Electronic Journal of Graph Theory and Applications

Log-Concavity of the Genus Polynomials of Ringel Ladders

Jonathan L. Gross ${ }^{\text {a }}$, Toufik Mansour ${ }^{\text {b }}$, Thomas W. Tucker ${ }^{\text {c }}$, David G.L. Wang ${ }^{\text {d }}$
${ }^{a}$ Department of Computer Science, Columbia University, New York, NY 10027, USA
${ }^{b}$ Department of Mathematics, University of Haifa, 3498838 Haifa, Israel
${ }^{c}$ Departments of Mathematics, Colgate University, Hamilton, NY 13346, USA
${ }^{d}$ School of Mathematics and Statistics, Beijing Institute of Technology, 102488, P.R. China
gross@cs.columbia.edu, tmansour@univ.haifa.ac.il, ttucker@colgate.edu, glw@bit.edu.cn

Abstract

A Ringel ladder can be formed by a self-bar-amalgamation operation on a symmetric ladder, that is, by joining the root vertices on its end-rungs. The present authors have previously derived criteria under which linear chains of copies of one or more graphs have log-concave genus polynomials. Herein we establish Ringel ladders as the first significant non-linear infinite family of graphs known to have log-concave genus polynomials. We construct an algebraic representation of self-bar-amalgamation as a matrix operation, to be applied to a vector representation of the partitioned genus distribution of a symmetric ladder. Analysis of the resulting genus polynomial involves the use of Chebyshev polynomials. This paper continues our quest to affirm the quarter-century-old conjecture that all graphs have log-concave genus polynomials.


```
Keywords: genus of a graph, genus polynomial, log-concavity, partitioned genus distribution
Mathematics Subject Classification : 05A15, 05A20, 05C10
DOI: 10.5614/ejgta.2015.3.2.1
```


1. Genus Polynomials

Our graphs are implicitly taken to be connected, and our graph embeddings are cellular and orientable. For general background in topological graph theory, see [13, 1]. Prior acquaintance

Received: 21 July 2014, Revised: 02 April 2015, Accepted: 08 April 2015.
with the concepts of partitioned genus distribution (abbreviated here as $\boldsymbol{p g d}$) and production (e.g., $[10,17])$ are necessary preparation for reading this paper. The exposition here is otherwise intended to be accessible both to graph theorists and to combinatorialists.

The number of combinatorially distinct embeddings of a graph G in the orientable surface of genus i is denoted by $g_{i}(G)$. The sequence $g_{0}(G), g_{1}(G), g_{2}(G), \ldots$, is called the genus distribution of G. A genus distribution contains only finitely many positive numbers, and there are no zeros between the first and last positive numbers. The genus polynomial is the polynomial

$$
\Gamma_{G}(x)=g_{0}(G)+g_{1}(G) x+g_{2}(G) x^{2}+\ldots .
$$

Log-concave sequences

A sequence $A=\left(a_{k}\right)_{k=0}^{n}$ is said to be nonnegative, if $a_{k} \geq 0$ for all k. An element a_{k} is said to be an internal zero of A if $a_{k}=0$ and if there exist indices i and j with $i<k<j$, such that $a_{i} a_{j} \neq 0$. If $a_{k-1} a_{k+1} \leq a_{k}^{2}$ for all k, then A is said to be log-concave. If there exists an index h with $0 \leq h \leq n$ such that

$$
a_{0} \leq a_{1} \leq \cdots \leq a_{h-1} \leq a_{h} \geq a_{h+1} \geq \cdots \geq a_{n}
$$

then A is said to be unimodal. It is well-known that any nonnegative log-concave sequence without internal zeros is unimodal, and that any nonnegative unimodal sequence has no internal zeros. A prior paper [11] by the present authors provides additional contextual information regarding logconcavity and genus distributions.

For convenience, we sometimes abbreviate the phrase "log-concave genus distribution" as LCGD. Proofs that closed-end ladders and doubled paths have LCGDs [4] were based on explicit formulas for their genus distributions. Proof that bouquets have LCGDs [12] was based on a recursion. A conjecture that all graphs have LCGDs was published by [12].

Stahl's method [21,22] of representing what we have elsewhere formulated as simultaneous recurrences [4] or as a transposition of a production system for a surgical operation on graph embeddings as a matrix of polynomials can simplify a proof that a family of graphs has logconcave genus distributions, without having to derive the genus distribution itself.

Newton's theorem that real-rooted polynomials with non-negative coefficients are log-concave is one way of getting log-concavity. Stahl [22] made the general conjecture (Conjecture 6.4) that all genus polynomials are real-rooted, and he gave a collection of specific test families. Shortly thereafter, Wagner [24] proved that the genus distributions for the related closed-end ladders and various other test families suggested by [22] are real-rooted. However, Liu and Wang [16] answered Stahl's general conjecture in the negative, by exhibiting a chain of copies of the wheel graph W_{4}, one of Stahl's test families, that is not real-rooted. Our previous paper [11] proves, nonetheless, that the genus distribution of every graph in the W_{4}-linear sequence is log-concave. Thus, even though Stahl's proposed approach to log-concavity via roots of genus polynomials is sometimes infeasible, results in [11] do support Stahl's expectation that chains of copies of a graph are a relatively accessible aspect of the general LCGD problem. The genus distributions for the family of Ringel ladders, whose log-concavity is proved in this paper, are not real-rooted either.

