect to the possible reconstruction of the
network. A communication network can be represented as an undirected graph. Tree, mesh, hyper-
cube and star graphs are popular communication networks. In communication networks, greater
degrees of stability or less vulnerability is required. If we model a network through graph, then
there are many graph-theoretic parameters to describe the stability of communication networks.
Most notably, the vertex-connectivity and edge-connectivity have been frequently used. The best
known measure of reliability of a graph is its vertex-connectivity κ(G) defined to be the mini-
mum number of vertices whose removal results in a disconnected or trivial graph. The difficulty
with these parameters is that they do not consider what remains after the graph is disconnected.
Consequently, a number of other parameters have recently been introduced in order to overcome
this difficulty. The connectivity of the two different graphs may be same, but the orders of their
largest components need not be same. That is, they may differ with respect to stability. Now, the
question is, how can this property be measured? In order to answer this question, the concept of
integrity came into existence, which is different from connectivity. A significant area of interest
and research is that of networks robustness, which aims to explore to what extent a network keeps
working when failures occur in its structure and how disruptions can be avoided. Robustness, the
ability to withstand failures and perturbations, is a critical attribute of many complex systems in-
cluding complex networks. An important aspect of failures in many networks is that a single failure
in one node might induce failures in neighboring nodes. When a small number of failures induces
more failures, resulting in a large number of failures relative to the network size. For more details
on network robustness refer [30, 31, 32]. The robustness refers to the ability of surviving which
considers all components remaining after random failures or intentional attacks while the integrity
refers to the ability of surviving which considers the maximum component remaining after random
failures or intentional attacks. The random failures cause a damage in the communication between
the nodes of the complex network. Therefore, we need to consider the maximum component of
the network in which still communication is possible. This can be studied using integrity.

The integrity of a graph I(G) is introduced as a measure of graph invulnerability and is defined
as

I(G) = min
S⊂V (G)

{|S|+m(G− S)},

where m(G−S) denotes the order of a largest component of G−S. This concept was introduced by
Barefoot et al. in [7], who discovered many of the early results on the subject [4, 5, 7, 8, 19, 20, 21].

Let G be a finite graph with n vertices and m edges, and it is called an (n,m) graph. We de-
note vertex set and edge set of graph G as V (G) and E(G), respectively. In this paper, we consider
nontrivial finite undirected graph with no loops and no multiple edges. We denote Pn, Cn, Kn,
Ka,b, K1,n and W1,n for a path, a cycle, a complete graph, a complete bipartite graph, a star and
a wheel, respectively. The symbol ⌈x⌉ denotes the smallest integer that is greater than or equal to
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x, ⌊x⌋ denotes the greatest integer that is smaller than or equal to x and the absolute value of x is
denoted by |x|. For undefined graph theoretic terminologies and notations refer [16, 22, 27].

It is fact that, increase in the integrity of a graph increases the stability of the network associ-
ated with it. In literature, authors [2, 3, 8, 11, 12, 18, 25, 33] have studied the integrity of several
transformation graphs. Now a question arises, how can we construct a communication network
which becomes more stable than the earlier one? To answer this, we obtain the integrity of total
transformation graphs from which one can compare the stability of the network with that of the
network after reconstruction using the definition of the total transformation graphs. Total trans-
formation graphs constitute a large class of graphs which are widely used in system ranging from
large computers to small embedded systems on a chip. Therefore, we are interested to find integrity
of total transformation graphs.

2. Preliminaries

Graph transformations have recieved the most attension. The operation of forming the graph
transformations of a graph is probably the most interesting operation by which one graph is ob-
tained from another. The complement, the k-th power of a graph, line graph, middle graph and
total graph are some examples of graph transformations.

The complement G of a graph G is a graph whose vertex set is V (G) and two vertices of G
are adjacent if and only if they are nonadjacent in G. The line graph [22] L(G) of a graph G is a
graph with vertex set which is one to one correspondence with the edge set of G and two vertices
of L(G). Jump graph [17] J(G) of a graph G is a graph whose vertices are the edges of G and two
vertices of J(G) are adjacent if and only if they are nonadjacent edges of G. Evidently the jump
graph J(G) of G is complement of the line graph L(G) of G. The subdivision graph [22] S(G)
of a graph G is a graph with the vertex set V (S(G)) = V (G) ∪ E(G) and two vertices of S(G)
are adjacent whenever they are incident in G. The partial complement of subdivision graph [24]
S(G) of a graph G is a graph with the vertex set V (S(G)) = V (G) ∪ E(G) and two vertices of
S(G) are adjacent whenever they are nonincident in G. For an integer k ≥ 1, the power graph Gk

(the k-th power of a graph G) is defined as follows: V (G) = V (Gk). Two distinct vertices u and
v are adjacent in Gk if and only if the distance between the vertices u and v in G is atmost k. The
second power of a graph is also called its square.

The total graph T (G) [22] is a graph with vertex set V (G) ∪ E(G) and two vertices of T (G)
are adjacent whenever they are adjacent or incident in G. For more details on total transformation
graphs one can refer to [1, 13, 14, 16, 25]. Inspired by the definition of total graph Wu and Meng
defined the total transformation graphs in [6].

Definition 1. [6] Let G = (V (G), E(G)) be a graph, and x, y, z be three variables taking values +
or −. The transformation graph Gxyz is the graph having the vertex set V (Gxyz) = V (G)∪E(G),
and for u, v ∈ V (Gxyz), u and v are adjacent in Gxyz if and only if one of the following holds:

(a) u, v ∈ V (G). u and v are adjacent in Gxyz if x = +; u and v are not adjacent in Gxyz if
x = −.

(b) u, v ∈ E(G). u and v are adjacent in Gxyz if y = +; u and v are not adjacent in Gxyz if
y = −.
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(c) u ∈ V (G), v ∈ E(G). u and v are incident in Gxyz if z = +; u and v are not incident in
Gxyz if z = −.

