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Abstract

An important question in the study of quasi-perfect codes is whether such codes can be constructed
for all possible lengths n. In this paper, we address this question for specific values of n. First, we
investigate the existence of quasi-perfect codes in the Cartesian product of a graph G and a path
(or cycle), assuming that G admits a perfect code. Second, we explore quasi-perfect codes in the
Cartesian products of two or three cycles, Cm□Cn and Cm□Cn□Cl, as well as in the Cartesian
products of two or three paths, Pm□Pn and Pm□Pn□Pl.
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1. Introduction

A graph G is an ordered pair (V (G), E(G)), where V (G) is the set of vertices (or nodes),
and E(G) is the set of edges, each being a two-element subset of V (G). For any two vertices
x, y ∈ V (G), the distance d(x, y) denotes the length of the shortest path between them in the
graph.
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A code D ⊆ V (G) is a subset of the vertex set. The elements of D are called codewords. A
code D is said to be t-error-correcting if the distance between any two distinct codewords is at
least 2t+ 1.

The covering radius of a code D is the smallest integer r such that for every vertex w ∈ V (G),
there exists a codeword d ∈ D satisfying d(w, d) ≤ r. In this case, we say that D is r-covering.

A code D is called t-perfect if it is both t-error-correcting and has covering radius t, i.e., r = t.
If the code is perfect with respect to the Lee metric, it is referred to as a perfect Lee code. A code
is said to be t-quasi-perfect if it is t-error-correcting and has covering radius t+ 1.

Perfect codes are also known under various terminology in literature: they are referred to as
perfect t-dominating sets [24], efficient dominating sets when t = 1 [24], and as perfect distance-t
resource placements in other contexts [1], [3].

Perfect codes play a central role in the rapidly developing theory of error-correcting codes.
However, since perfect codes are relatively rare, the search for and study of quasi-perfect codes
has emerged as an important area of interest. Both perfect and quasi-perfect codes have been ex-
tensively investigated under various metrics, including the Hamming metric [14], Lee metric [23],
and ℓp-metric [33].

Quasi-perfect codes with covering radius two or three have been the focus of several stud-
ies [8, 12, 13, 14, 16, 18, 20, 21, 25, 28, 29, 30, 32]. Notably, only a few quasi-perfect codes are
known with covering radius greater than three. These include the extended Golay code, which
has minimum distance 8 and covering radius 4, and the repetition code of length 2t, which has
minimum distance 2t and covering radius t.

The Lee metric was first introduced in [23] in the context of signal transmission over noisy
channels. The study of perfect codes in the Lee metric has been significantly driven by the
Golomb–Welch (G–W) conjecture [17], which asserts that there exists no perfect Lee e-error-
correcting code of length n for n ≥ 3 and e > 1. Although the G–W conjecture remains unre-
solved, it is widely believed to be true. As a result, research has shifted from seeking perfect Lee
codes to exploring quasi-perfect Lee codes, which are codes that approximate the properties of
perfect ones [2].

Quasi-perfect Lee codes in Zn and Zqn are denoted by QPL(n, e) and QPL(n, e, q), respec-
tively. In [2], constructions of QPL(2, e, q)-codes were presented for all e > 1 and for all q
satisfying

2e2 + 2e+ 1 ≤ q < 2(e+ 1)2 + 2(e+ 1) + 1.

In [19], a fast decoding algorithm for these codes was proposed, which operates with constant
time complexity. Further, in [22], constructions of QPL(n, e)-codes for n > 2 were provided,
along with a proof that for any fixed n, there exist only finitely many values of e for which a linear
QPL(n, e)-code exists. These results suggest that the conditions for the existence of quasi-perfect
codes in the Lee metric remain quite restrictive.

In [33], a construction of QPL(n, e)-codes was presented for (possibly infinitely many) values
of n ≡ 1 (mod 6). Additionally, quasi-perfect codes were constructed under the ℓp-metric.

For further information on quasi-perfect codes, we refer the interested reader to [1, 5, 6, 7, 9,
10, 11, 15, 26, 4].

