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Abstract

A subset X of edges of a graph G is called an edge dominating set of G
if every edge not in X is adjacent to some edge in X. The edge domination
number γ′(G) of G is the minimum cardinality taken over all edge dominating
sets of G. An edge Roman dominating function of a graph G is a function
f : E(G) → {0, 1, 2} such that every edge e with f(e) = 0 is adjacent to some
edge e′ with f(e′) = 2. The weight of an edge Roman dominating function f
is the value w(f) =

∑
e∈E(G) f(e). The edge Roman domination number of

G, denoted by γ′R(G), is the minimum weight of an edge Roman dominating
function of G. In this paper, we characterize trees with edge Roman domination
number twice the edge domination number.
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1 Introduction

For notation and graph theory terminology in general we follow [5]. Let G = (V, E)
be a simple graph. The open neighborhood of a vertex v ∈ V is N(v) = NG(v) =
{u ∈ V | uv ∈ E} and the closed neighborhood of v is N [v] = NG[v] = NG(v) ∪ {v}.
The degree of v, denoted by deg(v), is the cardinality of its open neighborhood. A
vertex of degree one is called a leaf, and its neighbor is called a support vertex. An
edge incident to a leaf is called a pendant edge. A strong support vertex is a vertex
that is adjacent to at least two leaves. A tree T is a double star if it contains exactly
two vertices that are not leaves. For a, b ≥ 2, a double star whose support vertices
have degree a and b is denoted by S(a, b). If T is a rooted tree, we for each vertex v,
we denote by Tv the sub-rooted tree rooted at v. The height of a rooted tree is the
maximum distance from the root to a leaf.

A subset X of E is called an edge dominating set of G if every edge not in X is
adjacent to some edge in X. The edge domination number γ′(G) of G is the minimum
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cardinality taken over all edge dominating sets of G. We refer to an edge dominating
set with minimum cardinality as a γ′(G)-set. The concept of edge domination was
introduced by Mitchell and Hedetniemi [7]. A function f : V (G) → {0, 1, 2} is a
Roman dominating function, or just RDF, if every vertex u for which f(u) = 0 is
adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the
value f(V (G)) =

∑
u∈V f(u). The Roman domination number of a graph G, denoted

by γR(G), is the minimum weight of an RDF on G (see [3, 6]).
Roushini Leely Pushpam et al. [8] initiated the study of the edge version of Roman

domination. An edge Roman dominating function (or just ERDF) of a graph G is
a function f : E(G) → {0, 1, 2} such that every edge e with f(e) = 0 is adjacent to
some edge e′ with f(e′) = 2. The weight of an edge Roman dominating function f is
the value w(f) =

∑
e∈E(G) f(e). The edge Roman domination number of G, denoted

by γ′R(G), is the minimum weight of an edge Roman dominating function of G. We
refer to an ERDF with minimum weight as a γ′R(G)-function. If f is a γ′R(G)-function,
then we simply write f = (E0, E1, E2), where Ei = {e ∈ E(G) : f(e) = i}, i = 0, 1, 2.
It is easy to see that γ′R(G) ≤ 2γ′(G) for any graph G. The concept of edge Roman
domination is further studied by several authors, (see for example [1, 2, 4]).

In this paper we give a constructive characterization for trees whose edge Roman
domination number is twice the edge domination number. We use the following.

Theorem 1 ([4]). For a graph G, γ′R(G) = 2γ′(G) if and only if there is a γ′R(G)-
function f with E1 = ∅.

2 Main result

A support vertex v of a tree is called a special support vertex if no γ′R(T )-function
assigns 2 to a pendant edge at v. Let F1 be the class of all rooted trees, such that
the root has degree at least two, any leaf is within distance two from the root, and
any child of the root is either a leaf or a strong support vertex.

Now we present a constructive characterization of trees T with γ′R(T ) = 2γ′(T ).
For this purpose, we define a family of trees as follows. Let T be the family of trees
T that can be obtained from a sequence T1, T2,· · · ,Tj (j ≥ 2) such that T1 is a star
K1,r for r ≥ 2, or a double-star, and if j ≥ 2, Ti+1 can be obtained recursively from
Ti for 1 ≤ i ≤ j − 1 by one of the following operations.

Operation O1. Assume that w ∈ V (Ti). Then Ti+1 is obtained from Ti by joining
w to the root of a tree of F1.

Operation O2. Assume that w ∈ V (Ti). Then Ti+1 is obtained from Ti by joining
w to a leaf of a star of order at least four.

Operation O3. Assume that w ∈ V (Ti) is a special support vertex or a leaf. Then
Ti+1 is obtained from Ti by joining w to a leaf of a path P3, or joining w to a center
of S(a, 2) whose degree is a.