The vertex of Gxyz corresponding to a vertex of G is referred to as point vertex and vertex
of Gxyz corresponding to an edge of G is referred to as line vertex. The authors in [6] obtained
eight transformation graphs, in which G+++ is the total graph of G, and G−−− is its complement,
similarly the graph G−++ is the quasi-total graph of G and G+−− is its complement. Also, G−−+

and G−+− are the complements of G++− and G+−+, respectively. The total transformation graphs
of the graph G are depicted in the Figure 1. In Figure 1, the circles denote the vertices of G while
squares denote the edges of G.
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Figure 1. The graph G and its total transformation graphs.

The following Theorems are useful in proving our results.
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Theorem 2.1. [4] The integrity of

(a) complete graph Kn is I(Kn) = n,

(b) the null graph is I(Kn) = 1,

(c) the star is I(K1,n) = 2,

(d) the path is I(Pn) =
⌈
2
√
n+ 1

⌉
− 2,

(e) the cycle is I(Cn) = ⌈2
√
n⌉ − 1,

(f) the complete bipartite graph is I(Ka,b) = 1 + min{a, b}.

Theorem 2.2. [15] The total graph T (G) is isomorphic to the square of the subdivision graph
S(G).

Theorem 2.3. [8] For 1 ≤ k ≤ n
2
, let s =

⌈√
n
k
+ 1

4
− 1

2

⌉
. Then

I(Ck
n) = k(s− 1) +

⌈n
s

⌉
.

3. Integrity of total transformation graphs

In this section, we obtain the integrity of total transformation graphs of some specific class of
graphs.

Theorem 3.1. [33] Let Pn be a path graph with n vertices. Then

I(P+++
n ) =

{
2n− 1, if n ≤ 2,

min
{
2
(
w − 1

)
+
⌈
2n−1−2(w−1)

w

⌉
, 2
(
w − 1

)
+
⌈
2n−1−2(w−1)

w

⌉}
, if n > 2.

where w =
⌊√

2n+1
2

⌋
, w =

⌈√
2n+1

2

⌉
.

Theorem 3.2. [33] Let Cn be a cycle graph with n vertices. Then

I(C+++
n ) = 2

⌈√
n+

1

4
− 3

2

⌉
+


2n⌈√

n+ 1
4
− 1

2

⌉
 .

The expression given in Theorem 3.2 contains an error. Its correct version is given in the
following theorem.

Theorem 3.3. Let Cn be a cycle graph with n vertices. Then

I(C+++
n ) = 2

(⌈√
n+

1

4
− 1

2

⌉
− 1

)
+


2n⌈√

n+ 1
4
− 1

2

⌉
 .
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Proof. Using the definition of subdivision graph, we have S(Cn) = C2n. Now from Theorem 2.2,
we have C+++

n
∼= C2

2n. By Theorem 2.3, we get

I(C+++
n ) = I(C2

2n) = 2

(⌈√
n+

1

4
− 1

2

⌉
− 1

)
+


2n⌈√

n+ 1
4
− 1

2

⌉
 .

Theorem 3.4. Let Kn be a complete graph with n vertices. Then

I(K+++
n ) = n+ I(L(Kn)).

Proof. The number of edges in Kn is n(n−1)
2

which is more than n. Therefore, the number of
vertices in K+++

n is n+ n(n−1)
2

. If we consider S = V (Kn), then |S| = n and K+++
n −S = L(Kn).

Thus, I(K+++
n ) = n+ I(L(Kn)).

Theorem 3.5. Let Ka,b(a ≤ b and a, b ≥ 2) be a complete bipartite graph. Then

I(K+++
a,b ) = ab+ a+ 1.

Proof. The number of edges in Ka,b is ab. Therefore, the number of vertices in K+++
a,b is a+b+ab.

If we consider S = E(Ka,b), then S ⊂ V (K+++
a,b ) with |S| = ab. If the members of S are removed

from K+++
a,b , then we get Ka,b. Therefore, m(K+++

a,b −S) = a+1. Thus, I(K+++
a,b ) = ab+a+1.

Theorem 3.6. Let W1,n(n ≥ 3) be a wheel graph with n+ 1 vertices. Then

I
(
W+++

1,n

)
= n+ 1 + I

(
C+++

n

)
.

Proof. The number of edges in W1,n is 2n. Therefore, the number of vertices in W+++
1,n is 3n+1. If

we consider S = VI∪EI , where the set VI ⊂ V (W1,n) containing central vertex of W1,n and EI ⊂
E (W1,n) having edges which are incident to the central vertex of W1,n. Then S ⊂ V

(
W+++

1,n

)
with

|S| = 1+n, where |VI | = 1, |EI | = n. If the members of S are removed from W+++
1,n , then we get

C+++
n . Thus, I

(
W+++

1,n

)
= n+ 1 + I (C+++

n ) .

Theorem 3.7. Let G be any connected graph with n vertices and m edges. Then

I(G−−−) ≤ min{m+ I(G), n+ I(J(G)), n+m− 2}.

Proof. Suppose we consider S = E(G). Then, S ⊂ E(G−−−) with |S| = m. If the members of
S are removed from G−−−, then we get G. Thus, I(G−−−) ≤ m+ I(G).
If we consider S = V (G). Then S ⊂ V (G−−−) with |S| = n. If the members of S are removed
from G−−−, then m(G−−− − S) = J(G). Thus, I(G−−−) ≤ n+ I(J(G)).
Let VI ⊂ V (G) and |VI | = n− 2. The set VI contains all the vertices of G except two nonadjacent
vertices of G. That is vi, vj /∈ E(G). Let EI ⊂ E(G) and |VI | = m − 2. The set EI contains all
the edges of G except two nonadjacent edges ei, ej of G in which one is adjacent to vi but not to
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vj while the other is adjacent to vj but not to vi. That is ei, ej /∈ E(J(G)). Let SI = VI ∪ EI and
|SI | = n+m− 4. If we remove S vertices from G−−−, then we get components each of which is
K2. Thus, I(G−−−) ≤ n+m− 2.
From the above cases, we conclude that

I(G−−−) ≤ min{m+ I(G,n+ I(J(G)), n+m− 2}.