The focus of this paper is the construction of quasi-perfect codes. Given a perfect code in a
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graph G, we develop a technique to construct a quasi-perfect code in the Cartesian product of G
with certain graphs.

In Section 3, we prove that if G admits a perfect e-error-correcting code, then one can construct
a quasi-perfect e-error-correcting code in the Cartesian product G□Pn or G□Cn, where Pn and
Cn denote the path and cycle graphs, respectively. Furthermore, for m,n ≥ 3 and k ≥ 1, we
construct quasi-perfect 2-error-correcting codes in Pm□Pn□P6k−2 and Cm□Cn□C6k, using per-
fect 2-error-correcting codes in Pm□Pn and Cm□Cn, respectively. We also present a construction
of a quasi-perfect code in P4□P4□P4 based on a perfect code in P2□P2□P2. Additionally, we
construct quasi-perfect codes in the Cartesian product of two or three cycles, i.e., in Cm□Cn and
Cm□Cn□Cl.

In Section 4, we construct quasi-perfect codes in Cn□Cn□Cl for 3 ≤ n ≤ 19 and various
values of l, using quasi-perfect codes in Cn□Cn.

Finally, in Section 5, we present constructions of quasi-perfect codes in the Cartesian products
Pm□Pn and Pm□Pn□Pl, where Pm, Pn, Pl are path graphs.

Table 1. Summary of quasi-perfect code constructions
Section Base Graph(s) Target Graph (Cartesian

Product)
Code Properties / Description

3 G with a perfect
e-error-correcting
code

G□Pn, G□Cn Construction of quasi-perfect e-
error-correcting codes based on
existing perfect codes

3 Pm□Pn, Cm□Cn Pm□Pn□P6k−2,
Cm□Cn□C6k

Quasi-perfect 2-error-correcting
codes for m,n ≥ 3, k ≥ 1

3 P2□P2□P2 P4□P4□P4 Quasi-perfect code constructed us-
ing a perfect code in smaller di-
mension

3 Cm, Cn, Cl Cm□Cn, Cm□Cn□Cl Quasi-perfect codes in Cartesian
products of cycles based on perfect
codes

4 Cn□Cn Cn□Cn□Cl Construction of quasi-perfect
codes for 3 ≤ n ≤ 19, and various
values of l

5 Pm□Pn,
Pm□Pn□Pl

Same Quasi-perfect codes in Cartesian
products of two and three paths

2. Preliminaries

Throughout this paper, we assume that G is a simple and connected graph. The symbol Pn

denotes a path on n vertices. For n ≥ 3, Cn denotes a cycle on n vertices; we define C2 as a single
edge and C1 as a single vertex.
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For any vertex x ∈ V (G), the ball of radius r centered at x is defined as

Br(x) = {y ∈ V (G) : d(x, y) ≤ r},

and the sphere of radius r centered at x is

Sr(x) = {y ∈ V (G) : d(x, y) = r}.

For a vertex u ∈ V (G) and a subset D ⊆ V (G), the distance from u to the set D is given by

d(u,D) = min{d(u, v) : v ∈ D}.

If D1 and D2 are subsets of vertices from graphs G1 and G2, respectively, their direct sum is
defined as

D1 ⊕D2 = {(d1, d2) : d1 ∈ D1, d2 ∈ D2}.
The Cartesian product of two graphs G and H , denoted G□H , is the graph with vertex set

V (G□H) = {(g, h) : g ∈ V (G), h ∈ V (H)},

where two vertices (g1, h1) and (g2, h2) are adjacent in G□H if and only if either:

• h1 = h2 and (g1, g2) ∈ E(G), or

• g1 = g2 and (h1, h2) ∈ E(H).

Let Zq denote the ring of integers modulo q, and let Zn
q represent the n-fold Cartesian product

of Zq with itself. For any C ⊆ Zn
q and any u ∈ Zn

q , we define the translate of C by u as

u+ C = {u+ c : c ∈ C}.