Log-concavity of genus distributions for directed graph embeddings has been studied by [2] and [3]. Another related area is the continuing study of maximum genus of graphs, of which [15] is an example.

Linear, ring-like, and tree-like families

Stahl used the term" H-linear" to describe chains of graphs that are constructed by amalgamating copies of a fixed graph H. Such amalgamations are typically on a pair of vertices, one in each of the amalgamands, or on a pair of edges. It seems reasonable to generalize the usage of linear in several ways, for instance, by allowing graphs in the chain to be selected from a finite set.

We use the term ring-like to describe a graph that results from any of the following topological operations on a doubly rooted linear chain with one root in the first graph of the chain and one in the last graph:

1. a self-amalgamation of two root-vertices;
2. a self-amalgamation of two root-edges;
3. joining one root-vertex to the other root-vertex (which is called a self-bar-amalgamation).

Every graph can be regarded as tree-like in the sense of tree decompositions. However, we use this term only when a graph is not linear or ring-like. For any fixed tree-width w and fixed maximum degree Δ, there is a quadratic-time algorithm [8] to calculate the genus polynomial of graphs of parameters w and Δ. One plausible approach to the general LCGD conjecture might be to prove it for fixed tree-width and fixed maximum degree. Recurrences have been given for the the genus distributions of cubic outerplanar graphs [6], 4-regular outerplanar graphs [18], and cubic Halin graphs [7], all three of which are tree-like. However, none of these genus distributions have been proved to be log-concave. Nor have any other tree-like graphs been proved to have LCGDs.

This paper is organized as follows. Section 2 describes a representation of partitioning of the genus distribution into ten parts as a pgd-vector. Section 3 describes how productions are used to describe the effect of a graph operation on the pgd-vector. Section 4 analyzes how selfbar amalgamation affects the genus distribution. Section 5 offers a new derivation of the genus distributions of the Ringel ladders and proof that these genus distributions are log-concave.

2. Partitioned Genus Distributions

A fundamental strategy in the calculation of genus distributions, from the outset [4], has been to partition a genus distribution according to the incidence of face-boundary walks on one or more roots. We abbreviate "face-boundary walk" as $\boldsymbol{f b}$-walk. For a graph (G, u, s) with two 2 -valent root-vertices, we can partition the number $g_{i}(G)$ into the following four parts:
$d d_{i}(G)$ the number of embeddings of (G, u, v) in the surface S_{i} such that two distinct fb-walks are incident on root u and two on root v;
$d s_{i}(G)$ the number of embeddings in S_{i} such that two distinct fb-walks are incident on root u and only one on root v;
$s d_{i}(G)$ the number of embeddings in S_{i} such that one fb-walk is twice incident on root u and two distinct fb-walks are incident on root v;
$s s_{i}(G)$ the number of embeddings in S_{i} such that one fb-walk is twice incident on root u and one is twice incident on root v.

Clearly, we have

$$
g_{i}(G)=d d_{i}(G)+d s_{i}(G)+s d_{i}(G)+s s_{i}(G)
$$

Each of the four parts is sub-partitioned:
$d d_{i}^{0}(G)$ the number of type- $d d$ embeddings of (G, u, v) in S_{i} such that neither fb-walk incident at root u is incident at root v;
$d d_{i}^{\prime}(G)$ the number of type- $d d$ embeddings in S_{i} such that one fb-walk incident at root u is incident at root v;
$d d_{i}^{\prime \prime}(G)$ the number of type- $d d$ embeddings in S_{i} such that both fb-walks incident at root u are incident at root v;
$d s_{i}^{0}(G)$ the number of type- $d s$ embeddings in S_{i} such that neither fb-walk incident at root u is incident at root v;
$d s_{i}^{\prime}(G)$ the number of type- $d s$ embeddings in S_{i} such that one fb -walk incident at root u is incident at root v;
$s d_{i}^{0}(G)$ the number of type-sd embeddings in S_{i} such that the fb-walk incident at root u is not incident on root v;
$s d_{i}^{\prime}(G)$ the number of type-sd embeddings in S_{i} such that the fb-walk at root u is also incident at root v;
$s s_{i}^{0}(G)$ the number of type-ss embeddings in S_{i} such that the fb-walk incident at root u is not incident on root v;
$s s_{i}^{1}(G)$ the number of type-ss embeddings in S_{i} such that the fb -walk incident at root u is incident at root v, and the incident pattern is uuvv;
$s s_{i}^{2}(G)$ the number of type-ss embeddings in S_{i} such that the fb-walk incident at root u is incident at root v, and the incident pattern is uvuv.

