On the domination and signed domination numbers of zero-divisor graph

Ebrahim Vatandoost, Fatemeh Ramezani

Department of Basic Science,
Imam Khomeini International University,
Qazvin, Iran.

vatandoost@sci.ikiu.ac.ir, ramezani@ikiu.ac.ir

Abstract

Let R be a commutative ring (with 1) and let $Z(R)$ be its set of zero-divisors. The zero-divisor graph $\Gamma(R)$ has vertex set $Z^*(R) = Z(R) \setminus \{0\}$ and for distinct $x, y \in Z^*(R)$, the vertices x and y are adjacent if and only if $xy = 0$. In this paper, we consider the domination number and signed domination number on zero-divisor graph $\Gamma(R)$ of commutative ring R such that for every $0 \neq x \in Z^*(R)$, $x^2 \neq 0$. We characterize $\Gamma(R)$ whose $\gamma(\Gamma(R)) + \gamma_{s}(\Gamma(R)) \in \{n + 1, n, n - 1\}$, where $|Z^*(R)| = n$.

Keywords: domination number, signed domination number, zero-divisor graph
Mathematics Subject Classification : 05C25, 05C50
DOI: 10.5614/ejgta.2016.4.2.3

1. Introduction

The study on graphs from algebraic structures is an interesting subject for mathematician. In recent years, many algebraists as well as graph theorists have focused on the zero-divisor graph of rings. In [1], Anderson and Livingston introduced the zero-divisor graph of a commutative ring R with identity, denoted by $\Gamma(R)$, as the graph with vertices $Z^*(R) = Z(R) \setminus \{0\}$, the set of nonzero zero-divisors of R, and for distinct vertices x and y are adjacent if and only if $xy = 0$. A dominating set for Γ is a subset D of V such that every vertex not in D is adjacent to at least
one member of \(D \). The \textit{domination number} is the number of vertices in a smallest dominating set for \(\Gamma \) and denoted by \(\gamma(\Gamma) \). Oystein Ore introduced the terms “dominating set” and ”domination number” in [10] and has proved if \(\Gamma \) has \(n \) vertices and no isolated vertices, then \(\gamma(\Gamma) \leq \frac{n}{2} \).

For a vertex \(v \in V(\Gamma) \), the closed neighborhood \(N[v] \) of \(v \) is the set consisting of \(v \) and all of its neighbors. For a function \(g : V(\Gamma) \longrightarrow \{-1, 1\} \) and a vertex \(v \in V \) we define \(g[v] = \sum_{u \in N[v]} g(u) \). A \textit{signed dominating function} of \(\Gamma \) is a function \(g : V(\Gamma) \longrightarrow \{-1, 1\} \) such that \(g[v] \geq 0 \) for all \(v \in V(\Gamma) \). The \textit{weight} of a function \(g \) is \(\omega(g) = \sum_{v \in V(\Gamma)} g(v) \). The \textit{signed domination number} \(\gamma_s(\Gamma) \) is the minimum weight of a signed dominating function on \(\Gamma \). A signed dominating function of weight \(\gamma_s(\Gamma) \) is called a \(\gamma_s(\Gamma) \)–function. This concept was defined in [3] and has been studied by several authors (see for instance \([4, 7, 8, 13, 14]\)). For a graph \(\Gamma \) the set of all vertices of \(\Gamma \) is denoted by \(V(\Gamma) \). If \(\Gamma \) is a graph, then the \textit{complement} of \(\Gamma \), denoted by \(\overline{\Gamma} \) is a graph with vertex set \(V(\Gamma) \) in which two vertices are adjacent if and only if they are not adjacent in \(\Gamma \). A graph is said to be \textit{connected} if each pair of vertices are joined by a walk. The number of edges in a shortest walk joining \(v_i \) and \(v_j \) is called the \textit{distance} between \(v_i \) and \(v_j \) and denoted by \(d(v_i, v_j) \). The maximum value of the distance function in a connected graph \(\Gamma \) is called the \textit{diameter} of \(\Gamma \) and denoted by \(\text{diam}(\Gamma) \). The \textit{complete graph} \(K_n \) is the graph with \(n \) vertices in which each pair of vertices are adjacent. The \textit{corona} \(\Gamma_1 \circ \Gamma_2 \) is the graph formed by one copy of \(\Gamma_1 \) and \(|V(\Gamma_1)| \) copies of \(\Gamma_2 \) where the \(i \text{th} \) vertex of \(\Gamma_1 \) is adjacent to every vertex in the \(i \text{th} \) copy of \(\Gamma_2 \).