Unless stated otherwise, we assume throughout the paper that all symbols such as k, i, j, q, t, n,m
denote non-negative integers.

For any undefined terminology or notation, we refer the reader to West [31].

3. Quasi-perfect codes from perfect codes in Cartesian Products

In this section, we construct quasi-perfect e-error-correcting codes in the Cartesian product
G□P3k and G□C3k, using a perfect e-error-correcting code in the graph G.

We then investigate the construction of quasi-perfect 2-error-correcting codes in Pm□Pn□P6k−2

and Cm□Cn□C6k, as well as a quasi-perfect 1-error-correcting code in P4□P4□P4. Following
this, we explore quasi-perfect code constructions in the Cartesian product of two and three cycles,
namely Cm□Cn and Cm□Cn□Cl.

We begin by constructing quasi-perfect e-error-correcting codes in the product graph G□P3.
Let V (G) = {v0, v1, . . . , vq−1}; then the vertex set of G□Pn can be denoted as

V (G□Pn) = V (G)⊕ {0, 1, . . . , n− 1},

where ⊕ denotes the direct (Cartesian) product of sets.
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Theorem 3.1. Let D be a perfect e-error-correcting code in a graph G. Then:

• If e = 1, there exists a quasi-perfect 1-error-correcting code in the Cartesian product G□P3k

and G□C3k for all k ≥ 1.

• If e ≥ 2, there exists a quasi-perfect e-error-correcting code in G□P3 and G□C3.

Proof. Case 1. e ≥ 1. Assume that D′ = D ⊕ {1}. Then the minimum distance between any
two distinct codewords in D′ remains 2e+ 1, since the product with a singleton set does not affect
inter-codeword distances.

Every vertex in G□P3 (or G□C3) lies within distance at most e from some codeword in D′,
except for vertices in the set Se(x) ⊕ {0, 2}, for each x ∈ D. These vertices are at distance e + 1
from D′. Indeed, for x ∈ D and u ∈ Se(x), we have

d
(
(x, 1), (u, 0)

)
= d

(
(x, 1), (u, 1)

)
+ d

(
(u, 1), (u, 0)

)
= e+ 1.

Thus, the covering radius of D′ is e + 1, while the minimum distance is 2e + 1, meaning D′ is a
quasi-perfect e-error-correcting code in G□P3 (or G□C3).

Case 2. e = 1. Define

D′ =
k−1⋃
i=0

(D ⊕ {3i+ 1}) .

From the first part of the proof, each set D⊕ {3i+ 1} is a quasi-perfect 1-error-correcting code in
the subgraph induced by V (G)⊕{3i, 3i+1, 3i+2}. These subgraphs are disjoint slices of G□P3k

(or G□C3k), and their union covers the entire graph.
Moreover, balls of radius 1 around the codewords in each slice do not overlap with those in

other slices. Therefore, D′ is a quasi-perfect 1-error-correcting code in G□P3k (or G□C3k).

Now, for m,n ≥ 3, we construct quasi-perfect 2-error-correcting codes in the Cartesian product
Pm□Pn□P6k−2 and Cm□Cn□C6k for all k ≥ 1, using perfect 2-error-correcting codes in Pm□Pn

and Cm□Cn, respectively.

Theorem 3.2. Let m,n ≥ 3. If there exists a perfect 2-error-correcting code in Pm□Pn, then
there exists a quasi-perfect 2-error-correcting code in the Cartesian product Pm□Pn□P6k−2 for
all k ≥ 1.

Proof. We begin by constructing a quasi-perfect 2-error-correcting code in Pm□Pn□P4.
Let D1 ⊂ V (Pm□Pn) be a perfect 2-error-correcting code in Pm□Pn. Define a shifted copy

D2 = (0, 3) +D1. Since D1 is perfect, D2 also has minimum distance 5, and such a copy always
exists due to the structure of the path.

Step 1. Construction in Pm□Pn□P4. Define

D = (D1 ⊕ {0}) ∪ (D2 ⊕ {3}) .