We define the $\boldsymbol{p g d}$-vector of the $\operatorname{graph}(G, u, v)$ to be the vector

$$
\begin{array}{llllll}
\left(d d^{\prime \prime}(G)\right. & d d^{\prime}(G) & d d^{0}(G) & d s^{0}(G) & d s^{\prime}(G) \\
& s d^{0}(G) & s d^{\prime}(G) & s s^{0}(G) & s s^{1}(G) & \left.s s^{2}(G)\right)
\end{array}
$$

with ten coordinates, each a polynomial in x. For instance,

$$
d s^{\prime}(G)=d \tilde{s}_{0}(G)+d s_{1}^{\prime}(G) x+d s_{2}^{\prime}(G) x^{2}+\cdots
$$

3. Symmetric Ladders

We define the symmetric ladder $\left(\ddot{L}_{n}, u, v\right)$ to be the graph obtained from the cartesian product $P_{2} \square P_{n+2}$ by contracting the respective edges at both ends that join a pair of 2-valent vertices and designating the remaining two 2 -valent vertices at the ends of the ladder as root-vertices. The symmetric ladders $\left(\ddot{L}_{1}, u, v\right)$ and $\left(\ddot{L}_{2}, u, v\right)$ are illustrated in Figure 3.1. The location of the roots of a symmetric ladder at opposite ends causes it to have a different partitioned genus distribution from other ladders to which it is isomorphic when the roots are disregarded.

Figure 3.1. The symmetric ladders \ddot{L}_{1} and \ddot{L}_{2}.
A production is an algebraic representation of the set of possible effects of a graph operation on a graph embedding. For instance, adding a rung to an embedded symmetric ladder ($\left.\ddot{L}_{n}, u, v\right)$ involves inserting a new vertex on each side of the root-vertex v and then joining the two new vertices. Since both the resulting new vertices are trivalent, the number of embeddings of (\ddot{L}_{n+1}, u, v) that can result is 4 . Thus, the sum of the coefficients in the consequent of the production (the right side) is 4 . Figures 3.2 and 3.3 are topological derivations of the following ten productions used to derive the partitioned genus distribution of $\left(\ddot{L}_{n+1}, u, v\right)$ from the partitioned genus distribution of $\left(\ddot{L}_{n}, u, v\right)$.

$$
\begin{aligned}
d d_{i}^{0} & \longrightarrow 2 d d_{i}^{0}+2 s d_{i+1}^{0} \\
d d_{i}^{\prime} & \longrightarrow d d_{i}^{0}+d d_{i}^{\prime}+2 s d_{i+1}^{\prime} \\
d d_{i}^{\prime \prime} & \longrightarrow 2 d d_{i}^{\prime}+2 s s_{i+1}^{2} \\
d s_{i}^{0} & \longrightarrow 2 d s_{i}^{0}+2 s s_{i+1}^{0} \\
d s_{i}^{\prime} & \longrightarrow d s_{i}^{0}+d s_{i}^{\prime}+2 s s_{i+1}^{1} \\
s d_{i}^{0} & \longrightarrow 4 d d_{i}^{0} \\
s d_{i}^{\prime} & \longrightarrow 4 d d_{i}^{\prime} \\
s s_{i}^{0} & \longrightarrow 4 d s_{i}^{0} \\
s s_{i}^{1} & \longrightarrow 4 d s_{i}^{\prime} \\
s s_{i}^{2} & \longrightarrow 2 d s_{i}^{\prime}+2 d d_{i}^{\prime \prime}
\end{aligned}
$$

$d s^{0}{ }_{i}->2 d s^{0}{ }_{i}+2 s s^{0}{ }_{i+1}$

$d s^{\prime}{ }_{i}->d s^{0}{ }_{i}+d s^{\prime}{ }_{i}+2 s s^{1}{ }_{i+1}$

Figure 3.2. Five productions for construction of symmetric ladders.
$s d^{0}{ }_{i}->4 d d^{0}{ }_{i}$

sd ${ }_{i}->$ 4dd $_{i}$

$s s^{0}{ }_{i}->4 d s^{0}{ }_{i}$

$$
\mathrm{ss}^{1}{ }_{\mathrm{i}}->4 \mathrm{ds}_{\mathrm{i}}
$$

$$
s s_{i}^{2}->2 d s_{i}^{\prime}+2 d d{ }_{i}
$$

Figure 3.3. Five more productions for symmetric ladders.

Theorem 3.1. The pgd-vector of the symmetric ladder $\left(\ddot{L}_{0}, u, v\right)$ is

$$
V_{L_{0}}=\left(\begin{array}{llllllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{3.1}
\end{array}\right) .
$$

For $n>0$, the pgd-vector of the symmetric ladder $\left(\ddot{L}_{n}, u, v\right)$ is the product of the row-vector $V_{L_{n-1}}$ with the 10×10 production matrix

$$
\mathbf{M}=\left(\begin{array}{cccccccccc}
2 & 0 & 0 & 0 & 0 & 2 x & 0 & 0 & 0 & 0 \tag{3.2}\\
1 & 1 & 0 & 0 & 0 & 0 & 2 x & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 x \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 x & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 x & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Proof. Each of the ten rows of the matrix M represents one of the ten productions. For instance, the first two rows represent the productions

$$
\begin{aligned}
d d_{i}^{0} & \longrightarrow 2 d d_{i}^{0}+2 s d_{i+1}^{0} \\
d d_{i}^{\prime} & \longrightarrow d d_{i}^{0}+d d_{i}^{\prime}+2 s d_{i+1}^{\prime} \square
\end{aligned}
$$