Theorem 3.8. Let Pn be a path graph with n vertices. Then

I(P−−−
n ) =

{
1, if n = 2,
2n− 3, otherwise.

Proof. If n = 2, then P−−−
2 is K3. Therefore, I(P−−−

2 ) = 1.
Let SI = VI ∪ EI and |SI | = 2n− 5, where |VI | = n− 2, |EI | = n− 3. The set VI ⊂ V (Pn) and
contains both terminal (i.e., the vertex of degree one in Pn) vertices of Pn such that V (Pn) \ VI

contains two adjacent vertices of Pn say u, v and one of them is adjacent to the terminal vertex of
the path, while the set EI ⊂ E(Pn) is chosen in such a way that, it must not contain the edge uv
and one of the two edges which are adjacent to the edge uv. Then clearly, SI will form a subset of
V (P−−−

n ) such that

|SI |+m(P−−−
n − SI) = min

S⊂V (P−−−
n )

{|S|+m(P−−−
n − S)},

where m(P−−−
n − SI) = 2.

Thus,
I(P−−−

n ) = |SI |+m(P−−−
n − SI) = 2n− 3.

Theorem 3.9. Let Cn be a cycle graph with n ≥ 3 vertices. Then

I(C−−−
n ) =

{
2, if n = 3,
2(n− 1), otherwise.

Proof. Case 1. Suppose n = 3, C−−−
3 is a disconnected graph. If we choose no vertices in set S,

then m(C−−−
n − S) = 2. Thus, I(C−−−

3 ) = 2.
Case 2. If n ≥ 4, then SI = VI ∪ EI and |SI | = 2n − 4, where |VI | = n − 2 and |EI | = n − 2.
The set VI ⊂ V (Cn) such that V (Cn) \ VI contains two adjacent vertices of Cn say u and v, while
the set EI ⊂ E(Cn) is chosen in such a way that, it contains the edge uv and one of the two edges
which are adjacent to it in Cn. Then clearly, SI will form a subset of V (C−−−

n ) such that

|SI |+m(C−−−
n − SI) = min

S⊂V (C−−−
n )

{|S|+m(C−−−
n − S)},

where m(C−−−
n − SI) = 2.

Thus,
I(C−−−

n ) = 2(n− 1).
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Theorem 3.10. Let Kn be a complete graph with n vertices. Then

I(K−−−
n ) =

{
2, if n = 3,
n+ I(J(Kn)), otherwise.

Proof. The number of edges in Kn is n(n−1)
2

which is more than n. Therefore, the number of
vertices in K−−−

n is n+ n(n−1)
2

.
Case 1. Suppose n = 3, then K3

∼= C3. The proof is given in Theorem 3.9.
Case 2. If n ≥ 4, then we choose S = V (Kn). It is clear to write |S| = n and K−−−

n −S = J(Kn).
Thus, I(K−−−

n ) = n+ I(J(Kn)).

Theorem 3.11. Let K1,n(n ≥ 2) be a star graph with n+ 1 vertices. Then

I(K−−−
1,n ) = n+ 1.

Proof. The number of edges in K1,n is n. Therefore, the number of vertices in K−−−
1,n is 2n + 1.

If we consider S = V (K1,n) \ {u}, where the vertex {u} is the central vertex (i.e., the vertex of
degree n) of the star graph, then |S| = n. If the members of S are removed from K−−−

1,n , then we
get Kn+1. Thus, I(K−−−

1,n ) = n+ 1.

Theorem 3.12. Let Ka,b(a ≤ b and a, b ≥ 2) be a complete bipartite graph. Then

I(K−−−
a,b ) = b(a+ 1).

Proof. The number of edges in Ka,b is ab. Therefore, the number of vertices in K−−−
a,b is a+b+ab.

If we consider S = E(Ka,b), then S ⊂ V (K−−−
a,b ) with |S| = ab and K−−−

a,b − S = Ka ∪ Kb.

Therefore, m(K−−−
a,b − S) = b. Thus, I(K−−−

a,b ) = b(a+ 1).

Theorem 3.13. Let W1,n(n ≥ 3) be a wheel graph with n+ 1 vertices. Then

I(W−−−
1,n ) = 2n+ 1.

Proof. The number of edges in W1,n is 2n. Therefore, the number of vertices in W−−−
1,n is 3n+ 1.

If we consider S = VI ∪ EI , then S ⊂ V (W−−−
1,n ) with |S| = 2n, where |VI | = n, |EI | = n. The

set VI = V (W1,n) and EI ⊂ E(W1,n) such that all members of EI should form a cycle Cn in W1,n.
If the members of S are removed from W−−−

1,n , then we get Kn. Thus, I(W−−−
1,n ) = 2n+ 1.

Definition 2. [29] The quasi-total graph (G−++) of a graph G is the graph whose vertex set is
V (G) ∪ E(G) and the two vertices in (G−++) are adjacent if and only if they correspond to two
non-adjacent vertices of G or to two adjacent edges of G or to a vertex and an edge incident with
it, in G (see Figure 1).

The results on integrity of the quasi-total graph (G−++) of a graph can be found in [11] and
the details of quasi-total graph can be found in [9, 10, 26, 29]. The following theorem gives the
integrity of the complement of the quasi-total graph (G+−−) of a graph.
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Theorem 3.14. Let G be any connected graph with n vertices and m edges. Then

I(G+−−) ≤ min{m+ I(G), n+ I(J(G))}.

Proof. Suppose we consider S = E(G). Then S ⊂ E(G+−−) with |S| = m. If the members of S
are removed from G+−−, then we get G. Thus, I(G+−−) ≤ m+ I(G).
If we consider S = V (G), then S ⊂ V (G+−−) with |S| = n and m(G+−− − S) = J(G). Thus,
I(G+−−) ≤ n+ I(J(G)).
From the above two cases, we can conclude that I(G+−−) ≤ min{m+ I(G), n+ I(J(G))}.