The minimum distance within each layer D1⊕{0} and D2⊕{3} is 5. Also, for any u ∈ D1⊕{0}
and v ∈ D2 ⊕ {3}, we have d(u, v) ≥ 5, because the third coordinate differs by 3, and the base
codes are at least distance 5 apart. Thus, the overall minimum distance of D is 5.

To analyze the covering radius:
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• For each w ∈ D1, the vertices in S2(w)⊕ {1} are at distance at most 3 from D.

• For each y ∈ D2, the vertices in S2(y)⊕ {2} are also at distance at most 3 from D.

• All remaining vertices in Pm□Pn□P4 are at distance at most 2 from D.

Therefore, the covering radius of D is 3, and D is a quasi-perfect 2-error-correcting code in
Pm□Pn□P4.

Step 2. Generalization to Pm□Pn□P6k−2. Define

C =
k−1⋃
i=0

(D1 ⊕ {6i} ∪D2 ⊕ {6i+ 3}) .

Each block of length 4 (i.e., from level 6i to 6i + 3) replicates the structure of the code D from
Step 1. The blocks are disjoint, and the balls of radius 2 around codewords in each block do not
intersect with other blocks. As a result, the minimum distance of C remains 5, and the covering
radius is 3.

Thus, C is a quasi-perfect 2-error-correcting code in Pm□Pn□P6k−2.

A quasi-perfect 1-error-correcting code in P4□P4□P4, constructed from a perfect 1-error-
correcting code in P2□P2□P2, is illustrated in Figure 1.

Figure 1. Quasi-perfect 1-error correcting code in P4□P4□P4
(filled circles are codewords)

Corollary 3.3. Let m,n ≥ 3. If there exists a perfect 2-error-correcting code in Cm□Cn, then for
every integer k ≥ 1, there exists a quasi-perfect 2-error-correcting code in the Cartesian product
Cm□Cn□C6k.
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Note 3.4. [24] There exists a perfect 1-error-correcting code in the Cartesian product C3□C6□C2,
given by the set

{(0, 0, 0), (1, 2, 0), (2, 4, 0), (2, 1, 1), (0, 3, 1), (1, 5, 1)}.

Using this as a tiling block, one can construct a perfect 1-error-correcting code in C3p□C6q□C2

for all positive integers p and q. This tiling approach is illustrated in Figure 3.

Remark 3.5. In this paper, we present the graphs of the form Cn□Cm□Cl (i.e., Cartesian products
of cycles) using a series of two-dimensional layers for clarity and ease of understanding. Specifi-
cally, we represent the structure as l layers of Cn□Cm, corresponding to the 0-th through (l−1)-th
layers along the first coordinate.

To enhance visual clarity and reduce diagrammatic complexity, we intentionally omit the edges
that connect the first and last vertices in the Cn and Cm factors. As a result, each layer visually
resembles a grid graph Pn□Pm, even though the underlying graph structure remains toroidal
(i.e., based on cycles). This omission is purely for illustration purposes and does not affect the
correctness or toroidal nature of the graph being represented.

For instance, in Figure 1, we have depicted the graph P4□P4□P4 as a three-dimensional grid
structure. The corresponding toroidal graph C4□C4□C4 would appear similar but with additional
edges that connect the first and last vertices along each of the three coordinate directions. How-
ever, including all such wrap-around edges in the diagram would lead to visual clutter, making it
difficult to interpret. Therefore, to maintain readability, we choose to represent the graph using the
P4□P4□P4 layout while conceptually referring to the underlying structure as C4□C4□C4 when
needed.
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Figure 2. Perfect 1-error correcting
code in C3□C6□C2

(filled circles are codewords)

Figure 3. Quasi-perfect 2-error correcting
code in C6□C12□C2

by using tiling block scheme
(filled circles are codewords)

Figure 4. Perfect 2-error correcting
code in C4□C6

(filled circles are codewords)

Figure 5. Quasi-perfect 2-error correcting
code in C5□C7 by using 2-perfect code in C4□C6

(filled circles are codewords)

Theorem 3.6. A quasi-perfect 1-error-correcting code exists in the Cartesian product C3□C6□C4k,
and hence in C3p□C6q□C4k for all positive integers p, q, k.

