Electronic Journal of Graph Theory and Applications

Total vertex irregularity strength of trees with maximum degree five

Susilawati, Edy Tri Baskoro*, Rinovia Simanjuntak
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung, Jalan Ganesa 10 Bandung, Indonesia

susilawati_nurdin@students.itb.ac.id, ebaskoro@math.itb.ac.id, rino@math.itb.ac.id

Abstract

In 2010, Nurdin, Baskoro, Salman and Gaos conjectured that the total vertex irregularity strength of any tree T is determined only by the number of vertices of degrees 1,2 and 3 in T. This paper will confirm this conjecture by considering all trees with maximum degree five. Furthermore, we also characterize all such trees having the total vertex irregularity strength either t_{1}, t_{2} or t_{3}, where $t_{i}=\left\lceil\left(1+\sum_{j=1}^{i} n_{j}\right) /(i+1)\right\rceil$ and n_{i} is the number of vertices of degree i.

Keywords: irregularity strength, total vertex irregularity strength, tree

Mathematics Subject Classification: 05C78, 05C05
DOI: 10.5614/ejgta.2018.6.2.5

1. Introduction

In [7], Chartrand et al. proposed the following problem: assign positive integer labels to all the edges of a connected graph of order greater than 2 in such a way that the graph becomes irregular, i.e., the weights (label sums) at all vertices are different. Find the minimum value of the largest label over all such irregular assignments. This value is well known as the irregularity strength of the graph.

Motivated by this problem, a survey paper of Gallian [8] and a book of Wallis [16], Baca et al. [5] introduced the total vertex irregularity strength of a graph as follows. Let $G(V, E)$ be a simple graph. For a labeling $\phi: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, k\}$, the weight of a vertex x is defined as $w t(x)=\phi(x)+\sum_{x y \in E} \phi(x y)$. A labeling ϕ is called a vertex irregular total k-labeling if the

[^0]weights of all vertices are distinct. The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G and it is denoted by $\operatorname{tvs}(G)$. In [5], Baca et al. proved that $\operatorname{tvs}\left(C_{n}\right)=\left\lceil\frac{n+2}{3}\right\rceil, n \geq 3 ; \operatorname{tvs}\left(K_{n}\right)=2 ; \operatorname{tvs}\left(K_{1, n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$; and $\operatorname{tvs}\left(C_{n} \times P_{2}\right)=\left\lceil\frac{2 n+3}{4}\right\rceil$. For a tree T with m pendant vertices and no vertices of degree 2 , they proved that $\left\lceil\frac{m+1}{2}\right\rceil \leq \operatorname{tvs}(T) \leq m$. They also proved that if G is a (p, q)-graph with minimum degree δ and maximum degree Δ, then $\left\lceil\frac{p+\delta}{\Delta+1}\right\rceil \leq t v s(G) \leq p+\Delta-2 \delta+1$.

In 2010, Nurdin, Baskoro, Salman and Gaos [11] determined the total vertex irregularity strength of trees containing vertices of degree 2 , namely a subdivision of a star and a subdivision of a particular caterpillar. They also improved some of the bounds given in [5] and showed that $t v s$ of any tree with n_{1} pendant vertices and containing no vertices of degree 2 is $\left\lceil\frac{n_{1}+1}{2}\right\rceil$.

In the same paper, Nurdin et al. also determined the total vertex irregularity strength of trees without vertices of degrees two and three. They also conjectured that the total vertex irregularity strength of any tree is determined by the number of its vertices of degrees 1,2 , and 3 only. Precisely, they conjectured that $\operatorname{tvs}(T)=\max \left\{t_{1}, t_{2}, t_{3}\right\}$, where $t_{i}=\left\lceil\left(1+\sum_{j=1}^{i} n_{j}\right) /(i+1)\right\rceil$ and n_{i} is the number of vertices of degree $i \in[1,3]$.

Many paper studied about the total vertex irregularity strengths of graphs, see $[1,2,3,4,6,10$, 12]. Susilawati, Baskoro and Simanjuntak [13] determined the total vertex irregularity strength for the subdivision of several classes of trees, including the subdivision of a caterpillar, the subdivision of a fire cracker, and the subdivision of an amalgamation of stars. In other paper [14], they also gave the total vertex irregularity strength of any tree with maximum degree four. Recently, they studied about total vertex irregularity strength for subdivision of trees [15]

In this paper, we show that the total vertex irregularity strength of any tree T with maximum degree five is either t_{1}, t_{2} or t_{3}. This fact strengthens the conjecture of Nurdin et al. [11]. Furthermore, we also characterize all such trees T with the total vertex irregularity strength t_{1}, t_{2} or t_{3}.