Theorem 3.15. Let Pn be a path graph with n vertices. Then

I(P+−−
n ) =

{
2, if n = 2,
n+

⌈
2
√
n+ 1

⌉
− 3, otherwise.

Proof. Suppose n = 2. Then P+−−
2 is a disconnected graph with components K1 and K2.

Therefore, I(P+−−
2 ) = 2. If n ≥ 3, then by removing end vertices of Pn we get 3K1. Thus,

I(P+−−
3 ) = 3. If we consider the set SI = E(Pn), then clearly, SI will form a subset of V (P+−−

n )
such that

|SI |+m(P+−−
n − SI) = min

S⊂V (P+−−
n )

{|S|+m(P+−−
n − S)},

where m(P+−−
n − SI) = Pn.

Thus,

I(P+−−
n ) = |SI |+m(P+−−

n − SI) = n− 1 + I(Pn) = n+
⌈
2
√
n+ 1

⌉
− 3.

Theorem 3.16. Let Cn be a cycle graph with n vertices. Then

I(C+−−
n ) =


4, if n = 3,
6, if n = 4,
n+ ⌈2

√
n⌉ − 1, otherwise.

Proof. If n = 3, then by removing all vertices of C3 from C+−−
3 we get 3K1. Thus I(C+−−

3 ) = 4.
If n = 4, then by removing all vertices of C4 from C+−−

4 we get two components each of which is
K2. Thus I(C+−−

4 ) = 6. If we consider the set SI = E(Cn). Then clearly, SI will form a subset
of V (C+−−

n ) such that

|SI |+m(C+−−
n − SI) = min

S⊂V (C+−−
n )

{|S|+m(C+−−
n − S)},

where m(C+−−
n − SI) = Cn.

Thus,
I(C+−−

n ) = |SI |+m(C+−−
n − SI) = n+ I(Cn) = n+

⌈
2
√
n
⌉
− 1.
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Theorem 3.17. Let Kn be a complete graph with n(n ≥ 3) vertices. Then

I(K+−−
n ) = n+ I(J(Kn)).

Proof. The number of edges in Kn is n(n−1)
2

which is more than n. Therefore, the number of
vertices in K+−−

n is n+ n(n−1)
2

. If we consider S = V (Kn), then |S| = n and K+−−
n −S = J(Kn).

Thus, I(K+−−
n ) = n+ I(J(Kn)).

Theorem 3.18. Let K1,n be a star graph with n+ 1 vertices. Then

I(K+−−
1,n ) = n+ 1.

Proof. The number of edges in K1,n is n. Therefore, the number of vertices in K+−−
1,n is 2n + 1.

If we consider S = (V (K1,n) \ {u}) where u is the central vertex (i.e., the vertex of degree n)
of K1,n, then |S| = n. If the members of S are removed from K+−−

1,n , then we get Kn+1. Thus,
I(K+−−

1,n ) = n+ 1.

Theorem 3.19. Let Ka,b(a ≤ b and a, b ≥ 2) be a complete bipartite graph. Then

I(K+−−
a,b ) = ab− a+ b+ 2

⌊a
4

⌋
+

⌈
a−

⌊
a
4

⌋⌊
a
4

⌋
+ 1

⌉
.

Proof. The number of edges in Ka,b is ab. Therefore, the number of vertices in K+−−
a,b is a+b+ab.

If we consider S = V (Ka,b)∪EI(Ka,b), then S ⊂ V (K+−−
a,b ) with |S| = ab−a+ b+2

⌊
a
4

⌋
, where

|EI(Ka,b)| = 2
⌊
a
4

⌋
− 2a and E(Ka,b) \EI(Ka,b) must induce two paths of length a− 1 in K+−−

a,b .
If the members of S are removed from K+−−

a,b , then we get 2Pa. Therefore, m(K+−−
a,b − S) =⌈

a−⌊a
4⌋

⌊a
4⌋+1

⌉
. Hence, I(K+−−

a,b ) = ab− a+ b+ 2
⌊
a
4

⌋
+

⌈
a−⌊a

4⌋
⌊a

4⌋+1

⌉
.

Theorem 3.20. Let W1,n(n ≥ 3) be a wheel graph with n+ 1 vertices. Then

I(W+−−
1,n ) = 2n+

⌈
2
√
n
⌉
.

Proof. The number of edges in W1,n is 2n. Therefore, the number of vertices in W+−−
1,n is 3n+ 1.

If we consider S = E(W1,n), then S ⊂ V (W+−−
1,n ) with |S| = 2n and W+−−

1,n − S = W1,n. Thus,
I(W+−−

1,n ) = 2n+ ⌈2
√
n⌉ .

Theorem 3.21. If G is any connected graph with n(n ≥ 4) vertices and m edges, then

I(G−−+) ≤ min{n+ I(J(G)),m+ I(G), n+m− 2}.

Proof. Suppose we consider S = E(G). Then S ⊂ E(G−−+) with |S| = m. If the members of S
are removed from G−−+, then we get G. Thus, I(G−−+) ≤ m+ I(G).
If we consider S = V (G), then S ⊂ V (G−−+) with |S| = n and m(G−−+ − S) = J(G). Thus,
I(G−−+) ≤ n+ I(J(G)).
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Let VI ⊂ V (G) and |VI | = n− 2. The set VI contains all the vertices of G except two nonadjacent
vertices of G. That is vi, vj /∈ E(G). Let EI ⊂ E(G) and |VI | = m − 2. The set EI contains all
the edges of G except two nonadjacent edges ei, ej of G in which one is adjacent to vi but not to
vj while the other is adjacent to vj but not to vi. That is ei, ej /∈ E(J(G)). Let SI = VI ∪ EI and
|SI | = n+m− 4. If we remove S vertices from G−−+, then we get components each of which is
K2. Thus, I(G−−+) ≤ n+m− 2.
From the above cases, we conclude that

I(G−−+) ≤ min{n+ I(J(G)),m+ I(G), n+m− 2}.