Proof. Let
D0 = {(0, 0), (1, 2), (2, 4)}, D1 = {(2, 1), (0, 3), (1, 5)}.

Then the set
D = (D0 ⊕ {0}) ∪ (D1 ⊕ {2})
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forms a quasi-perfect 1-error-correcting code in C3□C6□C3 and C3□C6□C4, since all vertices are
within distance 2 from D, and the minimum distance between any two codewords is at least 3.

Now, define

C =
k−1⋃
i=0

(D0 ⊕ {4i} ∪D1 ⊕ {4i+ 2}) .

This union covers C3□C6□C4k such that each 4-layer segment behaves like the base case above.
The codewords remain at minimum pairwise distance 3, and every vertex in the product graph
is within distance 2 of some codeword. Hence, C is a quasi-perfect 1-error-correcting code in
C3□C6□C4k.

Finally, since C3□C6□C4k tiles C3p□C6q□C4k for all positive integers p, q, we can extend the
code to the larger product by periodic repetition, preserving both minimum distance and covering
radius. Thus, a quasi-perfect 1-error-correcting code also exists in C3p□C6q□C4k.

Using the technique from Theorem 3.6, we obtain the following generalization.

Theorem 3.7. Let m,n ≥ 2. If there exists a perfect 1-error-correcting code in the Cartesian
product Cm□Cn□C2, then a quasi-perfect 1-error-correcting code exists in Cm□Cn□C4, and
hence in Cm□Cn□C4k for all positive integers k.

0th layer

1st layer

3rd layer

2nd layer

Figure 6. Quasi-perfect 3-error correcting code in C4□C16□C4
using 3-perfect code in C4□C16□C2

(filled circles are codewords)
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Theorem 3.8. Let m,n ≥ 2, and let e ≥ 1. If there exists a perfect e-error-correcting code
in Cm□Cn□Ck for k = 1, 2, then a quasi-perfect e-error-correcting code exists in each of the
following Cartesian products.

Cm□Cn□Ci, Cm+1□Cn□Ci, Cm□Cn+1□Ci, Cm+1□Cn+1□Ci

for i = 1, 2, 3, 4.

Proof. We present the proof for the case k = 2; the case k = 1 follows analogously (see Figures 4
and 5).

Assume that D = D1 ∪ D2 is a perfect e-error-correcting code in Cm□Cn□C2. Then In
Cm□Cn□C2, there are two layers of Cm□Cn, denoted by (Cm□Cn)0 and (Cm□Cn)1. The sets
D1 ⊂ (Cm□Cn)0 and D2 ⊂ (Cm□Cn)1 form the codewords of D, and the entire graph is covered
by disjoint balls B1, . . . , Bℓ of radius e centered at the codewords.

In the extended graphs Cm+1□Cn□C2, Cm□Cn+1□C2, and Cm+1□Cn+1□C2, we are effec-
tively adding either one row, one column, or both to each layer. The newly added vertices are all
at most distance 1 from some vertex in the original graph Cm□Cn□C2. Hence, by extending each
ball Bi to radius e + 1, we obtain a covering of the extended graphs. Therefore, D becomes a
quasi-perfect e-error-correcting code in each of these graphs.

Now, consider the graph Cm□Cn□C3, which has three layers (Cm□Cn)0, (Cm□Cn)1, and
(Cm□Cn)2. Assume D1 ⊂ (Cm□Cn)0, D2 ⊂ (Cm□Cn)1. The code D = D1 ∪D2 has minimum
distance 2e+1. All vertices in layers 0 and 1 are covered within radius e, as D is a perfect code in
Cm□Cn□C2.