In this work, we consider the domination and signed domination number on zero-divisor graph \(\Gamma(R) \) for commutative ring \(R \). The main results are in the following.

Theorem 1.1. \(\gamma_s(\Gamma(R)) = n \) if and only if \(\Gamma(R) \) is isomorphic to \(K_{1, n-1} \) or \(K_3 \circ K_1 \).

Theorem 1.2. Let \(|R| \) be odd. Then \(\gamma_s(\Gamma(R)) = n - 2 \) if and only if \(\Gamma(R) \) is a cycle \(C_4 \).

Theorem 1.3. \(\gamma(\Gamma(R)) + \gamma(\overline{\Gamma(R)}) = n \) if and only if \(\Gamma(R) \) is a cycle \(C_4 \) or a path \(P_3 \).

Theorem 1.4. \(\gamma(\Gamma(R)) + \gamma(\overline{\Gamma(R)}) = n - 1 \) if and only if \(\Gamma(R) \) is isomorphic to a \(K_{1, 3} \) or a \(K_3 \circ K_1 \).

2. Preliminaries

First we give some facts that are needed in the next sections.

Theorem 2.1. [1] Let \(R \) be a commutative ring. Then \(\Gamma(R) \) is connected and \(\text{diam}(\Gamma(R)) \leq 3 \). Moreover, if \(\Gamma(R) \) contains a cycle, then \(\text{girth}(\Gamma(R)) \leq 7 \).

Theorem 2.2. [1] Let \(R \) be a finite commutative ring with \(|\Gamma(R)| \geq 4 \). Then \(\Gamma(R) \) is a star graph if and only if \(R = \mathbb{Z}_2 \times F \) where \(F \) is a finite field. In particular, if \(\Gamma(R) \) is a star graph, then \(|\Gamma(R)| = p^n \) for some prime \(p \) and \(n \geq 0 \). Conversely, each star graph of order \(p \) can be realized as \(\Gamma(R) \).

Theorem 2.3. [10] If a graph \(\Gamma \) has \(n \) vertices and no isolated vertices, then \(\gamma(\Gamma) \leq \frac{n}{2} \).
Theorem 2.4. [9] For any graph Γ with n vertices:

i. $\gamma(\Gamma) + \gamma(\overline{\Gamma}) \leq n + 1$.

ii. $\gamma(\Gamma)\gamma(\overline{\Gamma}) \leq n$.

Theorem 2.5. [11][5] For a graph Γ with even order n and no isolated vertices, $\gamma(\Gamma) = \frac{n}{2}$ if and only if the components of Γ are the cycle C_4 or the corona $H \circ K_1$ where H is a connected graph.

Lemma 2.1. [8] Let Γ be a complete graph of order n, then

$$\gamma_s(\Gamma) = \begin{cases} 1 & n \text{ is odd} \\ 2 & n \text{ is even} \end{cases}$$

Theorem 2.6. [8] Let Γ be a graph with n vertices, then

i. $\gamma_s(\Gamma) + \gamma_s(\overline{\Gamma}) = 2n$ and $\gamma_s(\Gamma)\gamma_s(\overline{\Gamma}) = n^2$ if and only if $\Gamma \in \{P_1, P_2, P_3, \overline{P}_3, P_4\}$, where P_i is a path on i vertices.

ii. $\gamma_s(\Gamma) + \gamma_s(\overline{\Gamma}) = 2n - 2$ and $\gamma_s(\Gamma)\gamma_s(\overline{\Gamma}) = n^2 - 2n$ for exactly 12 graph in Figure 1.

![Graphs G1 to G12](image-url)

Figure 1. $\gamma_s(\Gamma) + \gamma_s(\overline{\Gamma}) = 2n - 2$ and $\gamma_s(\Gamma)\gamma_s(\overline{\Gamma}) = n^2 - 2n$.

Lemma 2.2. [8] A graph Γ has $\gamma_s(\Gamma) = n$ if and only if every $v \in \Gamma$ is either isolated, an endvertex or adjacent to an endvertex.
3. Signed domination number on zero-divisor graph

Throughout this paper, R is a commutative ring such that $|Z^*(R)| = n$ and for every non-zero element x, $x^2 \neq 0$. Also $\overline{\Gamma}(R)$ denotes the complement graph of the zero-divisor graph on R.