Example 3.1. We iteratively calculate pgd-vectors of the symmetric ladders L_{n} for $n \leq 4$

$$
\left.\begin{array}{clcccccccccc}
V_{L_{0}} & = & (0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

4. Self-Bar-Amalgamations

We recall from Section 1 that the self-bar-amalgamation of any doubly vertex-rooted graph (G, u, v), which is denoted ${ }^{*}{ }_{u v}(G, u, v)$, is formed by joining the roots u and v. The present case of interest is when the two roots are 2 -valent and non-adjacent. We observe that if G is a cubic 2 -connected graph and if each of the two roots is created by placing a new vertex in the interior of an edge of G, then the result of the self-bar amalgamation is again a 2-connected cubic graph.

Theorem 4.1. Let (G, u, v) be a graph with two non-adjacent 2 -valent vertex roots. The (nonpartitioned) genus distribution of the graph $\bar{*}_{u v}(G, u, v)$, obtained by self-bar-amalgamation, can be calculated as the dot-product of the pgd-vector V_{G} with the following row-vector:

$$
B=\left(\begin{array}{lllllllll}
4 x & 1+3 x & 2+2 x & 4 x & 2+2 x & 4 x & 2+2 x & 4 x & 4 \tag{4.1}
\end{array}\right) .
$$

Proof. Figures 4.1 and 4.2 derive the ten corresponding productions.

$$
\begin{aligned}
& d d_{i}^{0} \longrightarrow 4 g_{i+1} \\
& d d_{i}^{\prime} \longrightarrow g_{i}+3 g_{i+1} \\
& d d^{\prime \prime} \longrightarrow 2 g_{i}+2 g_{i+1} \\
& d s_{i}^{0} \longrightarrow 4 g_{i+1} \\
& d s_{i}^{\prime} \longrightarrow 2 g_{i}+2 g_{i+1} \\
& s d_{i}^{0} \longrightarrow 4 g_{i+1} \\
& s d_{i}^{\prime} \longrightarrow 2 g_{i}+2 g_{i+1} \\
& s s_{i}^{0} \longrightarrow 4 g_{i+1} \\
& s s_{i}^{1} \longrightarrow 4 g_{i} \\
& s s_{i}^{2} \longrightarrow 4 g_{i} \square
\end{aligned}
$$

$d s_{i}^{0}->4 g_{i+1}$

$d s_{i}^{\prime}->2 g_{i}+2 g_{i+1}$

Figure 4.1. Five productions for self-bar-amalgamation.

$s s^{1}{ }_{i}->4 g_{i}$

$s s^{2}{ }_{i}->4 g_{i}$

Figure 4.2. Five more productions for self-bar-amalgamation.

5. Ringel Ladders

We define a Ringel ladder $R L_{n}$ to be the result of a self-bar-amalgamation on the symmetric ladder $\left(\ddot{L}_{n}, u, v\right)$. Such ladders were introduced by Gustin [14] and used extensively by Ringel [19] in his solution with Youngs [20] of the Heawood map-coloring problem. The Ringel ladder $R L_{4}$ is illustrated in Figure 5.1.

Figure 5.1. The Ringel ladder $R L_{4}$.

The genus distributions of Ringel ladders were first calculated by Tesar [23]. Our rederivation here is to facilitate our proof of their log-concavity.

Example 5.1. We take dot products of the pgd-vectors calculated in Example 3.1

$$
\left.\begin{array}{clcccccccccc}
V_{L_{0}} & = & (0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

with the vector (4.1)

$$
B=\left(\begin{array}{lllllllll}
4 x & 1+3 x & 2+2 x & 4 x & 2+2 x & 4 x & 2+2 x & 4 x & 4
\end{array}\right)
$$

to obtain the genus polynomials of the corresponding Ringel ladders.

$$
\begin{aligned}
& \Gamma_{R L_{0}}(x)=2+2 x \\
& \Gamma_{R L_{1}}(x)=2+14 x \\
& \Gamma_{R L_{2}}(x)=2+38 x+24 x^{2} \\
& \Gamma_{R L_{3}}(x)=2+70 x+184 x^{2} \\
& \Gamma_{R L_{4}}(x)=2+118 x+648 x^{2}+256 x^{3}
\end{aligned}
$$

Theorem 5.1. The genus distribution of the Ringel ladder $R L_{n}$ is given by taking the dot product of the vector B with the product of the vector $V_{L_{0}}$ and the matrix M^{n}, where B is given by (4.1), and M is given by (3.2).
Proof. This follows immediately from Theorem 4.1.
To deduce an explicit expression of $\Gamma_{R L_{n}}(x)$, we shall use Chebyshev polynomials. Chebyshev polynomials of the second kind are defined by the recurrence relation

$$
U_{p}(x)=2 x U_{p-1}(x)-U_{p-2}(x),
$$

with $U_{0}(x)=1$ and $U_{1}(x)=2 x$. It can be equivalently defined by the generating function

$$
\begin{equation*}
\sum_{p \geq 0} U_{p}(x) t^{p}=\frac{1}{1-2 x t+t^{2}} \tag{5.1}
\end{equation*}
$$