Vertices in layer 2 of the form (x, y, 2), where (x, y, 0) ∈ Se(z) for some z ∈ D1, or (x, y, 1) ∈
Se(w) for some w ∈ D2, are at distance e+ 1 from D. All remaining vertices in layer 2 are within
distance e from some codeword. Thus, the covering radius is e + 1, and D is quasi-perfect in
Cm□Cn□C3, and similarly in the extended graphs with one additional row and/or column.

Next, consider Cm□Cn□C4, which has four layers (Cm□Cn)i for i = 0, 1, 2, 3. Let D1 ⊂
(Cm□Cn)0 and D2 ⊂ (Cm□Cn)2, and define D = D1 ∪D2. Then

• The minimum distance between any two codewords is 2e+ 1.

• Vertices (x, y, 0), where (x, y, 2) ∈ Se(z) for some z ∈ D2, and vice versa, are at distance
e+ 1 from D.

• Vertices in layers 1 and 3 that lie within a radius e neighborhood of any (x, y, 0) ∈ D1 or
(x, y, 2) ∈ D2 are at distance at most e+ 1 from D.

• All other vertices are within distance e of some codeword.

Hence, the covering radius is e + 1, and D is quasi-perfect in Cm□Cn□C4, and by extension, in
Cm+1□Cn□C4, Cm□Cn+1□C4, and Cm+1□Cn+1□C4. This completes the proof.
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4. Quasi-Perfect Codes in Cn□Cn□Cl from Quasi-Perfect Codes in Cn□Cn

In this section, we construct quasi-perfect e-error-correcting codes in the Cartesian product
Cn□Cn□Cl for e ≤ 2, by leveraging quasi-perfect e-error-correcting codes in Cn□Cn.

Explicit constructions for quasi-perfect 1-error-correcting codes in Cn□Cn□Cn for n = 3, 4
are illustrated in Figures 7 and 8, respectively.

Note 4.1. [5] The following results were proved.

• Quasi-perfect 1-error correcting codes exist in Cn□Cn□Cn for 8 ≤ n ≤ 12. For n = 8, 9,
the code is {(i, 2i) : 0 ≤ i < n}; and for 10 ≤ n ≤ 12, the code is {(2i, 3i) : 0 ≤ i < n}.

• Quasi-perfect 2-error correcting codes exist in Cn□Cn□Cn for 14 ≤ n ≤ 24. For 14 ≤
n ≤ 19, the code is {(2i, 3i) : 0 ≤ i < n}; and for 20 ≤ n ≤ 24, the code is {(3i, 4i) : 0 ≤
i < n}.

Using these constructions, we now build quasi-perfect codes in Cn□Cn□Cl. Let D0 denote a
quasi-perfect code in Cn□Cn, as given in Note 4.1.

Figure 7. Quasi-perfect 1-error correcting
code in C3□C3□C3

(filled circles are codewords)

Figure 8. Quasi-perfect 1-error correcting
code in C4□C4□C4

(filled circles are codewords)

Theorem 4.2. There exists a perfect 1-error correcting code in the Cartesian product C6□C6□C2.

Proof. Let D0 be a quasi-perfect 1-error correcting code in C6□C6, and define D1 = (0, 3) +D0.
Then

D =
1⋃

i=0

Di ⊕ {i}

is a perfect 1-error correcting code in C6□C6□C2. The minimum distance of D is 3, and the
covering radius is 1.
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Golomb and Welch [17] proved the existence of a perfect 2-error correcting code in C7□C7□C7.

Theorem 4.3. For any integer k ≥ 1, there exists a quasi-perfect 1-error correcting code in the
Cartesian product of

1. C6□C6□C3k,
2. Cn□Cn□C3k for 8 ≤ n ≤ 12,
3. Cn□Cn□Cn for 8 ≤ n ≤ 12.

Proof. 1. For C6□C6□C3k. Define

D0 = a quasi-perfect 1-error correcting code in C6□C6,

D1 = {(0, 3), (2, 1), (4, 5)}, D2 = {(1, 5), (3, 3), (5, 1)}.