Operation O4. Assume that w ∈ V (Ti) is a vertex that has a neighbor u of degree
at least two such that any vertex of N(u)−{w} is a leaf. Then Ti+1 is obtained from
Ti by joining w to a leaf of a path P3, or joining w to a center of S(a, 2) whose degree
is a.
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Operation O5. Assume that w ∈ V (Ti) is a vertex such that (1) a component
of T − w is a path P3 : xyz, where x ∈ NTi

(w), or (2) a component of T − w is a
double-star S(a, 2), where w is adjacent to a vertex of maximum degree S(a, 2). Then
Ti+1 is obtained from Ti by joining w to a leaf of a path P3, or joining w to a center
of S(a, 2) whose degree is a.

Lemma 2. If γ′R(Ti) = 2γ′(Ti) and Ti+1 is obtained from Ti by Operation O1, the
γ′R(Ti+1) = 2γ′(Ti+1).

Proof. Let γ′R(Ti) = 2γ′(Ti), and w ∈ V (Ti). Assume that Ti+1 is obtained by joining
w to the root x of a tree T ∈ F1. Let y1, ..., yk be the children of x which are
strong support vertex. Clearly adding xyi (i = 1, 2, ..., k) to any γ′(Ti)-set yields
an edge dominating set for Ti+1, and so γ′(Ti+1) ≤ γ′(Ti) + k. Furthermore, any
γ′R(Ti)-function can be extended to an ERDF for Ti+1 by assigning 2 to xyi (i =
1, 2, ..., k), and 0 to wx and each other edge of Ti+1. Thus γ′R(Ti+1) ≤ γ′R(Ti) + 2k.
Let f = (E0, E1, E2) be a γ′R(Ti+1)-function such that |E2| is maximum. Clearly we
may assume that f(xyi) = 2 (i = 1, 2, ..., k). If f(wx) = 2, then we replace f(wx) by
0, and one edge of Ti at w by 2. Thus we may assume that f(xw) = 0. Then f |V (Ti) is
an ERDF for Ti, implying that γ′R(Ti) ≤ γ′R(Ti+1)−2k. Thus γ′R(Ti+1) = γ′R(Ti)+2k.
Now,

γ′(Ti) =
γ′R(Ti)

2
=

γ′R(Ti+1)− 2k

2
≤ 2γ′(Ti+1)− 2k

2
= γ′(Ti+1)− k,

and thus γ′(Ti+1) ≥ γ′(Ti) + k. Thus γ′(Ti+1) = γ′(Ti) + k. Now γ′R(Ti+1) = γ′R(Ti) +
2k = 2γ′(Ti) + 2k = 2γ′(Ti+1).

Lemma 3. If γ′R(Ti) = 2γ′(Ti) and Ti+1 is obtained from Ti by Operation O2, the
γ′R(Ti+1) = 2γ′(Ti+1).

Proof. Let γ′R(Ti) = 2γ′(Ti), and w ∈ V (Ti). Assume that Ti+1 is obtained by joining
w to a leaf x of a star of order at least four. Let y be the center of the added star and
x, y1, ..., yl (l ≥ 2) be the leaves of the added star. Clearly adding xy to any γ′(Ti)-set
yields an edge dominating set for Ti+1, and so γ′(Ti+1) ≤ γ′(Ti) + 1. Furthermore,
any γ′R(Ti)-function can be extended to an ERDF for Ti+1 by assigning 2 to xy and
0 to wx and yyi (i = 1, ..., l). Thus γ′R(Ti+1) ≤ γ′R(Ti) + 2. Let f be a γ′R(Ti+1)-
function. Clearly we may assume that f(xy) = 2. If f(wx) = 2, then may assume
that f(e) = 0 for every edge of Ti at w. Then we replace f(wx) by 0, and one edge
of Ti incident with w by 2. Thus we may assume that f(xw) = 0. Then f |V (Ti) is
an ERDF for Ti, implying that γ′R(Ti) ≤ γ′R(Ti+1) − 2. Thus γ′R(Ti+1) = γ′R(Ti) + 2.

Now, γ′(Ti) =
γ′R(Ti)

2
=

γ′R(Ti+1)−2

2
≤ 2γ′(Ti+1)−2

2
= γ′(Ti+1) − 1, and this implies that

γ′(Ti+1) = γ′(Ti) + 1. Now γ′R(Ti+1) = γ′R(Ti) + 2 = 2γ′(Ti) + 2 = 2γ′(Ti+1).

Lemma 4. If γ′R(Ti) = 2γ′(Ti) and Ti+1 is obtained from Ti by Operation O3, the
γ′R(Ti+1) = 2γ′(Ti+1).