Theorem 3.22. Let Pn be a path graph with n vertices. Then

I(P−−+
n ) =


2, if n = 2,
4, if n = 3,
6, if n = 4,
2(n− 2), otherwise.

Proof. If n = 2, then P−−+
2 = P3 and I(P−−+

2 ) = 2. If n = 3, then by removing all vertices of
P3 from P−−+

3 we get two components of K1. Thus I(P−−+
3 ) = 4. If n = 4, then by removing all

vertices of P4 from P−−+
4 we get one components of K2. Thus I(P−−+

4 ) = 6. Let Pn be a path
with vertex set V (Pn) = {v1, v2, . . . , vn} and the edge set E(Pn) = {e1, e2, . . . , en−1}. Suppose
we consider SI = VI ∪ EI and |SI | = 2n − 5, where |VI | = n − 2, |EI | = n − 3. The set
VI ⊂ V (Pn) and VI = V (Pn) \ {v2, v3}, while the set EI ⊂ E(Pn) is chosen in such a way that,
EI = E(Pn) \ {en−2, en−1}. Then clearly, SI will form a subset of V (P−−+

n ) such that

|SI |+m(P−−+
n − SI) = min

S⊂V (P−−+
n )

{|S|+m(P−−+
n − S)},

where m(P−−+
n − SI) = 1.

Thus,
I(P−−+

n ) = |SI |+m(P−−+
n − SI) = 2(n− 2).

Theorem 3.23. Let Cn be a cycle graph with n vertices. Then

I(C−−+
n ) =


4, if n = 3,
6, if n = 4,
2n− 3, otherwise.

Proof. If n = 3, then C−−+
3 = C6 and I(C−−+

3 ) = 4. If n = 4, then by removing all vertices of
C4 from C−−+

4 we get three components of K2. Thus I(C−−+
4 ) = 6.

If n ≥ 5, then let SI = VI ∪ EI and |SI | = 2n− 4, where |VI | = n− 2 = |EI | .
The set VI ⊂ V (Cn) such that V (Cn) \ VI contains two adjacent vertices of Cn say u and

v, while the set EI ⊂ E(Cn) is chosen in such a way that, it must contain the edge uv and
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E(Cn) \ EI = {ei, ej}, where ei and ej are adjacent and they are not adjacent to the edge uv in
Cn. Then clearly, SI will form a subset of V (C−−+

n ) such that

|SI |+m(C−−+
n − SI) = min

S⊂V (C−−+
n )

{|S|+m(C−−+
n − S)},

where m(C−−+
n − SI) = 1. Thus, I(C−−+

n ) = 2n− 3.

Theorem 3.24. Let Kn be a complete graph with n(n ≥ 3) vertices. Then

I(K−−+
n ) = n+ I(J(Kn)).

Proof. The number of edges in Kn is n(n−1)
2

which is more than n. Therefore, the number of
vertices in K−−+

n is n+ n(n−1)
2

. If we consider S = V (Kn), then |S| = n and K−−+
n −S = J(Kn).

Thus, I(K−−+
n ) = n+ I(J(Kn)).

Theorem 3.25. Let K1,n be a star graph with n+ 1 vertices. Then

I(K−−+
1,n ) = n+ 2.

Proof. The number of edges in K1,n is n. Therefore, the number of vertices in K−−+
1,n is 2n+ 1. If

we consider S = V (K1,n), then |S| = n+ 1. It is clear that K−−+
1,n − S = Kn. Thus, I(K−−+

1,n ) =
n+ 2.

Theorem 3.26. Let Ka,b(a ≤ b and a, b ≥ 2) be a complete bipartite graph. Then

I(K−−+
a,b ) = b(a+ 1).

Proof. The number of edges in Ka,b is ab. Therefore, the number of vertices in K−−+
a,b is a+b+ab.

If we consider S = E(Ka,b), then S ⊂ V (K−−+
a,b ) with |S| = ab. If the members of S are removed

from K−−+
a,b , then K−−+

a,b − S = Ka ∪Kb. Since m(G − S) is the order of the largest component
of G− S. Therefore, m(K−−+

a,b − S) = b. Thus, I(K−−+
a,b ) = b(a+ 1).

Theorem 3.27. Let W1,n(n ≥ 3) be a wheel graph with n+ 1 vertices. Then

I(W−−+
1,n ) = 2(n+ 1).

Proof. The number of edges in W1,n is 2n. Therefore, the number of vertices in W−−+
1,n is 3n+ 1.

If we consider S = VI ∪EI , then S ⊂ V (W−−+
1,n ) with |S| = 2n+1, where VI = V (W1,n) and EI

is the collection of all edges of the wheel graph W1,n, which are the edges forming the cycle Cn. If
the members of S are removed from W−−+

1,n , then we get Kn. Thus, I(W−−+
1,n ) = 2(n+ 1).

Theorem 3.28. If G is any connected graph with n(n ≥ 4) vertices and m edges, then

I(G++−) ≤ min{m+ I(G), n+ I(L(G)), n+m− 2}.
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Proof. Suppose we consider S = E(G). Then S ⊂ E(G++−) with |S| = m. If the members of S
are removed from G++−, then we get G. Thus, I(G++−) ≤ m+ I(G).
If we consider S = V (G), then S ⊂ V (G++−) with |S| = n. It is clear that m(G++−−S) = L(G).
Thus, I(G++−) ≤ n+ I(L(G)).
Let VI ⊂ V (G) and |VI | = n− 2. The set VI contains all the vertices of G except two nonadjacent
vertices of G. That is vi, vj /∈ E(G). Let EI ⊂ E(G) and |VI | = m − 2. The set EI contains all
the edges of G except two nonadjacent edges ei, ej of G in which one is adjacent to vi but not to
vj while the other is adjacent to vj but not to vi. That is ei, ej /∈ E(L(G)). Let SI = VI ∪ EI and
|SI | = n+m− 4. If we remove S vertices from G++−, then we get components each of which is
K2. Thus, I(G++−) ≤ n+m− 2.
From the above cases, we can conclude that

I(G++−) ≤ min{m+ I(G), n+ I(L(G)), n+m− 2}.