Lemma 3.1. The cycle C_n is a zero-divisor graph of a ring if and only if $n = 4$.

Proof. Let $\Gamma(R)$ be the zero-divisor graph of a commutative ring R. Since $girth(\Gamma(R)) \leq 7$, then $n \leq 7$. On the contrary, let $\Gamma(R) \simeq C_n$ and $n \geq 5$ or $n = 3$. If $n \geq 5$, then $a_1 - a_2 - \ldots - a_n - a_1$. So $a_1 + a_3 \in \text{ann}(a_2) = \{0, a_1, a_3\}$ and so $a_1 + a_3 = 0$. Thus $a_4a_1 = 0$. This is impossible. Let $\Gamma(R)$ be K_3. Then $Z(R) = \{0, a, b, c\}$. So $\text{ann}(a) = \{0, b, c\}$ and $\text{ann}(b) = \{0, a, c\}$. Thus $b = -c = a$. This is a contradiction. Conversely, the zero divisor graph of ring $Z_3 \times Z_3$ is a cycle C_4. \qed

Proof of Theorem 1.1. Let $\gamma_s(\Gamma(R)) = n$. Since $\Gamma(R)$ is a connected graph, by Lemma 2.2, every vertex is an endvertex or adjacent to an end-vertex. If $x \in Z^*(R)$ and $\deg(x) = 1$, then $\text{ann}(x) = \{0, y\}$ where $xy = 0$. So $O(y) = 2$ in group $(R, +)$. Hence $|R|$ has even order. Let $A = \{a; \deg(a) > 1\}$. Since $\text{diam}(\Gamma(R)) \leq 3$, the induced subgraph on A is a complete graph. Consider four cases:

Case 1. If $|A| = 1$, then $\Gamma(R)$ is $K_{1,n-1}$.

Case 2. Let $A = \{a, b\}$. Then $\text{ann}(a) \cap \text{ann}(b) = \{0\}$. Suppose that $u \in \text{ann}(a)$ and $v \in \text{ann}(b)$. Since $\deg(a), \deg(b) > 1$, then $\deg(u) = \deg(v) = 1$ and also $uva = uvb = 0$. Hence, $uv \in \text{ann}(a) \cap \text{ann}(b)$ and so $uv = 0$. This is a contradiction by $\deg(u) = \deg(v) = 1$.

Case 3. Let $A = \{a, b, c\}$. Let $E(a)$ be the set of endvertex adjacent to a. Since $b, c \in \text{ann}(a)$ and $O(a) = O(b) = 2$, $\text{ann}(a)$ is a subgroup of $(R, +)$ of even order. Hence $\text{odd}(a)$ is odd. The same conclusion can be drawn for b, c. We claim that $|E(a)| = 1$. On the contrary, suppose that $|E(a)| \geq 3$. There is no loss of generality in assuming $E(a) = \{x_1, x_2, x_3\}$. So $\text{ann}(a) = \{0, b, c, x_1, x_2, x_3\}$. Hence $x_1 = -x_3$ and $O(x_2) = 2$ or $O(x_1) = 2$ for $i \in \{1, 2, 3\}$. In the both cases, $x_1 + x_2 + x_2 \neq x_3$. Let $y \in E(b)$. Then $x_1ya = x_1yb = 0$. So $x_1y \in \text{ann}(a) \cap \text{ann}(b) = \{0, c\}$. Since $\deg(y) = 1$, $x_1y = c$. In the same manner we can see that $x_2y = x_3y = c$. Hence $y(x_1 + x_2) = y(x_2 + x_3) = 2c = 0$. Thus $x_1 + x_2, x_2 + x_3 \in \text{ann}(y) = \{0, b\}$. So $x_1 + x_2 = x_2 + x_3 = b$ and so $x_1 = x_3$. This is a contradiction. Therefore $|E(a)| = |E(b)| = |E(c)| = 1$ and $\Gamma(R)$ is $K_3 \circ K_1$.