Proof. Let γ′R(Ti) = 2γ′(Ti). Assume that w is a special support vertex of Ti, and
assume that Ti+1 is obtained by joining w to the leaf x of a path xyz. Clearly adding
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xy to any γ′(Ti)-set yields an edge dominating set for Ti+1, and so γ′(Ti+1) ≤ γ′(Ti)+1.
Furthermore, any γ′R(Ti)-function can be extended to an ERDF for Ti+1 by assigning 2
to xy, and 0 to wx and yz. Thus γ′R(Ti+1) ≤ γ′R(Ti)+2. Clearly γ′R(Ti+1) ≥ γ′R(Ti)+1.
Suppose that γ′R(Ti+1) = γ′R(Ti)+1. Let f = (E0, E1, E2) be a γ′R(Ti+1)-function such
that |E2| is maximum and f(yz) 6= 2. If f(xy) = 2, then f |V (Ti) is an ERDF for Ti, a
contradiction. Thus f(xy) 6= 2. Then f(xw) = 2, and so f(yz) = 1. Let w1 be a leaf
of Ti adjacent to w. Then clearly f(ww1) = 0. Now replacing f(ww1) by 2 yields a
γ′R(Ti)-function contradicting the speciality of w. Thus γ′R(Ti+1) = γ′R(Ti) + 2. Now

γ′(Ti) =
γ′R(Ti)

2
=

γ′R(Ti+1)−2

2
≤ 2γ′(Ti+1)−2

2
= γ′Ti+1 − 1, and thus γ′(Ti+1) ≥ γ′(Ti) + 1.

Thus γ′(Ti+1) = γ′(Ti) + 1. Now γ′R(Ti+1) = γ′R(Ti) + 2 = 2γ′(Ti) + 2 = 2γ′(Ti+1). If
w is a leaf, or Ti+1 is obtained by joining w to a center of a double star S(a, 2) whose
degree is a, then similarly γ′R(Ti+1) = 2γ′(Ti+1).

Lemma 5. If γ′R(Ti) = 2γ′(Ti) and Ti+1 is obtained from Ti by Operation O4, the
γ′R(Ti+1) = 2γ′(Ti+1).

Proof. Let γ′R(Ti) = 2γ′(Ti), w ∈ V (Ti), and u ∈ N(w) be the vertex such that
any vertex of N(u) − {w} is a leaf. First assume that Ti+1 is obtained by joining
w to the leaf x of a path xyz. As Lemma 4, we have γ′(Ti+1) ≤ γ′(Ti) + 1 and
γ′R(Ti+1) ≤ γ′R(Ti) + 2. Clearly γ′R(Ti+1) ≥ γ′R(Ti) + 1. Let f = (E0, E1, E2) be a
γ′R(Ti+1)-function with pendant edges assigned the value 2 as few as possible. By our
choice f(vw) = f(xy) = 2. Hence f |E(Ti) is an ERDF and γ′(Ti) ≤ γ′(Ti+1)−2. Thus

γ′R(Ti+1) = γ′R(Ti)+2. Now γ′(Ti) =
γ′R(Ti)

2
=

γ′R(Ti+1)−2

2
≤ 2γ′(Ti+1)−2

2
= γ′Ti+1−1, and

thus γ′(Ti+1) ≥ γ′(Ti) + 1. Thus γ′(Ti+1) = γ′(Ti) + 1. Now γ′R(Ti+1) = γ′R(Ti) + 2 =
2γ′(Ti) + 2 = 2γ′(Ti+1). If Ti+1 is obtained by joining w to a center of a double star
S(a, 2) whose degree is a, then similarly γ′R(Ti+1) = 2γ′(Ti+1).

Similarly the following is verified.

Lemma 6. If γ′R(Ti) = 2γ′(Ti) and Ti+1 is obtained from Ti by Operation O5, the
γ′R(Ti+1) = 2γ′(Ti+1).

We now are ready to state the main result of this paper.

Theorem 7. For a tree T , γ′R(T ) = 2γ′(T ) if and only if T ∈ T .

Proof. The sufficiency follows by an induction on the edge Roman domination number
and Lemmas 2, 3, 4, 5, and 6. We need to prove the necessity. We prove by induction
on the edge domination number γ′(T ) of a tree T with γ′R(T ) = 2γ′(T ) that T ∈ T .
If γ′R(T ) = 1, then since γ′R(K2) 6= 2γ′(K2), T is a star with at least three vertices,
or a double-star, and so T ∈ T . Suppose the result is true for all trees T ′ with
γ′R(T ′) = 2γ′(T ′) and γ′(T ′) < γ′(T ). Since γ′(T ) > 1, we obtain diam(T ) ≥ 4.
Among all diametrical paths in T , let xx1x2...xd be a diametrical path in T such that
deg(xd−1) is maximum. We root T at x. By Theorem 1 there is a γ′R(T )-function
f = (E0, E1, E2) with E1 = ∅. We may assume that f(xd−1xd−2) = 2.