Theorem 3.29. Let Pn be a path graph with n vertices. Then

I(P++−
n ) =


4, if n = 3,
5, if n = 4,
2(n− 2), if n = 5, 6,⌈
2
√
n+ 1

⌉
+ n− 3 otherwise.

Proof. If n = 3, then P++−
3 = C5 and I(P++−

3 ) = 4. If n = 4, then by taking S as the collection
of the two central vertices and the edge joining them in P4, we get I(P++−

4 ) = 5. If n = 5, 6, then
by taking S as the collection of the central vertex(or vertices (for n = 6)) and the edges incident
with it (them (for n = 6)) in Pn, we get I(P++−

n ) = 2(n − 2). Suppose n ≥ 7. Then let Pn

be a path with vertex set V (Pn) = {v1, v2, . . . , vn} and the edge set E(Pn) = {e1, e2, . . . , en−1}.
Suppose we consider S = E(Pn), then |S| = n − 1. If we remove all the members of S from
P++−
n , then we get Pn.

Thus, I(P++−
n ) = |S|+ I(Pn) =

⌈
2
√
n+ 1

⌉
+ n− 3.

Theorem 3.30. Let Cn be a cycle graph with n vertices. Then

I(C++−
n ) =


5, if n = 3,
2(n− 1), if n = 4, 5,
n+ ⌈2

√
n⌉ − 1, otherwise.

Proof. If n = 3, then by taking the set S as the collection of two edges and a vertex which not
incident with them in C3, we get I(C++−

3 ) = 5. If n = 4, 5, then by taking the set S as shown in
Figure 2, we get I(C++−

n ) = 2(n− 1).
Suppose n ≥ 6. Then consider S = E(Cn). It is clear that C++−

n −S = Cn. Thus, I(C++−
n ) =

|S|+ I(Cn) = n+ ⌈2
√
n⌉ − 1.
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Figure 2. Choosing the set S in the graphs C++−
4 and C++−

5 .

Theorem 3.31. Let Kn be a complete graph with n(n ≥ 3) vertices. Then

I(K++−
n ) =

n2 + n− 2

2
.

Proof. The number of edges in Kn is n(n−1)
2

which is more than n. Therefore, the number of
vertices in K++−

n is n + n(n−1)
2

. If we consider S = VI ∪ EI such that |S| = n + n(n−1)
2

− 1. The
set VI ⊂ V (Kn) and V (Kn) \ VI = {u, v}, while the set EI ⊂ E(Kn) and E(Kn) \ EI = {uv}.
Therefore, K++−

n − S = K1 ∪K2. Thus, I(K++−
n ) = n2+n−2

2
.

Theorem 3.32. Let K1,n be a star graph with n+ 1 vertices. Then

I(K++−
1,n ) = n+ 2.

Proof. The number of edges in K1,n is n. Therefore, the number of vertices in K++−
1,n is 2n+ 1. If

we consider S = E(K1,n)∪{u} where the vertex u is the central vertex of K1,n, then |S| = n+1.
Therefore, K++−

1,n − S = Kn. Thus, I(K++−
1,n ) = n+ 2.

Theorem 3.33. Let Ka,b(a ≤ b and a, b ≥ 2) be a complete bipartite graph. Then

I(K++−
a,b ) = ab+ a+ 1.

Proof. The number of edges in Ka,b is ab. Therefore, the number of vertices in K++−
a,b is a+b+ab.

If we consider S = E(Ka,b), then S ⊂ V (K++−
a,b ) with |S| = ab and K++−

a,b −S = Ka,b. Therefore,
m(K++−

a,b − S) = a+ 1. Thus, I(K++−
a,b ) = ab+ a+ 1.

Theorem 3.34. Let W1,n(n ≥ 3) be a wheel graph with n+ 1 vertices. Then

I(W++−
1,n ) = 2n+

⌈
2
√
n
⌉
.
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Proof. The number of edges in W1,n is 2n. Therefore, the number of vertices in W++−
1,n is 3n+1. If

we consider S = E(W1,n), then S ⊂ V (W++−
1,n ) with |S| = 2n. If the members of S are removed

from W++−
1,n , then we get W1,n.

Thus, I(W++−
1,n ) = 2n+ I(W1,n) = 2n+ ⌈2

√
n⌉ .

Theorem 3.35. If G is any connected graph with n(n ≥ 4) vertices and m edges, then

I(G−+−) ≤ min{n+ I(L(G)),m+ I(G), n+m− 2}.

Proof. Suppose we consider S = E(G). Then S ⊂ E(G−+−) with |S| = m. It is clear that
m(G−+−S) = G. Thus, I(G−+−) ≤ m+ I(G).
If we consider S = V (G). Then S ⊂ V (G−+−) with |S| = n and m(G−+− − S) = L(G). Thus,
I(G−+−) ≤ n+ I(L(G)).
Let VI ⊂ V (G) and |VI | = n− 2. The set VI contains all the vertices of G except two nonadjacent
vertices of G. That is vi, vj /∈ E(G). Let EI ⊂ E(G) and |VI | = m − 2. The set EI contains all
the edges of G except two nonadjacent edges ei, ej of G in which one is adjacent to vi but not to
vj while the other is adjacent to vj but not to vi. That is ei, ej /∈ E(L(G)). Let SI = VI ∪ EI and
|SI | = n + m − 4. If we remove S from G−+−, then we get components each of which is K2.
Thus, I(G−+−) ≤ n+m− 2.
From the above cases, we conclude that

I(G−+−) ≤ min{n+ I(L(G)),m+ I(G), n+m− 2}.