The $p^{\text {th }}$ Chebyshev polynomial $U_{p}(x)$ can be expressed by

$$
U_{p}(x)=\sum_{j \geq 0}(-1)^{j}\binom{p-j}{j}(2 x)^{p-2 j} .
$$

Theorem 5.2. The genus distribution of the Ringel ladder $R L_{n}$ is given by

$$
\begin{aligned}
\Gamma_{R L_{n}}(x)= & (1-x) \sum_{j \geq 0}\left(\binom{n-j}{j}+\binom{n-j+1}{j}\right)(8 x)^{j} \\
& +x 2^{n+1} \sum_{j \geq 0}\left(\binom{n-j}{j}+\binom{n-j+1}{j}\right)(2 x)^{j} .
\end{aligned}
$$

Proof. Using Theorem 5.1 and mathematical software such as Maple, we calculate the generating function

$$
\sum_{n \geq 0} V_{L_{0}} M^{n} t^{n}=\left(a, b, c, 2 x t a, 2 x t b, 2 x t a, 2 x t b, 4 x^{2} t^{2} a, 4 x^{2} t^{2} b, 2 x t c\right)
$$

where

$$
\begin{aligned}
a & =\frac{2 t^{2}}{\left(1-2 t-8 x t^{2}\right)\left(1-t-8 x t^{2}\right)\left(1-4 x t^{2}\right)} \\
b & =\frac{2 t}{\left(1-t-8 x t^{2}\right)\left(1-4 x t^{2}\right)}, \\
c & =\frac{1}{1-4 x t^{2}} .
\end{aligned}
$$

This implies

$$
\begin{aligned}
\sum_{n \geq 0} \Gamma_{R L_{n}}(x) t^{n} & =\sum_{n \geq 0} V_{L_{0}} M^{n} B^{T} t^{n} \\
& =V_{L_{0}}(1-t M)^{-1} B^{T} \\
& =\frac{2(1-x)(1+4 x t)}{1-t-8 x t^{2}}+\frac{4 x(1+2 x t)}{1-2 t-8 x t^{2}}
\end{aligned}
$$

From Definition (5.1), we can denote the coefficient $\Gamma_{R L_{n}}(x)$ of t^{n} in the above generating function in the following form.

$$
\begin{aligned}
\Gamma_{R L_{n}}(x)= & (1-x) \sqrt{-8 x}^{n+1}\left(\frac{2}{\sqrt{-8 x}} U_{n}\left(\frac{1}{2 \sqrt{-8 x}}\right)-U_{n-1}\left(\frac{1}{2 \sqrt{-8 x}}\right)\right) \\
& +x \sqrt{-8 x}^{n+1}\left(\frac{4}{\sqrt{-8 x}} U_{n}\left(\frac{1}{\sqrt{-8 x}}\right)-U_{n-1}\left(\frac{1}{\sqrt{-8 x}}\right)\right) \\
= & (1-x) \sum_{j \geq 0}\left(2\binom{n-j}{j}+\binom{n-j}{j-1}\right)(8 x)^{j} \\
& +x \sum_{j \geq 0}\left(2\binom{n-j}{j}+\binom{n-j}{j-1}\right) 2^{n+1+j} x^{j} .
\end{aligned}
$$

Using the Pascal recursion $\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}$, we get the desired expression.

Theorem 5.3. The Ringel ladders $R L_{n}$ have log-concave genus distributions.
Proof. Let $a_{n, j}$ be the coefficient of x^{j} of $\Gamma_{R L_{n}}(x / 2)$. By Theorem 5.2, we have

$$
\begin{aligned}
a_{n, j}= & {\left[\binom{n-j}{j}+\binom{n-j+1}{j}-\frac{1}{8}\binom{n-j+1}{j-1}-\frac{1}{8}\binom{n-j+2}{j-1}\right] 4^{j} } \\
& +2^{n}\left[\binom{n-j+1}{j-1}+\binom{n-j+2}{j-1}\right] .
\end{aligned}
$$

Note that $a_{n, j}=0$ for $j \geq\lfloor n / 2\rfloor+2$. We define $f_{n}(j)=a_{n, j}^{2}-a_{n, j-1} a_{n, j+1}$. When $j=\lfloor n / 2\rfloor+1$, we have $a_{n, j+1}=0$ and thus $f_{n}(j)=a_{n, j}^{2} \geq 0$. So it suffices to show that

$$
\begin{equation*}
f_{n}(j) \geq 0 \quad \text { for all } n \geq 2 \text { and } 1 \leq j \leq n / 2 \tag{5.2}
\end{equation*}
$$

Using Maple, it is routine to verify that Inequality (5.2) holds true for $n<100$. We now suppose that $n \geq 100$, and we define

$$
\begin{equation*}
g_{n}(j)=f_{n}(j) \cdot \frac{64 j!(j+1)!(n-2 j+5)!(n-2 j+3)!}{(n-j)!(n-j-1)!} . \tag{5.3}
\end{equation*}
$$