Then the code

D =
2⋃

i=0

Di ⊕ {i}

is a quasi-perfect 1-error correcting code in C6□C6□C3. The vertices of D1 ⊕ {1} and
D2⊕{2} are at distance 3 from D0⊕{0}, ensuring the minimum distance is 3 and covering
radius is 2.
Extending this to C6□C6□C3k, define

D =
k−1⋃
i=0

(D0 ⊕ {3i} ∪D1 ⊕ {3i+ 1} ∪D2 ⊕ {3i+ 2}) .

This forms a quasi-perfect 1-error correcting code as above.
2. For Cn□Cn□C3k. Let D0 be a quasi-perfect 1-error correcting code in Cn□Cn. Define

D1 = (0, 3) +D0, D2 = (0, n− 3) +D0.

Then

D =
2⋃

i=0

Di ⊕ {i}

is a quasi-perfect 1-error correcting code in Cn□Cn□C3, with minimum distance 3 and
covering radius 2.
Generalizing to Cn□Cn□C3k, define

D =
k−1⋃
i=0

(D0 ⊕ {3i} ∪D1 ⊕ {3i+ 1} ∪D2 ⊕ {3i+ 2}) .

3. For Cn□Cn□Cn. Define

Di = (0, 3i) +D0, for 1 ≤ i ≤ n− 1.
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Then the code

D =
n−1⋃
i=0

Di

is a quasi-perfect 1-error correcting code in Cn□Cn□Cn, with the same properties.

Theorem 4.4. For any integer k ≥ 1, there exists a quasi-perfect 2-error correcting code in the
Cartesian product

1. C14□C14□C4k,
2. Cn□Cn□C6k for 14 ≤ n ≤ 19.

Proof. 1. For C14□C14□C4k.
We first construct a quasi-perfect 2-error correcting code in C14□C14□C4.

• Let D0 be a quasi-perfect 2-error correcting code in C14□C14. By direct computation,
we observe that there are exactly 14 vertices in C14□C14 that lie at distance 3 from D0.
Define D1 = (1, n−2)+D0; this shifts the original code D0 such that these previously
uncovered vertices are now covered.

• Define
D = (D0 ⊕ {0}) ∪ (D1 ⊕ {2}).

Then D is a quasi-perfect 2-error correcting code in C14□C14□C4. Since the vertices
in D1 ⊕{2} are at distance 5 from those in D0 ⊕{0}, the minimum distance of D is 5.

• All vertices in layers C14□C14 ×{0, 2} are covered by radius-2 balls centered at code-
words in D. The remaining layers C14□C14 × {1, 3} are at distance 3 from the code,
so the covering radius is 3.

• To extend this to C14□C14□C4k, define

D =
k−1⋃
i=0

(D0 ⊕ {4i} ∪D1 ⊕ {4i+ 2}) .

By periodic repetition of the code blocks, this gives a quasi-perfect 2-error correcting
code in C14□C14□C4k.

2. For Cn□Cn□C6k, where 14 ≤ n ≤ 19.

• Let D0 be a quasi-perfect 2-error correcting code in Cn□Cn, as given in Note 4.1.
Define two additional code sets

D1 = (1, 5) +D0, D2 = (3, 1) +D0.
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• Define

D =
2⋃

i=0

(Di ⊕ {2i}) .

Using a computer search, it was verified that this forms a quasi-perfect 2-error cor-
recting code in Cn□Cn□C6. The minimum distance is 5, and the covering radius is
3.

• To generalize to Cn□Cn□C6k, define

D =
k−1⋃
i=0

(D0 ⊕ {6i} ∪D1 ⊕ {6i+ 2} ∪D2 ⊕ {6i+ 4}) .

By construction, this yields a quasi-perfect 2-error correcting code in Cn□Cn□C6k.

5. Quasi-perfect Codes in Pm□Pn and Pm□Pn□Pl

In this section, we study quasi-perfect codes in the Cartesian product of two and three paths,
namely Pm□Pn and Pm□Pn□Pl.

It is easy to observe that for every n ≥ 2, the set

D = {(0, 0), (n− 1, n− 1)}

forms an (n− 2)-quasi-perfect code in Pn□Pn.