Theorem 3.36. Let Pn be a path graph with n vertices. Then

I(P−+−
n ) = 2n− 3.

Proof. Let Pn be a path with vertex set V (Pn) = {v1, v2, . . . , vn} and the edge set E(Pn) =
{e1, e2, . . . , en−1}. Suppose we consider SI = VI ∪ EI and |SI | = 2n − 5, where |VI | = n −
2, |EI | = n − 3. The set VI ⊂ V (Pn) and VI = V (Pn) \ {v2, v3}, while the set EI ⊂ E(Pn) is
chosen in such a way that, EI = E(Pn)\{e1, e3}. Then clearly, SI will form a subset of V (P−+−

n )
such that

|SI |+m(P−+−
n − SI) = min

S⊂V (P−+−
n )

{|S|+m(P−+−
n − S)},

where m(P−+−
n − SI) = 2.

Thus,
I(P−+−

n ) = |SI |+m(P−+−
n − SI) = 2n− 3.

Theorem 3.37. Let Cn be a cycle graph with n(n ≥ 3) vertices. Then

I(C−+−
n ) = 2(n− 1).
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Proof. If n ≥ 3, then let SI = VI ∪ EI and |SI | = 2n − 4, where |VI | = n − 2 = |EI | . The
set VI ⊂ V (Cn) such that V (Cn) \ VI contains two adjacent vertices of Cn say u and v, while the
set EI ⊂ E(Cn) is chosen in such a way that, it must contain the edge uv and E(Cn) \ EI must
contain two edges adjacent with uv in Cn. Then clearly, SI will form a subset of V (C−+−

n ) such
that

|SI |+m(C−+−
n − SI) = min

S⊂V (C−+−
n )

{|S|+m(C−+−
n − S)},

where m(C−+−
n − SI) = 1. Thus, I(C−+−

n ) = 2n− 3.

Theorem 3.38. Let Kn be a complete graph with n(n ≥ 3) vertices. Then

I(K−+−
n ) =

n(n− 1)

2
+ 1.

Proof. The number of edges in Kn is n(n−1)
2

which is more than n. Therefore, the number of
vertices in K−+−

n is n+n(n−1)
2

. If we consider S = E(Kn), then |S| = n(n−1)
2

and K−+−
n −S = Kn.

Thus, I(K−+−
n ) = n(n−1)

2
+ 1.

Theorem 3.39. Let K1,n be a star graph with n+ 1 vertices. Then

I(K−+−
1,n ) = 2n− 1.

Proof. The number of edges in K1,n is n. Therefore, the number of vertices in K−+−
1,n is 2n+ 1. If

we consider S = (V (K1,n) \ {u, v}) ∪ (E(K1,n) \ {uv}), where the vertex u is the central vertex
(i.e., the vertex of degree n) in K1,n, then |S| = 2n − 2. If the members of S are removed from
K−+−

1,n , then we get K3. Thus, I(K−+−
1,n ) = 2n− 1.

Theorem 3.40. Let Ka,b(a ≤ b and a, b ≥ 2) be a complete bipartite graph. Then

I(K−+−
a,b ) = b(a+ 1).

Proof. The number of edges in Ka,b is ab. Therefore, the number of vertices in K−+−
a,b is a+b+ab.

If we consider S = E(Ka,b), then S ⊂ V (K−+−
a,b ) with |S| = ab. If the members of S are removed

from K−+−
a,b , then K−+−

a,b − S = Ka ∪Kb. Since m(G − S) is the order of the largest component
of G− S. Therefore, m(K−+−

a,b − S) = b. Thus, I(K−+−
a,b ) = b(a+ 1).

Theorem 3.41. Let W1,n(n ≥ 3) be a wheel graph with n+ 1 vertices. Then

I(W−+−
1,n ) = 2n+

⌈
2
√
n
⌉
.

Proof. The number of edges in W1,n is 2n. Therefore, the number of vertices in W−+−
1,n is 3n+ 1.

If we consider S = VI ∪ EI , then S ⊂ V (W−+−
1,n ) with |S| = 2n + 1, where |VI | = V (W1,n) and

|EI | is the collection of all edges of the wheel graph W1,n, which are adjacent to the central vertex
(i.e., the vertex of degree n). If the members of S are removed from W−+−

1,n , then we get Kn. Thus,
I(W−+−

1,n ) = 2n+ 1 + I(Cn) = 2n+ ⌈2
√
n⌉ .
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Theorem 3.42. If G is any connected graph with n vertices and m edges, then

I(G+−+) ≤ min{m+ I(G), n+ I(J(G))}.

Proof. Suppose we consider S = E(G). Then S ⊂ E(G+−+) with |S| = m and
m(G+−+−S) = G. Thus, I(G+−+) ≤ m+I(G). If we consider S = V (G). Then S ⊂ V (G+−+)
with |S| = n. If the members of S are removed from G+−+, then we get J(G). Thus, I(G+−+) ≤
n+ I(J(G)). From the above two cases, we can conclude that

I(G+−+) ≤ min{m+ I(G), n+ I(J(G))}.

Theorem 3.43. Let Pn be a path graph with n vertices. Then

I(P+−+
n ) =


3, if n = 2, 3
5, if n = 4,
6, if n = 5,
n+ 2 +

⌊
n−6
4

⌋
, otherwise.

Proof. If n = 2, then P+−+
2

∼= C3, we get I(P+−+
2 ) = 3.

If n = 3, then by taking the set S which is intermediate vertex, we get I(P+−+
3 ) = 3.