We employ the expression (5.3) because it can be written, if one replaces j by x, in the form

$$
\begin{equation*}
g_{n}(x)=16^{x} s_{2}+2^{n+2 x+1} x(n-x+1)\left(s_{1}+2^{n-2 x} s_{0}\right) \tag{5.4}
\end{equation*}
$$

where s_{2}, s_{1} and s_{0} are polynomials in n and x as follows:

$$
\begin{gathered}
s_{2}=256 n(n+5)(n+4)(n+3)^{2}(n+2)^{2}(n+1)^{2} \\
-4(n+3)(n+2)(n+1) \\
\left(848 n^{5}+10503 n^{4}+46749 n^{3}+88974 n^{2}+64168 n+7680\right) x \\
+\left(19140 n^{7}+303416 n^{6}+1959723 n^{5}+6630515 n^{4}+12527817 n^{3}\right. \\
\left.+12930761 n^{2}+6465660 n+1080000\right) x^{2} \\
+\left(59628 n^{6}+799668 n^{5}+4257252 n^{4}+11406255 n^{3}\right. \\
\left.+15964242 n^{2}+10757127 n+2565612\right) x^{3} \\
+\left(110781 n^{5}+1228365 n^{4}+5215302 n^{3}\right. \\
\left.+10470267 n^{2}+9734049 n+3223854\right) x^{4} \\
-\left(122760 n^{4}+1099197 n^{3}+3570660 n^{2}+4898043 n+2323908\right) x^{5} \\
+\left(75141 n^{3}+542916 n^{2}+1286307 n+964224\right) x^{6} \\
\\
\quad-\left(19602 n^{2}+137214 n+213840\right) x^{7}+19602 x^{8},
\end{gathered}
$$

$$
\begin{gathered}
s_{1}=4 n(n+4)(n+3)(n+2)(n+1)\left(184 n^{2}+595 n+538\right) \\
-\left(288 n^{7}+10832 n^{6}+97908 n^{5}+388214 n^{4}+782118 n^{3}\right. \\
\left.\quad+803168 n^{2}+363528 n+39360\right) x \\
+\left(3492 n^{6}+66912 n^{5}+417975 n^{4}+1177485 n^{3}\right. \\
\left.+1603200 n^{2}+969000 n+174744\right) x^{2} \\
-\left(17964 n^{5}+225066 n^{4}+972648 n^{3}+1831368 n^{2}+1476624 n+375000\right) x^{3} \\
+\left(50805 n^{4}+445635 n^{3}+1302147 n^{2}+1485999 n+534402\right) x^{4} \\
-\left(85266 n^{3}+519912 n^{2}+949644 n+510462\right) x^{5} \\
+\left(84861 n^{2}+331209 n+293922\right) x^{6}-(46332 n+88938) x^{7}+10692 x^{8}
\end{gathered}
$$

and

$$
\begin{aligned}
\frac{s_{0}}{32(x+1)(n-x)}= & 4(n+4)(n+3)(n+2)^{2}(n+1) \\
& -\left(20 n^{4}+185 n^{3}+616 n^{2}+883 n+468\right) x \\
& +\left(33 n^{3}+222 n^{2}+501 n+402\right) x^{2}-\left(18 n^{2}+90 n+144\right) x^{3}+18 x^{4}
\end{aligned}
$$

In view of (5.2), (5.3) and (5.4), it suffices to show that both s_{2} and $s_{1}+2^{n-2 x} s_{0}$ are nonnegative for $x \leq n / 2$.

First, we show that $s_{2} \geq 0$. Toward this objective, we write $x=k n$. Then $0 \leq k \leq 1 / 2$. Define $\tilde{s}_{2}=s_{2} / n$. Then \tilde{s}_{2} is a polynomial of degree 8 in n. For $0 \leq j \leq 8$, define

$$
q_{j}=\frac{d^{j}}{d n^{j}} \tilde{s}_{2}
$$

Then we have

$$
q_{8}=40320(1-2 k)(3 k-2)^{2}\left(33 k^{2}-33 k+8\right)^{2} \geq 0
$$

So q_{7} is increasing in n for any $0 \leq k \leq 1 / 2$. We compute

$$
\begin{aligned}
&\left.q_{7}\right|_{n=4}=98794080 k^{8}-3852969120 k^{7}+14855037120 k^{6} \\
&-25338685680 k^{5}+24057719280 k^{4}-13647130560 k^{3} \\
&+4616115840 k^{2}-861376320 k+68382720 .
\end{aligned}
$$

It is elementary to prove that

$$
\left.q_{7}\right|_{n=4}>0 \quad \text { for all } k \in[0,1 / 2] .
$$

Alternatively, one may find this positivity by drawing its figure in Maple. It follows that q_{6} is increasing in the interval $[4, \infty)$ of n. Next, we can compute

$$
\begin{aligned}
&\left.q_{6}\right|_{n=4}=395176320 k^{8}-9243020160 k^{7}+ 36108808560 k^{6} \\
&-64328152320 k^{5}+64252375200 k^{4}-38420136000 k^{3} \\
&+13701665520 k^{2}-2694375360 k+225239040
\end{aligned}
$$