2. Main Results

In this section, we show that the total vertex irregularity strength of any tree with maximum degree five is $\max \left\{t_{1}, t_{2}, t_{3}\right\}$. This result enhances the conjecture of Nurdin et al. (2010). We also characterize all trees with maximum degree five having the total vertex irregularity strength t_{1}, t_{2} or t_{3}.

To start with, we present the well-known fact regarding the relationship between the number n_{i} of vertices degree i in any tree T, namely $n_{1}=2+\sum_{i \geq 3}(i-2) n_{i}$ [9].

Theorem 2.1. [11] Let T be a tree with maximum degree Δ. Let n_{i} be the number of vertices of degree i. Then, $\operatorname{tvs}(T) \geq \max \left\{\left\lceil\frac{1+n_{1}}{2}\right\rceil,\left\lceil\frac{1+n_{1}+n_{2}}{3}\right\rceil, \ldots,\left\lceil\frac{1+n_{1}+n_{2}+\cdots+n_{\Delta}}{\Delta+1}\right\rceil\right\}$.

From now on, we will only consider trees with maximum degree five. For $1 \leq i \leq 5$, let n_{i} be the number of vertices of degree i and define $t_{i}=\left\lceil\left(1+\sum_{j=1}^{i} n_{j}\right) /(i+1)\right\rceil$. By substituting $n_{1}=2+$ $\sum_{i \geq 3}(i-2) n_{i}$ into t_{i}, we obtain that $t_{1}=\left\lceil\frac{90+30 n_{3}+60 n_{4}+90 n_{5}}{60}\right\rceil, t_{2}=\left\lceil\frac{60+20 n_{2}+20 n_{3}+40 n_{4}+60 n_{5}}{60}\right\rceil, t_{3}=$ $\left\lceil\frac{45+15 n_{2}+30 n_{3}+30 n_{4}+45 n_{5}}{60}\right\rceil, t_{4}=\left\lceil\frac{36+12 n_{2}+24 n_{3}+36 n_{4}+36 n_{5}}{60}\right\rceil$, and $t_{5}=\left\lceil\frac{30+10 n_{2}+20 n_{3}+30 n_{4}+40 n_{5}}{60}\right\rceil$. Let
$t_{i}=\left\lceil\frac{q_{i}}{60}\right\rceil$ for $i=1,2,3,4,5$. Thus, $q_{1}=90+30 n_{3}+60 n_{4}+90 n_{5}, q_{2}=60+20 n_{2}+20 n_{3}+$ $40 n_{4}+60 n_{5}, q_{3}=45+15 n_{2}+30 n_{3}+30 n_{4}+45 n_{5}, q_{4}=36+12 n_{2}+24 n_{3}+36 n_{4}+36 n_{5}$, and $q_{5}=30+10 n_{2}+20 n_{3}+30 n_{4}+40 n_{5}$.

Now, we start with proving that t_{4} or t_{5} cannot be the maximum value of all the values $t_{i} \mathrm{~s}$.
Lemma 2.1. Let T be a tree with maximum degree five. Then, $t_{5} \leq t_{2}, t_{5} \leq t_{3}$ and there exists some $i \in\{1,4\}$ such that $t_{5} \leq t_{i}$.

Proof. Consider $t_{i}=\left\lceil\frac{q_{i}}{60}\right\rceil$ for $i=1,2,3,4,5$. Then, we have $q_{1}-q_{5}=60-10 n_{2}+10 n_{3}+$ $30 n_{4}+50 n_{5}, q_{2}-q_{5}=30+10 n_{2}+10 n_{4}+20 n_{5}, q_{3}-q_{5}=15+5 n_{2}+10 n_{3}+5 n_{5}$, and $q_{4}-q_{5}=6+2 n_{2}+4 n_{3}+6 n_{4}-4 n_{5}$. Since $q_{2}-q_{5}$ and $q_{3}-q_{5}$ are positive, then $t_{5} \leq t_{2}$ and $t_{5} \leq t_{3}$. Now, we need only to show that either $q_{1}-q_{5}$ or $q_{4}-q_{5}$ is non negative. If $q_{1}-q_{5} \geq 0$ then the proof concludes, otherwise $60-10 n_{2}+10 n_{3}+30 n_{4}+50 n_{5}<0$. This implies that $n_{2}>6+n_{3}+3 n_{4}+5 n_{5}$. Thus, $q_{4}-q_{5}=6+2 n_{2}+4 n_{3}+6 n_{4}-4 n_{5}>6+2\left(6+n_{3}+3 n_{4}+5 n_{5}\right)+4 n_{3}+6 n_{4}-4 n_{5}=$ $18+6 n_{3}+12 n_{4}+6 n_{5}>0$.