If n = 4, then consider the set SI = VI ∪EI such that VI ⊂ V (Pn), |VI | = 2 and it should contain
intermediate verices, while the set EI ⊂ E(Pn), |EI | = 2 and it should contain end vertices. So,
|S| = 4 and m(P+−+

4 − S) = 2. hence, we get desired result.
Let Pn be a path with vertex set V (Pn) = {v1, v2, . . . , vn} and the edge set E(Pn) = {e1, e2, . . . , en−1}.
Suppose n = 5, we consider the set SI = VI ∪ EI such that VI ⊂ V (Pn), |VI | = 2 and it should
contain the vertices {v2, v4}, while the set EI ⊂ E(Pn) and EI = {e1, e3}, |EI | = 2. So, |S| = 4
and m(P+−+

4 − S) = 2. hence, we get desired result.
Suppose n ≥ 5, we consider the set SI = VI ∪ EI such that VI ⊂ V (Pn), |VI | = 2 +

⌊
n−6
4

⌋
and

it should not contain the vertices v1, v2, v4, v5, also the distance between any two members of VI

must equals to 3, while the set EI ⊂ E(Pn) and E(Pn)\EI = {e2, e3}, |EI | = n−3. Then clearly,
SI will form a subset of V (P+−+

n ) such that

|SI |+m(P+−+
n − SI) = min

S⊂V (P+−+
n )

{|S|+m(P+−+
n − S)},

where m(P+−+
n − SI) = 3.

Thus,

I(P+−+
n ) = |SI |+m(P+−+

n − SI) = n+ 2 +

⌊
n− 6

4

⌋
.

Theorem 3.44. Let Cn be a cycle graph with n vertices. Then

I(C+−+
n ) = n+min{I(Cn), I(Cn)}.
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Proof. The cycle graph Cn has n edges. Therefore, we have two choices to choose the set S if we
consider the set S = E(Cn), then C+−+

n − S = Cn. Suppose we choose the set S = V (Cn), then
C+−+

n − S = Cn. Clearly, S will form a subset of V (C+−+
n ) such that

|S|+m(C+−+
n − S) = min

S⊂V (C+−+
n )

{|S|+m(C+−+
n − S)},

where C+−+
n − S =

{
Cn, if S = E(Cn),
Cn, if S = V (Cn).

Thus,
I(C+−+

n ) = |S|+m(C+−+
n − S) = n+min{I(Cn), I(Cn)}.

Theorem 3.45. Let Kn be a complete graph with n, (n ≥ 3) vertices. Then

I(K+−+
n ) = n+ I(J(Kn)).

Proof. The number of edges in Kn is n(n−1)
2

which is more than n. Therefore, the number of
vertices in K+−+

n is n+ n(n−1)
2

. If we consider S = V (Kn), then |S| = n and K+−+
n −S = J(Kn).

Thus, I(K+−+
n ) = n+ I(J(Kn)).

Theorem 3.46. Let K1,n be a star graph with n+ 1 vertices. Then

I(K+−+
1,n ) = 3.

Proof. The number of edges in K1,n is n. Therefore, the number of vertices in K+−+
1,n is 2n + 1.

If we consider S = {u} where u is the central vertex (i.e., the vertex of degree n) of K1,n, then
|S| = 1. If the member of S is removed from K+−+

1,n , then we get nK2. Thus, I(K+−+
1,n ) = 3.

Theorem 3.47. Let Ka,b(a ≤ b and a, b ≥ 2) be a complete bipartite graph with a + b vertices.
Then

I(K+−+
a,b ) = ab+ a+ 1.

Proof. The number of edges in Ka,b is ab. Therefore, the number of vertices in K+−+
a,b is a+b+ab.

If we consider S = E(Ka,b), then S ⊂ V (K+−+
a,b ) with |S| = ab and K+−+

a,b −S = Ka,b. Therefore,
m(K+−+

a,b − S) = a+ 1. Thus, I(K+−+
a,b ) = ab+ a+ 1.

Theorem 3.48. Let W1,n(n ≥ 3) be a wheel graph with n+ 1 vertices. Then

I(W+−+
1,n ) = 2(n+ 1).

Proof. The number of edges in W1,n is 2n. Therefore, the number of vertices in W+−+
1,n is 3n+ 1.

If we consider S = V (W1,n) ∪ EI , then S ⊂ V (W+−+
1,n ) with |S| = 2n + 1, where the set EI is

the collection of all edges on the cycle Cn of W1,n. If the members of S are removed from W+−+
1,n ,

then we get Kn. Thus, I(W+−+
1,n ) = 2(n+ 1).
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Definition 3. Lu [28] uses θ(Cm)
n to denote the book graph obtained from n-copies of Cm which

share an edge in common (an n-page book with m-polygonal pages).

In the following theorem, we give the general formula for integrity of n-page book graphs with
m-polygonal pages.

Theorem 3.49. If θ(Cm)
n is book graph with m-polygonal pages, then

I(θ(Cm)
n) = m.

Proof. If we choose S as the set of end vertices of the edge which is common to all the m-polygonal
pages. Then θ(Cm)

n − S = nPm−2. That is, the disconnected graph with n components of Pm−2.
Thus, I(θ(Cm)

n) = m.

4. Conclusion

In this article, one of the measures of graph vulnerability called integrity is studied. The values
of vulnerability helps the researchers to construct such a communication network which remains
stable after some of its nodes or communication links are get defected. The transformation graphs
considered in this paper are taken to model the network system and it reveals that, how it can be
made more stable and strong. For this purpose the new nodes are inserted in the network. This
construction of new network is done by using the definition of total transformation graphs of a
graph. The integrity of these new graphs are presented.

Integrity of total transformation graphs are equal or greater than integrity values of graphs that
have the structure. These results can help the researchers to choose a suitable topology for the net-
work. The concept of integrity is useful in the study the robustness of the complex networks. The
robustness is used to measure the ability of surviving random failures or intentional attacks. The
robustness consider all the components of the network after random failures or attacks which do
not bother about is there still communication is possible in all those components or not. Whereas
the integrity considers only the maximum component of the network in which still the communi-
cation is possible. The integrity gives the precaution to the researchers that they should design the
network in such a way that it could manage the communication in component (as large as possible)
of the network after the random failures or attacks. We have the following open problems.

Open problems:
1. General formula for integrity of arbitrary graph.

2. General formula for integrity of any transformation graph.
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