Assume that d = 4. Clearly, we may assume that x1 and x3 are strong support
vertices, and any child of x1 different from x2 is a leaf. Thus we may assume that
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f(x1x2) = f(x2x3) = 2. Since E1 = ∅ we obtain that any child of x2 is a leaf or a
strong support vertex. Clearly T −Tx2 is a star of order at least three, and so belongs
to T . If deg(x2) ≥ 3, then Tx2 ∈ F1, and so T is obtained from T −Tx2 by Operation
O1. Thus deg(x2) = 2. Then T is obtained from T − Tx2 by Operation O2. We thus
assume that d ≥ 5. We consider the following two cases.

Case 1. deg(xd−1) ≥ 3.
Assume that deg(xd−2) ≥ 3. Since E1 = ∅ we obtain that any child of xd−2 is

a leaf or a strong support vertex. Let T1 = T − Txd−2
, and assume that xd−2 has

precisely k children that are strong support vertices. Then we may assume that
f(xd−2u) = 2 for each child u of xd−2 with deg(u) ≥ 3. If f(xd−3xd−2) = 2, then
we change f(xd−3xd−2) to 0, and assign 2 to one of edges of T1 incident with xd−3.
Thus we may assume that f(xd−3xd−2) = 0. Then f |V (T1) is an ERDF for T1 implying
that γ′R(T1) ≤ γ′R(T ) − 2k. Similarly γ′(T1) ≤ γ′(T ) − k. On the other hand any
γ′R(T1)-function can be extended to an ERDF for T by assigning 2 to the xd−2u for
each child u of xd−2 with deg(u) ≥ 3, and 0 to xd−3xd−2 and any other edge of
Txd−2

. So γ′R(T ) ≤ γ′R(T1) + 2k, and thus γ′R(T ) = γ′R(T1) + 2k. Similarly we obtain
γ′(T ) = γ′(T1) + k. Then γ′R(T1) = γ′R(T ) − 2k = 2γ′(T ) − 2k = 2γ′(T1). By the
inductive hypothesis T1 ∈ T . It is also clear that Txd−2

∈ F1. Thus T ∈ T , and is
obtained from T1 by Operation O1.

We next assume that deg(xd−2) = 2. Clearly we may assume that f(xd−3xd−2) = 0.
Let T2 = T − Txd−2

. As before, we can see that γ′R(T ) = γ′R(T2) + 2, and γ′(T ) =
γ′(T2) + 1, and so we obtain that γ′R(T2) = 2γ′(T2). By the inductive hypothesis
T2 ∈ T . Thus T is obtained from T2 by Operation O2.

Case 2. deg(xd−1) = 2.
Then each child of xd−2 is a leaf or a support vertex of degree two. Assume that

xd−2 has a child u 6= xd−1 with deg(u) = 2, and u1 is the child of u. Then clearly we
may assume that f(xd−2u) = 0. But then f(uu1) = 1, a contradiction. We deduce
that xd−1 is the unique child of xd−2 that is not a leaf. Assume that deg(xd−3) ≥ 3. Let
T3 = T−Txd−2

. As before, we can see that γ′R(T ) = γ′R(T3)+2, and γ′(T ) = γ′(T3)+1,
and so we obtain that γ′R(T3) = 2γ′(T3). By the inductive hypothesis T3 ∈ T . Assume
that xd−3 is a support vertex. If there is a γ′R(T3)-function such that assigns 2 to a
pendant edge e incident with xd−3, then we replace f(e) by 0, f(xd−3xd−2) by 2,
f(xd−1xd) by 1, and assign 0 to any other edge of Txd−2

to obtain an ERDF for T
of weight less than γ′R(T ), a contradiction. Thus xd−3 is a special support vertex of
T3. Consequently, T ∈ T and is obtained from T3 by Operation O3. Thus we may
assume that xd−3 is not a support vertex. Assume that xd−3 has a child u such that
any child of u is a leaf. Then T is obtained from T3 by Operation O4. Thus xd−3 has
no child u such that any child of u is a leaf. Since deg(xd−3) ≥ 3, we obtain that a
component of T − xd−3 is a double-star S(a, 2), where xd−3 is adjacent to a vertex
of maximum degree S(a, 2). We conclude that T is obtained from T3 by Operation
O5. Thus deg(xd−3) = 2. Then xd−3 is a leaf of T3, and T is obtained from T3 by
Operation O3. Thus T ∈ T and the proof is complete.
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