Lemma 2.2. Let T be a tree with maximum degree five. Then, there exists some $i \in\{1,2\}$ such that $t_{4} \leq t_{i}$.

Proof. Consider $t_{i}=\left\lceil\frac{q_{i}}{60}\right\rceil$ for $i=1,2,3,4$. Then, we have $q_{1}-q_{4}=54-12 n_{2}+6 n_{3}+24 n_{4}+54 n_{5}$ and $q_{2}-q_{4}=24+8 n_{2}-4 n_{3}+4 n_{4}+24 n_{5}$. Thus, we need only to show that either $q_{1}-q_{4}$ or $q_{2}-q_{4}$ is non negative. If $q_{1}-q_{4} \geq 0$ then the proof concludes. Otherwise, $54-12 n_{2}+6 n_{3}+24 n_{4}+54 n_{5}<0$, and so $n_{2}>\frac{9}{2}+\frac{n_{3}}{2}+2 n_{4}+\frac{9 n_{5}}{2}$. Furthermore, $q_{2}-q_{4}=24+8 n_{2}-4 n_{3}+4 n_{4}+24 n_{5}>$ $24+8\left(\frac{9}{2}+\frac{n_{3}}{2}+2 n_{4}+\frac{9 n_{5}}{2}\right)-4 n_{3}+4 n_{4}+24 n_{5}=60+20 n_{4}+60 n_{5}>0$.

From two above lemmas, we can conclude that $\max \left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\}=\max \left\{t_{1}, t_{2}, t_{3}\right\}$. The following three lemmas will give the necessary and sufficient conditions for t_{1}, t_{2} or t_{3} to be the maximum value.

Lemma 2.3. Let T be a tree with maximum degree five. $\max \left\{t_{1}, t_{2}, t_{3}\right\}=t_{1}$ if and only if $\left(2 n_{3}-\right.$ $\left.2 n_{4}-3 n_{5}-3 \leq n_{2} \leq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}\right)$ or $\left(\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2} \leq n_{4}<n_{3}-\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2}\right)$.

Proof. Consider the following two cases.
Case 1. $t_{2} \geq t_{3}$.
Consider $t_{i}=\left\lceil\frac{q_{i}}{60}\right\rceil$ for $i=1,2,3$. Since $q_{1}=90+30 n_{3}+60 n_{4}+90 n_{5}, q_{2}=60+$ $20 n_{2}+20 n_{3}+40 n_{4}+60 n_{5}, q_{3}=45+15 n_{2}+30 n_{3}+30 n_{4}+45 n_{5}$ and $t_{2}-t_{3} \geq 0$, then $n_{2} \geq 2 n_{3}-2 n_{4}-3 n_{5}-3$. The fact of $\max \left\{t_{1}, t_{2}, t_{3}\right\}=t_{1}$ implies that $t_{1} \geq t_{2}$, that is $90+30 n_{3}+60 n_{4}+90 n_{5} \geq 60+20 n_{2}+20 n_{3}+40 n_{4}+60 n_{5}$. This yields that $n_{2} \leq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}$. Then, we have $2 n_{3}-2 n_{4}-3 n_{5}-3 \leq n_{2} \leq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}$.

Case 2. $t_{2}<t_{3}$.
Consider $t_{i}=\left\lceil\frac{q_{i}}{60}\right\rceil$ for $i=1,2,3$. Since $q_{1}=90+30 n_{3}+60 n_{4}+90 n_{5}, q_{2}=60+20 n_{2}+20 n_{3}+$ $40 n_{4}+60 n_{5}, q_{3}=45+15 n_{2}+30 n_{3}+30 n_{4}+45 n_{5}$ and $t_{3}-t_{2}>0$, then $n_{3}>\frac{3}{2}+\frac{n_{2}}{2}+n_{4}+\frac{3 n_{5}}{2}$. The fact of $\max \left\{t_{1}, t_{2}, t_{3}\right\}=t_{1}$ implies that $t_{1} \geq t_{3}$, that is $90+30 n_{3}+60 n_{4}+90 n_{5} \geq$ $45+15 n_{2}+30 n_{3}+30 n_{4}+45 n_{5}$. This yields that $n_{2} \leq 3+2 n_{4}+3 n_{5}$. Then, we have $\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-3 \leq n_{4}<n_{3}-\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2}$.