Case 4. Let $A = \{a_1, \ldots, a_t\}$ and $t > 3$. Then $\text{ann}(a_i) = \{0, a_1, \ldots, \hat{a_i}, \ldots, a_t\} \cup E(a_i)$ for $i \in \{1, \ldots, t\}$. So $\bigcap_{i=1}^{t-1} \text{ann}(a_i) = \{0, a_{t-1}, a_t\}$. Hence $a_{t-1} = -a_t$. Since $N(a_{t-1}) \neq N(a_t)$, this is impossible. \qed

Corollary 3.1. If $\gamma_s(\Gamma(R)) = n$, then $\gamma_s(\overline{\Gamma}(R)) \in \{0, 3\}$.
Proof. By Theorem 1.1, $\Gamma(R) \simeq K_{1,n-1}$ or $K_3 \circ K_1$. If $\Gamma(R) \simeq K_{1,n-1}$, then $\overline{\Gamma(R)}$ is $K_1 \cup K_{n-1}$. Since $|Z(R)|$ is even, then n is odd and so $\gamma_s(K_{n-1}) = 2$ and $\gamma_s(\overline{\Gamma(R)}) = 3$. If $\Gamma(R) \simeq K_3 \circ K_1$, then $\overline{\Gamma(R)}$ is the graph in Figure 2. Let $V_1 = \{x, y, z\}$ and $V_2 = \{a, b, c\}$. Define $f : V(\overline{\Gamma(R)}) \rightarrow \{-1, +1\}$ such that

$$f(u) = \begin{cases}
-1 & u \in V_1; \\
+1 & u \in V_2.
\end{cases}$$

It is clear that f is a signed dominating function and $\omega(f) = 0$. If g is a function such that $\omega(g) < 0$, then g is not a signed dominating function. Therefore $\gamma_s(\overline{\Gamma(R)}) = 0$. \hfill \Box

Corollary 3.2. If $\gamma_s(\Gamma(R)) = n$, then $|R| \in \{2^k, 2p^k\}$ where p is prime.

Proof. By Theorem 1.1, $\Gamma(R) \simeq K_{1,n-1}$ or $K_3 \circ K_1$. If $\Gamma(R) \simeq K_{1,n-1}$, then by Theorem 2.2, $R \simeq Z_2 \times F$ where F is a finite field. So $|R| = 2p^k$. Let $\Gamma(R) \simeq K_3 \circ K_1$. Let $V(\Gamma(R)) = \{a_i, x_i; \deg(x_i) = 1, \deg(a_i) = 3, 1 \leq i \leq 3\}$. So $|R|$ is even. If $p \mid |R|$ (p is odd prime number), then there is $0 \neq r \in R$ such that $O(r) = p$. Hence $pr = 0$. Also $(p-1)a_i = 0$. Thus $ra_i = r(pa_i) = 0$. So $r \in \text{ann}(a_i)$ for every $1 \leq i \leq 3$. Hence $r = 0$. This is a contradiction. Therefore $|R| = 2^k$. \hfill \Box

The Proof of Theorem 1.2 Since $|R|$ is odd, $\delta \geq 2$. Let $x \in R$ and $\deg(x) = 2k + 1$. Then $|\text{ann}(x)| = 2k + 2$. This is a contradiction by $|R|$ is odd. So all vertices have even degree. Since $\text{diam}(\Gamma(R)) \leq 3$, there are three cases:

Case 1. If $\text{diam}(\Gamma(R)) = 1$, then $\Gamma(R)$ is complete graph K_n. Since all vertices have even degree, n is odd and so $\gamma_s(\Gamma(R)) = 1$. Hence $n = 3$ and $\Gamma(R)$ is K_3. This is impossible by Lemma 3.1.

Case 2. If $\text{diam}(\gamma(R)) = 3$, then there are $a, b \in Z^*(R)$ such that $d(a, b) = 3$. Define signed dominating function $f : V(\Gamma(R)) \rightarrow \{-1, +1\}$ such that $f(a) = f(b) = -1$ and $f(x) = 1$ for $x \in Z^*(R) \setminus \{a, b\}$. Thus $\gamma_s(\Gamma(R)) < n - 2$. This is impossible.
Case 3. Let diam($\Gamma(R)$) = 2. If $\Delta = 2$, then $\Gamma(R)$ is a cycle. So $\Gamma(R) \simeq C_4$, by Theorem 3.1. Let $deg(y) = \Delta \geq 4$. Let $ann(y) = \{0, a_1, \ldots, a_t\}$ where t is even and $t \geq 4$. So $O(a_i) \neq 2$.