Again, it is routine to prove that

$$
\left.q_{6}\right|_{n=4}>0 \quad \text { for all } k \in[0,1 / 2]
$$

So q_{5} is increasing in n on the interval $[4, \infty)$. Continuing in this bootstrapping way, we can prove that all $q_{4}, q_{3}, q_{2}, q_{1}, q_{0}$ are increasing for $n \in[4, \infty)$. Since

$$
\begin{array}{rl}
\left.q_{0}\right|_{n=4}=321159168 k^{8}-4408639488 k^{7}+ & 20075655168 k^{6} \\
-46290382848 k^{5}+621 & 7349376 k^{4}-50943602304 k^{3} \\
& +25184659968 k^{2}-6919073280 k+812851200
\end{array}
$$

is positive for all $k \in[0,1 / 2]$, we conclude that $q_{0}>0$ for all $n \geq 4$ and all $k \in[0,1 / 2]$. That is, $s_{2}>0$.

On the other hand, we define

$$
p_{n}=s_{1}+2^{n-2 x} s_{0}
$$

It remains to show $p_{n} \geq 0$ for all $x \in[0, n / 2]$. We shall do that for the intervals $[0, n / 3]$ and $[n / 3, n / 2]$, respectively.

For the first interval, we claim that

$$
\begin{equation*}
s_{0} \geq 0 \quad \text { for all } n \geq 100 \text { and all } 0 \leq x \leq n / 2 \tag{5.5}
\end{equation*}
$$

We will show (5.5) by using the same derivative method. In fact, consider

$$
\tilde{s_{0}}(x)=\frac{s_{0}}{32(x+1)(n-x)} .
$$

Note that $\tilde{s_{0}}(x)$ is a polynomial in x of degree 4 . For $0 \leq j \leq 4$, denote

$$
\frac{d^{j}}{d x^{j}} \tilde{s_{0}}(x)=\tilde{s}_{0}^{(j)}(x)
$$

Since $\tilde{s}_{0}^{(4)}(x)=432>0$, the 3 rd derivative

$$
\tilde{s}_{0}^{(3)}(x)=432 x-108\left(n^{2}+5 n+8\right)
$$

is increasing on the interval $[0, n / 2]$. Since

$$
\tilde{s}_{0}{ }^{(3)}(n / 2)=-108\left(n^{2}+3 n+8\right)<0
$$

we infer that $\tilde{s_{0}}{ }^{(3)}(x)<0$ for all $x \in[0, n / 2]$. So the second derivative

$$
\tilde{s}_{0}^{(2)}(x)=6\left(11 n^{3}+74 n^{2}+167 n+134\right)-108\left(n^{2}+5 n+8\right) x+216 x^{2}
$$

is decreasing. Since

$$
\tilde{s_{0}}{ }^{(2)}(n / 2)=6\left(2 n^{3}+38 n^{2}+95 n+134\right)>0,
$$

we deduce that $\tilde{s_{0}}{ }^{(2)}(x)>0$ for all x. Therefore,

$$
\begin{aligned}
{\tilde{s_{0}}}^{(1)}(x)=-\left(20 n^{4}+185 n^{3}\right. & \left.+616 n^{2}+883 n+468\right) \\
& +6\left(11 n^{3}+74 n^{2}+167 n+134\right) x-54\left(n^{2}+5 n+8\right) x^{2}+72 x^{3}
\end{aligned}
$$

is increasing. Since

$$
\tilde{s}_{0}^{(1)}(n / 2)=-2\left(n^{4}+43 n^{3}+446 n^{2}+962 n+936\right)<0
$$

we find $\tilde{s_{0}}{ }^{(1)}(x)<0$. It follows that $\tilde{s_{0}}(x)$ is decreasing. Since

$$
\tilde{s_{0}}(n / 2)=\frac{1}{8}\left(7 n^{4}+154 n^{3}+1112 n^{2}+2096 n+1536\right)>0
$$

we infer that $s_{0}(x) \geq 0$ and this completes the proof for Claim (5.5).
Now, for $x \in[0, n / 3]$, it suffices to prove that $p_{1}(x)=s_{1}+2^{n / 3} s_{0} \geq 0$. This can be done by considering derivatives of $p_{1}(x)$, with respect to x, along the same way. So we omit the proof.