Then, if $\max \left\{t_{1}, t_{2}, t_{3}\right\}=t_{1}$ we have $\left(2 n_{3}-2 n_{4}-3 n_{5}-3 \leq n_{2} \leq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}\right)$ or $\left(\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2} \leq n_{4}<n_{3}-\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2}\right)$.

Conversely, by substituting the conditions ($2 n_{3}-2 n_{4}-3 n_{5}-3 \leq n_{2} \leq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}$) or $\left(\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2} \leq n_{4}<n_{3}-\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2}\right)$ into $t_{i}=\left\lceil\left(1+\sum_{j=1}^{i} n_{j}\right) /(i+1)\right\rceil$ where $i \in\{1,2,3\}$ we could obtain $\max \left\{t_{1}, t_{2}, t_{3}\right\}=t_{1}$.

Lemma 2.4. Let T be a tree with maximum degree five. $\max \left\{t_{1}, t_{2}, t_{3}\right\}=t_{2}$ if and only if $\left(\frac{3}{2}+\right.$ $\left.\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2} \leq n_{2} \leq 3+2 n_{4}+3 n_{5}\right)$ or $\left(n_{3}-\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2} \leq n_{4}<\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2}\right)$.

Proof. Consider the following two cases.
Case 1. $t_{1} \geq t_{3}$
Consider $t_{i}=\left\lceil\frac{q_{i}}{60}\right\rceil$ for $i=1,2,3$. Since $q_{1}=90+30 n_{3}+60 n_{4}+90 n_{5}, q_{2}=60+20 n_{2}+20 n_{3}+$ $40 n_{4}+60 n_{5}, q_{3}=45+15 n_{2}+30 n_{3}+30 n_{4}+45 n_{5}$, and $t_{1}-t_{3} \geq 0$ then $n_{2} \leq 3+2 n_{4}+3 n_{5}$. Since $\max \left\{t_{1}, t_{2}, t_{3}\right\}=t_{2}$, then $t_{2} \geq t_{1}$, that is $60+20 n_{2}+20 n_{3}+40 n_{4}+60 n_{5} \geq 90+30 n_{3}+60 n_{4}+90 n_{5}$. This yields that $n_{2} \geq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}$. Then, we have $\frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2} \leq n_{2} \leq 3+2 n_{4}+3 n_{5}$.

Case 2. $t_{1}<t_{3}$
Consider $t_{i}=\left\lceil\frac{q_{i}}{60}\right\rceil$ for $i=1,2,3$. Since $q_{1}=90+30 n_{3}+60 n_{4}+90 n_{5}, q_{2}=60+$ $20 n_{2}+20 n_{3}+40 n_{4}+60 n_{5}, q_{3}=45+15 n_{2}+30 n_{3}+30 n_{4}+45 n_{5}$, and $t_{3}-t_{1}>0$ then $n_{2}>3+2 n_{4}+3 n_{5}$. Since $\max \left\{t_{1}, t_{2}, t_{3}\right\}=t_{2}$, then $t_{2} \geq t_{3}$, that is $60+20 n_{2}+20 n_{3}+40 n_{4}+$ $60 n_{5} \geq 45+15 n_{2}+30 n_{3}+30 n_{4}+45 n_{5}$. This yields that $n_{3} \leq \frac{3}{2}+\frac{n_{2}}{2}+n_{4}+\frac{3 n_{5}}{2}$. Then, we have $n_{3}-\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2} \leq n_{4}<\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2}$.

Conversely, by substituting the conditions $\frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2} \leq n_{2} \leq 3+2 n_{4}+3 n_{5}$ or $n_{3}-\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2} \leq n_{4}<\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2}$ into $t_{i}=\left\lceil\left(1+\sum_{j=1}^{i} n_{j}\right) /(i+1)\right\rceil$ where $i \in\{1,2,3\}$ we could obtain $\max \left\{t_{1}, t_{2}, t_{3}\right\}=t_{2}$.