Hence, $-a_i \in ann(y)$. Thus $ann(y) = \{0, a_1, -a_1, \ldots, a_t, -a_t\}$. Let $x \in N(a_1)$. If there is $2 \leq j \leq \frac{t}{2}$ such that $\{a_1, a_j\} \notin E(\Gamma(R))$, then $d(x, a_j) > 2$. Otherwise, there is $z \in N(a_j) \setminus ann(y)$ and so $d(x, z) = 3$. This is not true. So for every $x \in N(a_1)$, $\text{deg}(x) \geq 4$. Define $f : V(\Gamma(R)) \rightarrow \{-1, +1\}$ such that $f(a_1) = f(-a_1) = -1$ and $f(v) = 1$ for every $v \in V(\Gamma(R)) \setminus \{a_1, -a_1\}$. So f is a signed dominating function and so $\gamma(\Gamma(R)) < n - 2$. This is a contradiction. \qed

Theorem 3.1. If $\gamma_s(\Gamma(R)) + \gamma_s(\overline{\Gamma(R)}) = 2n$, then $|R| \in \{2^k, 2 \times 3^k\}$.

Proof. Since $\Gamma(R)$ is a connected graph, by Theorem 2.6, $\Gamma(R)$ is one of the paths in $\{P_1, P_2, P_3, P_4\}$. It is known P_4 is not a zero-divisor graph.

If $\Gamma(R)$ is P_1, then $Z(R) = \{0, x\}$. So $x^2 = 0$. This is impossible.

Let $\Gamma(R)$ be P_2. Then $Z(R) = \{0, a, b\}$ and $O(a) = O(b) = 2$. So $|R|$ is even. If $p \mid |R|$ where p is an odd prime number, then there is $r \in R$ such that $O(r) = p$. Hence $(p - 1)a = 0$. Thus $ra = r(pa) = 0$. So $r \in ann(a)$ and so $r = b$. This is a contradiction. If $\Gamma(R)$ is $a - c - b$, then $ann(c) = \{0, a, b\}$. So $b = -a$ and so $O(a) = 3$. Also $O(c) = 2$. Also by Theorem 2.2, $R \simeq Z_2 \times F$. So $|R| = 2 \times 3^k$. \qed

Theorem 3.2. If $\gamma_s(\Gamma(R)) + \gamma_s(\overline{\Gamma(R)}) = 2n - 2$, then $|R| = 2p^k$ where p is an odd prime.

Proof. By Theorem 2.6 and Lemma 3.1 and since $\Gamma(R)$ is a connected graph, $\Gamma(R) \in \{K_{1,3}, K_{1,4}, G_1, G_2\}$ where G_1, G_2 are two graphs in Figure 3. We show that G_1 and G_2 are not a zero-divisor graph. If G_1 is a zero-divisor graph, then $b(a + e) = 0$. So $a + e \in ann(b) = \{0, a, e\}$. Hence $e = -a$. This is a contradiction by $c, d \notin ann(a)$. Similar argument applies for G_2.

If $\Gamma(R)$ is $K_{1,3}$ or $K_{1,4}$, then likewise Corollary 3.2, $|R| = 2p^k$. \qed

Figure 3. G_1 and G_2 in Theorem 3.2.

4. Domination number on zero-divisor graph

Theorem 4.1. $\gamma(\Gamma(R)) = \frac{n}{2}$ if and only if $\Gamma(R)$ is a cycle C_4 or a $K_3 \circ K_1$.

www.ejgta.org
Case 1. Let $\gamma(\Gamma(R)) = \frac{n}{2}$. By Theorem 2.5, $\Gamma(R)$ is the a cycle C_4 or the corona $H \circ K_1$ where H is a connected graph. If $\Gamma(R)$ is not C_4, then $\Gamma(R) \simeq H \circ K_1$. Let $A = \{a_i; \deg(a_i) > 1\}$. Since $\text{diam}(\Gamma(R)) \leq 3$, the induced subgraph on A is complete. If $|A| = 2$, then $\Gamma(R)$ is a path P_4. This is impossible. If $|A| > 3$, then $\bigcap_{i=1}^{t-2} \text{ann}(a_i) = \{0, a_{t-1}, a_t\}$. Hence $a_t = -a_{t-1}$. This is a contradiction. So $|A| = 3$ and so $\Gamma(R) \simeq K_3 \circ K_1$. The converse is clear. \qed

Theorem 4.2. $\gamma(\Gamma(R)) + \gamma(\Gamma(R)) = n + 1$ if and only if $\Gamma(R)$ is complete graph K_n.