Theorem 5.1. The Cartesian product Pm□Pn, where 2 ≤ m ≤ n, admits an e-quasi-perfect code
for e ≥ 1 if one of the following holds

• m = n = 2e+ 3,

• m = e+ 1 and n = e+ 3.

Proof. We consider each case separately.
Case 1. m = n = 2e+ 3.

Define the code
D = {(1, 1), (e+ 2, e+ 2), (n, n), (1, n), (n, 1)}.

The minimum pairwise distance among the codewords is 2e + 2 = n− 1. All vertices in Pn□Pn,
except those in the sphere Se+1((e+2, e+2)), are covered by balls of radius e centered at codewords
in D. The uncovered vertices in Se+1((e+2, e+2)) are at distance e+1 from the nearest codeword.
Thus, the covering radius is e+ 1, and D is an e-quasi-perfect code.

Case 2. m = e+ 1, n = e+ 3.
Define the code

D = {(1, 1), (m,n− 1)}.
The minimum distance between the two codewords is 2e + 1. Every vertex in Pm□Pn, except
(1, n), lies within distance e of some codeword. The vertex (1, n) is at distance e + 1 from both
codewords. Therefore, the covering radius is e+ 1, and D is an e-quasi-perfect code.
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Observation 5.2. For all n ≥ 2, the Cartesian product Pn□Pn□P2 admits a perfect (n− 1)-error
correcting code. One such code is

D = {(0, 0, 0), (n− 1, n− 1, 1)}.

Figure 9. Quasi perfect 3-error correcting code in P4□P4□P4
(filled circles are codewords)

(filled squares are vertices at a distance 3 from at least one codeword)

Figure 10. Quasi perfect 3-error correcting code in P4□P4□P3
(filled circles are codewords)

(filled squares are vertices at a distance 3 from at least one codeword)

Theorem 5.3. For all n ≥ 2, there exists an (n− 1)-quasi-perfect code in the Cartesian products
Pn□Pn□P3 and Pn□Pn□P4.

435



www.ejgta.org

Quasi perfect codes in the cartesian product of some graphs | S. A. Mane and N. V. Shinde

Proof. Define D = {(0, 0, 1), (n − 1, n − 1, 2)}. Then for all n ≥ 2, D is an (n − 1)-quasi-
perfect code in Pn□Pn□P4 (see Fig. 9). Similarly, define D = {(0, 0, 0), (n − 1, n − 1, 2)}; this
forms an (n − 1)-quasi-perfect code in Pn□Pn□P3 (see Fig. 10). In both cases, the minimum
distance between codewords is 2(n−1)+1, and all vertices are within distance n from the nearest
codeword. The covering radius is therefore n, and every vertex lies within distance n or less from
some codeword. Thus, D is an (n−1)-quasi-perfect code in the respective Cartesian products.

6. Concluding Remarks

We have shown that quasi-perfect e-error correcting codes can be constructed in the Cartesian
product of a graph G with a path or cycle, provided that a perfect e-error correcting code exists in G.
For m,n ≥ 3, we explicitly constructed quasi-perfect 2-error correcting codes in Pm□Pn□P6k−2

and Cm□Cn□C6k for all integers k ≥ 1, based on perfect 2-error correcting codes in Pm□Pn and
Cm□Cn, respectively.

Additionally, we constructed quasi-perfect codes in P4□P4□P4 by using a perfect code in
P2□P2□P2. Quasi-perfect codes were also developed in Cn□Cn□Cl for 3 ≤ n ≤ 19 and suitable
values of l, utilizing known quasi-perfect codes in Cn□Cn.

A natural direction for further research is to determine, for which integers n and for which
graphs G2, one can construct quasi-perfect codes in the Cartesian product of G1 with n copies of
G2, i.e., in G1□G2□ · · ·□G2. Additionally, it would be of interest to identify all values of m,n, l
for which Cm□Cn□Cl admits a quasi-perfect code.
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