Lemma 2.5. Let T be a tree with maximum degree five. $\max \left\{t_{1}, t_{2}, t_{3}\right\}=t_{3}$ if and only if $(3+$ $\left.2 n_{4}+3 n_{5} \leq n_{2} \leq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}\right)$ or $\left(\frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}<n_{2} \leq 2 n_{3}-2 n_{4}-3 n_{5}-3\right)$.

Proof. Consider the following two cases.

Case 1. $t_{1} \geq t_{2}$.
Consider $t_{i}=\left\lceil\frac{q_{i}}{60}\right\rceil$ for $i=1,2,3$. Since $q_{1}=90+30 n_{3}+60 n_{4}+90 n_{5}, q_{2}=60+20 n_{2}+20 n_{3}+$ $40 n_{4}+60 n_{5}, q_{3}=45+15 n_{2}+30 n_{3}+30 n_{4}+45 n_{5}$, and $t_{1}-t_{2} \geq 0$ then $n_{2} \leq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}$. Since
$\max \left\{t_{1}, t_{2}, t_{3}\right\}=t_{3}$, then $t_{3} \geq t_{1}$, that is $45+15 n_{2}+30 n_{3}+30 n_{4}+45 n_{5} \geq 90+30 n_{3}+60 n_{4}+90 n_{5}$. This yields that $n_{2} \geq 3+2 n_{4}+3 n_{5}$. Then, we have $3+2 n_{4}+3 n_{5} \leq n_{2} \leq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}$.

Case 2. $t_{1}<t_{2}$.
Consider $t_{i}=\left\lceil\frac{q_{i}}{60}\right\rceil$ for $i=1,2,3$. Since $q_{1}=90+30 n_{3}+60 n_{4}+90 n_{5}, q_{2}=60+$ $20 n_{2}+20 n_{3}+40 n_{4}+60 n_{5}, q_{3}=45+15 n_{2}+30 n_{3}+30 n_{4}+45 n_{5}$, and $t_{2}-t_{1}>0$ then $n_{2}>\frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}$. Since $\max \left\{t_{1}, t_{2}, t_{3}\right\}=t_{3}$, then $t_{3} \geq t_{2}$, that is $45+15 n_{2}+30 n_{3}+$ $30 n_{4}+45 n_{5} \geq 60+20 n_{2}+20 n_{3}+40 n_{4}+60 n_{5}$. This yields that $n_{2} \leq 2 n_{3}-2 n_{4}-3 n_{5}-3$. Then, we have $\frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}<n_{2} \leq 2 n_{3}-2 n_{4}-3 n_{5}-3$.

Conversely, by substituting $3+2 n_{4}+3 n_{5} \leq n_{2} \leq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}$ or $\frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}<$ $n_{2} \leq 2 n_{3}-2 n_{4}-3 n_{5}-3$ into $t_{i}=\left\lceil\left(1+\sum_{j=1}^{i} n_{j}\right) /(i+1)\right\rceil$ where $i \in\{1,2,3\}$. Then, we could obtain $\max \left\{t_{1}, t_{2}, t_{3}\right\}=t_{3}$.

Next, in Theorem 2.2, we characterize all trees with maximum degree five such that $\operatorname{tvs}(T)=$ t_{1}. In Theorems 2.3 and 2.4, we show a similar characterization for all trees T with $\operatorname{tvs}(T)=t_{2}$ and $\operatorname{tvs}(T)=t_{3}$, respectively. We call a vertex $v \in T$ an exterior vertex if there exists a pendant vertex in T which is adjacent to v. The vertices other than exterior and pendant vertices are called interior vertices.

Theorem 2.2. Let T be a tree with maximum degree five. $\operatorname{tvs}(T)=t_{1}$ if and only if $\left(2 n_{3}-2 n_{4}-\right.$ $\left.3 n_{5}-3 \leq n_{2} \leq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}\right)$ or $\left(\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2} \leq n_{4}<n_{3}-\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2}\right)$.