Proof. Let $\gamma(\Gamma(R)) + \gamma(\Gamma(R)) = n + 1$. By Theorem 2.3, $\gamma(\Gamma(R)) \leq \frac{n}{2}$. So $\gamma(\Gamma(R)) > \frac{n}{2}$ and so $\Gamma(R)$ has isolated vertex. Hence $\gamma(\Gamma(R)) = 1$ and $\gamma(\Gamma(R)) = n$. Thus all vertices of $\Gamma(R)$ are isolated. Therefore $\Gamma(R) \simeq K_n$. \qed

Proof of Theorem 1.3. Let $\gamma(\Gamma(R)) + \gamma(\Gamma(R)) = n$. Since $\Gamma(R)$ is a connected graph, $\gamma(\Gamma(R)) \leq \frac{n}{2}$. We consider following cases:

Case 1. Let $\gamma(\Gamma(R)) = \frac{n}{2}$. By Theorem 4.1 and above equality, $\Gamma(R)$ is a C_4.

Case 2. If $\gamma(\Gamma(R)) < \frac{n}{2}$, then $\gamma(\Gamma(R)) > \frac{n}{2}$. So $\Gamma(R)$ has an isolated vertex and so $\gamma(\Gamma(R)) = 1$.

Also $\gamma(\Gamma(R)) = n - 1$. Thus $\Gamma(R)$ is $P_2 \cup (n - 2)K_1$. It is clear that $n \geq 3$.

Sub case I. If $n > 3$, then likewise the proof of Theorem 4.1, the contradiction reaches.

Sub case II. If $n = 3$, then $\Gamma(R) \simeq P_2 \cup K_1$. So $\Gamma(R)$ is the path P_3.

The converse is easy. \qed

Proof of Theorem 1.4. Let $\gamma(\Gamma(R)) + \gamma(\Gamma(R)) = n - 1$. Since $\Gamma(R)$ has no isolated vertices, $\gamma(\Gamma(R)) \leq \frac{n}{2}$. There are three cases:

Case 1. If $\gamma(\Gamma(R)) = \frac{n}{2}$, then $\Gamma(R)$ is $K_3 \circ K_1$ or C_4 by Theorem 4.1. But $K_3 \circ K_1$ is not satisfied in $\gamma(\Gamma(R)) + \gamma(\Gamma(R)) = n - 1$.

Case 2. Let $\gamma(\Gamma(R)) = \frac{n}{2} - 1$. Then $\gamma(\Gamma(R)) = \frac{n}{2}$. By Theorem 2.4, $0 \leq n \leq 6$. So $n \in \{4, 6\}$.

Sub case I. Let $n = 4$. Then $\gamma(\Gamma(R)) = 1$ and $\gamma(\Gamma(R)) = 2$. So $\Gamma(R)$ is K_1, G or G in Figure 4. Let G be a zero-divisor graph. Since $\deg(a) = 1$, $O(b) = 2$. On the other hand, $\text{ann}(c) = \{0, b, d\}$. So $d = -b$. This is not true.

Sub case II. If $n = 6$, then $\gamma(\Gamma(R)) = 2$ and $\gamma(\Gamma(R)) = 3$. So $\Gamma(R)$ is a graph without isolated vertex. Hence by Theorem 2.5, $\Gamma(R)$ is $C_4 \cup P_2, 3P_2$ or $K_3 \circ K_1$. So $\Gamma(R)$ is G_1, G_2 and G_3 in Figure 4, respectively. In graph G_1, $c(d + e) = 0$ and so $d + e \in \text{ann}(c)$. Hence $d + e = 0$ or f. Thus $ad = 0$ or $bd = 0$. This is a contradiction. In graph G_2, $d + f \in \text{ann}(a)$. But all cases are impossible. In graph G_3, Since $b(d + f) = 0$, $d = -f$. So $cf = 0$. This is not true.
Case 3. If $\gamma(\Gamma(R)) < \frac{n}{2} - 1$, then $\Gamma(R)$ has an isolated vertex. So $\gamma(\Gamma(R)) = 1$ and so $\gamma(\Gamma(R)) = n - 2$. Hence $\Gamma(R)$ is $P_3 \cup (n - 3)K_1$ or $K_3 \cup (n - 3)K_1$. If $n = 4$, then $\Gamma(R)$ is G in Figure 4 or $K_{1,3}$ respectively. But G is not a zero-divisor graph of a ring. For $n > 4$, the contradiction reached by the same method in Theorem 4.1.

![Diagram](https://example.com/diagram)

Figure 4. $\Gamma(R)$ in the proof of Theorem 1.4, Cases 2 and 3.

References