For the other interval $[n / 3, n / 2]$, we compute

$$
\begin{aligned}
& f_{n}(n / 2)=\frac{4^{n}}{1474560}\left(397 n^{6}+9528 n^{5}+102100 n^{4}+619680 n^{3}\right. \\
&\left.+2315488 n^{2}+5041152 n+5898240\right)>0
\end{aligned}
$$

So we can suppose $x \in[n / 3, n / 2-1]$, i.e., $n \in[2 x+2,3 x]$. Define

$$
h_{j}(n)=\frac{d^{j}}{d n^{j}} p_{n}
$$

Expanding in $n-2-2 x$, the function $2^{2 x-n} h_{8}(n)$ can be recast as

$$
2^{2 x-n} h_{8}(n)=\sum_{i=0}^{6} \sum_{j=0}^{7-i} a_{i j} x^{j}(n-2-2 x)^{i},
$$

where $a_{i j} \geq 0$. So $h_{8}(n) \geq 0$ for all $n \in[2 x+2,3 x]$. It is elementary to prove that the univariate function $h_{7}(2 x+2)$ is non-negative. Again, it is routine to see this by drawing a graph of the function h_{7} with the aid of Maple. It follows that $h_{7}(n) \geq 0$ for all $n \in[2 x+2,3 x]$. Then, we check with Maple that $h_{6}(2 x+2) \geq 0$, from which it follows that $h_{6}(n) \geq 0$ for all $n \in[2 x+2,3 x]$. Continuing in this way, we can show that, for all $n \in[2 x+2,3 x]$, we have

$$
h_{5}(n) \geq 0, \quad h_{4}(n) \geq 0, \quad \cdots, \quad h_{0}(n) \geq 0
$$

In particular, we have $p_{n}=h_{0}(n) \geq 0$.

Acknowledgement

${ }^{a}$ Supported by Simons Foundation Grant \#315001.
${ }^{c}$ Supported by Simons Foundation Grant \#317689.
${ }^{d}$ Supported by Beijing Institute of Technology Research Fund Program for Young Scholars.

References

[1] L.W. Beineke, R.J. Wilson, J.L. Gross, and T.W. Tucker, editors, Topics in Topological Graph Theory, Cambridge Univ. Press, 2009.
[2] C.P. Bonnington, M. Conder, M. Morton, and P. McKenna, J. Combin. Theory Ser. B 85 (2002), 1-20.
[3] Y. Chen, J.L. Gross, and X. Hu, Enumeration of digraph embeddings, Euro. J. Combin. 36 (2014), 660-678.
[4] M. Furst, J.L. Gross and R. Statman, Genus distributions for two class of graphs, J. Combin. Theory Ser. B 46 (1989), 523-534.
[5] J. L. Gross, Genus distribution of graph amalgamations: Self-pasting at root-vertices, Australasian J. Combin. 49 (2011), 19-38.
[6] J.L. Gross, Genus distributions of cubic outerplanar graphs, J. of Graph Algorithms and Applications 15 (2011), 295-316.
[7] J.L.Gross, Embeddings of cubic Halin graphs: a surface-by-surface inventory, Ars Math. Contemporanea 6 (2013), 37-56. Online June 2012.
[8] J.L. Gross, Embeddings of graphs of fixed treewidth and bounded degree, Ars Math. Contemporanea 7 (2014), 379-403. Online Dec 2013. Presented at AMS Annual Meeting at Boston, January 2012.
[9] J.L. Gross and M.L. Furst, Hierarchy for imbedding-distribution invariants of a graph, J. Graph Theory 11 (1987), 205-220.
[10] J.L. Gross, I.F. Khan, and M.I. Poshni, Genus distribution of graph amalgamations: Pasting at root-vertices, Ars Combin. 94 (2010), 33-53.
[11] J.L. Gross, T. Mansour, T.W. Tucker, and D.G.L. Wang, Log-concavity of combinations of sequences and applications to genus distributions, SIAM J. Discrete Math., to appear.
[12] J.L. Gross, D.P. Robbins, and T.W. Tucker, Genus distributions for bouquets of circles, J. Combin. Theory Ser. B 47 (1989), 292-306.
[13] J.L. Gross and T.W. Tucker, Topological Graph Theory, Dover, 2001 (original ed. Wiley, 1987).
[14] W. Gustin, Orientable embedding of Cayley graphs, Bull. Amer. Math. Soc. 69 (1963), 272275.
[15] M. Kotrbcik and M. Skoviera, Matchings, cycle bases, and the maximum genus of a graph, Electronic J. Combin. 19(3) (2012), P3.
[16] L.L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, Adv. in Appl. Math. 38 (2007), 542-560.
[17] M.I. Poshni, I.F. Khan, and J.L. Gross, Genus distribution of graphs under edgeamalgamations, Ars Math. Contemp. 3 (2010), 69-86.
[18] M.I. Poshni, I.F. Khan, and J.L. Gross, Genus distribution of 4-regular outerplanar graphs, Electronic J. Combin. 18 (2011), \#P212.
[19] G. Ringel Map Color Theorem, Springer-Verlag, 1974.
[20] G. Ringel and J.W.T. Youngs, Solution of the Heawood map-coloring problem, Proc. Nat. Acad. Sci. USA 60 (1968), 438-445.
[21] S. Stahl, Permutation-partition pairs. III. Embedding distributions of linear families of graphs, J. Combin. Theory, Ser. B 52 (1991), 191-218.
[22] S. Stahl, On the zeros of some genus polynomials, Canad. J. Math. 49 (1997), 617-640.
[23] E.H. Tesar, Genus distribution of Ringel ladders, Discrete Math. 216 (2000), 235-252.
[24] D.G. Wagner, Zeros of genus polynomials of graphs in some linear families, Univ. Waterloo Research Report CORR 97-15 (1997), 9pp.