Proof. According to Lemma 2.3 and Theorem 2.1, we have $\operatorname{tvs}(T) \geq t_{1}$ if and only if ($2 n_{3}-$ $\left.2 n_{4}-3 n_{5}-3 \leq n_{2} \leq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}\right)$ or $\left(\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2} \leq n_{4}<n_{3}-\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2}\right)$. Now, we need to show that $\operatorname{tvs}(T) \leq t_{1}$. Define a total labeling $\phi: V(T) \cup E(T) \rightarrow\left\{1,2, \ldots, t_{1}\right\}$ in T by using the following algorithm.

Labeling Algorithm 1

Label all edges $e \in E(T)$ by the following steps.
(a). Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be the set of exterior vertices, where $d\left(w_{i}\right) \geq d\left(w_{i+1}\right)$ and $\left|E\left(w_{i}\right)\right| \geq\left|E\left(w_{i+1}\right)\right|$ where $E\left(w_{i}\right)$ is the set of pendant edges incident to w_{i}, and $d\left(w_{i}\right)$ is the degree of vertices w_{i}, for each i.
Let $E_{1}=\bigcup_{i=1}^{k} E\left(w_{i}\right)$ be an ordered set of all pendant edges in T.
(b). Label the first t_{1} pendant edges in E_{1} with $\left\{1,2,3, \ldots t_{1}\right\}$, respectively.
(c). Label $\left(n_{1}-t_{1}\right)$ remaining pendant edges with t_{1}.
(d). For all the remaining edges $e \in E(T)-E_{1}$, we define $\phi(e)=t_{1}$.

Label all vertices $v \in V(T)$ by the following steps.
(a). Let $V_{1}=\left\{w_{i j} \mid i=1,2,3, \ldots, k\right.$ and $\left.j=1,2,3, \ldots, j_{i}\right\}$ be an ordered set of pendant vertices adjacent to w_{i}, where j_{i} is the number of pendant vertices adjacent to w_{i}.
(b). Label the first t_{1} pendant vertices in V_{1} with 1.
(c). Label $\left(n_{1}-t_{1}\right)$ remaining pendant vertices with $2,3, \ldots, n_{1}-t_{1}+1$.
(d). Denote all non-pendant vertices by $y_{1}, y_{2}, y_{3}, \ldots, y_{N}$, where $N=n_{2}+n_{3}+n_{4}+\cdots+n_{\Delta}$ such that $s\left(y_{1}\right) \leq s\left(y_{2}\right) \leq s\left(y_{3}\right) \leq \cdots \leq s\left(y_{N}\right)$, with $s(y)=\sum_{y z \in E(T)} \phi(y z)$, which can be considered as a temporary weight of y_{i}.
(e). Now, define $\phi\left(y_{i}\right)$ recursively as follows:

$$
\phi\left(y_{1}\right)=n_{1}+2-s\left(y_{1}\right),
$$

which implies $w t\left(y_{1}\right)=\phi\left(y_{1}\right)+s\left(y_{1}\right)$. For $2 \leq i \leq N$, we define

$$
\phi\left(y_{i}\right)=\max \left\{1, w t\left(y_{i-1}\right)+1-s\left(y_{i}\right)\right\} .
$$

We observe that ϕ is a labeling from $V(T) \cup E(T)$ into $\left\{1,2,3, \ldots, t_{1}\right\}$, the weights of n_{1} constitute the set $\left\{2,3,4, \ldots, n_{1}+1\right\}$, and the weights of all remaining vertices form a sequence $n_{1}+2=$ $w t\left(y_{1}\right)<w t\left(y_{2}\right)<w t\left(y_{3}\right)<\cdots<w t\left(y_{N}\right)$. Therefore, $\operatorname{tvs}(T) \leq t_{1}$.

Theorem 2.3. Let T be a tree with maximum degree five. $\operatorname{tvs}(T)=t_{2}$ if and only if $\left(\frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\right.$ $\left.\frac{3 n_{5}}{2} \leq n_{2} \leq 3+2 n_{4}+3 n_{5}\right)$ or $\left(n_{3}-\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2} \leq n_{4}<\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2}\right)$.
Proof. According to Lemma 2.4 and Theorem 2.1, we have $\operatorname{tvs}(T) \geq t_{2}$ if and only if $\left(\frac{3}{2}+\frac{n_{3}}{2}+\right.$ $\left.n_{4}+\frac{3 n_{5}}{2} \leq n_{2} \leq 3+2 n_{4}+3 n_{5}\right)$ or $\left(n_{3}-\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2} \leq n_{4}<\frac{n_{2}}{2}-\frac{3 n_{5}}{2}-\frac{3}{2}\right)$. Now, we will show that $\operatorname{tvs}(T) \leq t_{2}$. Let us define a total labeling $\phi: V(T) \cup E(T) \rightarrow\left\{1,2, \ldots, t_{2}\right\}$ in T by using the Labeling Algorithm 2 for $i=2$ as follow.

Labeling Algorithm 2

Label all edges $e \in E(T)$ by the following steps.
(a). Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be the set of exterior vertices, where $d\left(w_{i}\right) \geq d\left(w_{i+1}\right)$ and $\left|E\left(w_{i}\right)\right| \geq\left|E\left(w_{i+1}\right)\right|$ for $i=1,2, \cdots, k-1$, where $E\left(w_{i}\right)$ is the set of all pendant edges incident to vertex w_{i}. Let $E_{1}=\bigcup_{i=1}^{k} E\left(w_{i}\right)$ be an ordered set of all pendant edges in T.
(b). Label the first t_{i} pendant edges in E_{1} with $\left\{1,2,3, \ldots, t_{i}\right\}$, respectively.
(c). Label $\left(n_{1}-t_{i}\right)$ remaining pendant edges $e \in E_{1}$ with t_{i}.
(d). Let E_{2} be the ordered set of non-pendant edges where at least one of the end-vertices of degree 2. Denote by e_{i} where $i=1,2, \ldots, n_{2}$, the edges in E_{2} and we define $\phi\left(e_{i}\right)=$ $\left\lceil\frac{1+n_{1}+i}{3}\right\rceil$.
(e). Label all remaining edges $e \in E(T)-E_{1}(T)-E_{2}(T)$ with t_{i}.

Label all vertices $v \in V(T)$ by the following steps.
(a). Let $V_{1}=\left\{w_{i j} \mid i=1,2,3, \ldots, k\right.$ and $\left.j=1,2,3, \ldots, j_{i}\right\}$ be an ordered set of pendant vertices adjacent to w_{i}, where j_{i} is the number of pendant vertices adjacent to w_{i}.
(b). Label the first t_{i} pendant vertices in V_{1} with 1.
(c). Label the $\left(n_{1}-t_{i}\right)$ remaining pendant vertices with $2,3,4, \ldots, n_{1}-t_{i}+1$.
(d). Denote all non-pendant vertices by $y_{1}, y_{2}, y_{3}, \ldots, y_{N}$, where $N=n_{2}+n_{3}+n_{4}+\cdots+n_{\Delta}$, such that $s\left(y_{1}\right) \leq s\left(y_{2}\right) \leq s\left(y_{3}\right) \leq \cdots \leq s\left(y_{N}\right)$, with $s(y)=\sum_{y z \in E(T)} \phi(y z)$, which can be considered as a temporary weight of y_{i}.
(e). We define $\phi\left(y_{i}\right)$ recursively as follows, $\phi\left(y_{1}\right)=n_{1}+2-s\left(y_{1}\right)$, which implies $w t\left(y_{1}\right)=$ $\phi\left(y_{1}\right)+s\left(y_{1}\right)$. For $2 \leq i \leq N, \phi\left(y_{i}\right)=\max \left\{1, w t\left(y_{i-1}\right)+1-s\left(y_{i}\right)\right\}$.
We conclude that ϕ is a labeling from $V(T) \cup E(T)$ into $\left\{1,2, \ldots, t_{2}\right\}$, and the weights of all pendant vertices constitute the set $\left\{2,3,4, \ldots, n_{1}+1\right\}$, and the weights of all remaining vertices form a sequence $n_{1}+2=w t\left(y_{1}\right)<w t\left(y_{2}\right)<\cdots<w t\left(y_{N}\right)$. Therefore, $t v s(T) \leq t_{2}$.

Theorem 2.4. Let T be a tree with maximum degree five. $\operatorname{tvs}(T)=t_{3}$ if and only if $\left(3+2 n_{4}+3 n_{5} \leq\right.$ $\left.n_{2} \leq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}\right)$ or $\left(\frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}<n_{2} \leq 2 n_{3}-2 n_{4}-3 n_{5}-3\right)$.

Proof. According to Lemma 2.5 and Theorem 2.1, we have $\operatorname{tvs}(T) \geq t_{3}$ if and only if ($3+2 n_{4}+$ $\left.3 n_{5} \leq n_{2} \leq \frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}\right)$ or $\left(\frac{3}{2}+\frac{n_{3}}{2}+n_{4}+\frac{3 n_{5}}{2}<n_{2} \leq 2 n_{3}-2 n_{4}-3 n_{5}-3\right)$. Now, we will show that $t v s(T) \leq t_{3}$, by defining a total labeling $\phi: V(T) \cup E(T) \rightarrow\left\{1,2,3, \ldots, t_{3}\right\}$ in T and using the Labeling Algorithm 2 for $i=3$.

We conclude that ϕ is a labeling from $V(T) \cup E(T)$ into $\left\{1,2, \ldots, t_{3}\right\}$, and the weights of all pendant vertices constitute the set $\left\{2,3,4, \ldots, n_{1}+1\right\}$, and the weights of all remaining vertices form a sequence $n_{1}+2=w t\left(y_{1}\right)<w t\left(y_{2}\right)<\cdots<w t\left(y_{N}\right)$. Therefore, $t v s(T) \leq t_{3}$.

3. Conclusion

In this paper, we prove that for any tree T with maximum degree five, the total vertex irregularity strength of this tree T is $\max \left\{t_{1}, t_{2}, t_{3}\right\}$. This fact strengthens the conjecture of Nurdin et al. (2010). Moreover, we give necessary and sufficient conditions for all trees T with maximum degree five such that the total vertex irregularity strength is either t_{1}, t_{2} or t_{3}. To conclude this paper, we give an open problem below.

Open Problem 3.1. Find the total vertex irregularity strength of a tree with maximum degree at least 6.

Acknowledgement

This research was supported by the Research Grant "Program Riset Inovasi KK ITB" and "Program PMDSU", Ministry of Research, Technology and Higher Education, Indonesia.

Total vertex irregularity strength of trees with maximum degree five | Susilawati et al.

References

[1] A. Ahmad, K.M. Awan, I. Javaid and Slamin, Total vertex irregularity strength of wheel related graphs, Australas. J. Combin. 51 (2011), 147-156.
[2] A. Ahmad, M. Bac̆a and Y. Bashir, Total vertex irregularity strength of certain classes of unicyclic graphs, Bull. Math. Soc. Sci. Math. Roumanie 2 (2014), 147-152.
[3] O. Al-Mushayt, A. Arshad and M.K. Siddiqui, Total vertex irregularity strength of convex polytope graphs, Acta Math. Univ. Comenianae LXXXII (1) (2013), 29-37.
[4] M. Anholcer, M. Karoński and F. Pfender, Total vertex irregularity strength of forest, arXiv:1103.2087 (2011).
[5] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007), 1378-1388.
[6] T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (4) (2004), 241-254.
[7] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular network, Congr. Numer. 64 (1988), 187-192.
[8] J.A. Gallian, A Dynamic survey of graph labeling, Electron. J. Combin (2017), \#DS6.
[9] N. Hartsfield and G. Ringel, Pearls in Graph Theory: A Comprehensive Introduction, Academic Press, INC. (1990).
[10] D. Indriati, W.I.E. Wijayanti, K.A. Sugeng, M. Bača and A. Semaničová-Feňovčíková, The total vertex irregularity strength of generalized helm graphs and prism with outer pendant edges, Australas. J. Combin. 65 (1) (2016), 14-26.
[11] Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On total vertex irregularity strength of trees, Discrete Math. 310 (2010), 3043-3048.
[12] Slamin, Dafik and W. Winnona, Total vertex irregularity strength of the disjoint union of sun graphs, International Journal of Combinatorics 2012 (2012), 1-9.
[13] Susilawati, E.T. Baskoro and R. Simanjuntak, Total vertex irregularity labelings for subdivision of several classes of tree, Procedia Computer Science 74 (2015), 112-117.
[14] Susilawati, E.T. Baskoro and R. Simanjuntak, Total vertex irregularity strength of tree with maximum degree four, AIP Conference Proceedings 1707, 020022 (2016); DOI: 10.1063/1.4940823.
[15] Susilawati, E.T. Baskoro and R. Simanjuntak, On the Vertex Irregular Total Labeling for Subdivision of Trees, Australas. J. Combin. 71 (2) (2018), 293-302.
[16] W.D. Wallis, Magic Graphs, Birkhäuser, Boston (2001).

[^0]: Received: 13 July 2017, Revised: 12 January 2018, Accepted: 27 May 2018.
 *Corresponding author.

